Package ‘vegan’

February 20, 2015

Title Community Ecology Package
Version 2.2-1
Date 2015-01-12
Author Jari Oksanen, F. Guillaume Blanchet, Roeland Kindt, Pierre Legendre,
Peter R. Minchin, R. B. O’Hara, Gavin L. Simpson, Peter Solymos,
M. Henry H. Stevens, Helene Wagner
Maintainer Jari Oksanen <jari.oksanen@oulu.fi>
Depends permute (>= 0.7-8), lattice, R (>= 2.15.0)
Suggests parallel, tcltk
Imports MASS, cluster, mgcv
Description Ordination methods, diversity analysis and other
 functions for community and vegetation ecologists.
License GPL-2
BugReports https://github.com/vegandevs/vegan/issues
URL http://cran.r-project.org, https://github.com/vegandevs/vegan
NeedsCompilation yes
Repository CRAN
Date/Publication 2015-01-12 14:18:14

R topics documented:

 vegan-package .. 4
 add1.cca .. 5
 adipart ... 7
 adonis .. 11
 anosim ... 14
 anova.cca .. 17
 as.mlm.cca ... 19
 BCI ... 21
 beals .. 22
betadisper ... 24
betadiver .. 29
bgdispersal ... 31
bioenv .. 33
biplot.rda ... 35
capscale ... 37
cascadeKM ... 41
cca ... 44
cca.object ... 48
CCorA ... 51
clamtest ... 54
commsim ... 56
contribdiv ... 62
decorana ... 64
decostand .. 68
designndist .. 70
deviance.cca .. 72
dispindmorisita ... 74
dispweight ... 76
disconnected .. 78
diversity ... 79
dune .. 82
dune.taxon .. 83
eigenvals ... 84
envfit .. 85
eventstar .. 89
fisherfit ... 91
goodness.cca ... 94
goodness.metaMDS ... 96
humpfit ... 98
indpower .. 101
isomap .. 102
kendall.global .. 105
linestack ... 107
make.cepnames .. 109
mantel .. 110
mantel.correlog ... 112
MDSrotate ... 115
metaMDS .. 116
mite .. 121
model.matrix.cca ... 122
monoMDS ... 123
MOSTest ... 126
mrpp .. 129
mso ... 133
multipart ... 135
nestedtemp ... 138
nobs.adonis .. 141
R topics documented:

- `nullmodel` .. 142
- `oecosimu` ... 144
- `ordiarrows` .. 148
- `ordihull` .. 150
- `ordilabel` .. 153
- `ordiplot` ... 155
- `ordipointlabel` .. 157
- `ordiresids` .. 159
- `ordistep` .. 160
- `ordisurf` .. 162
- `orditkplot` .. 168
- `orditorp` .. 171
- `ordixyplot` .. 172
- `pcnm` .. 174
- `permat` .. 176
- `permustats` .. 181
- `permutations` ... 183
- `permutes.betadisper` 186
- `plot.cca` ... 188
- `prc` .. 191
- `predict.cca` .. 194
- `procrustes` .. 197
- `pyrifos` ... 200
- `radfit` .. 201
- `rankindex` .. 205
- `raupcrick` .. 207
- `read.cep` ... 209
- `renyi` .. 211
- `reorder.hclust` ... 213
- `RsquareAdj` .. 215
- `scores` .. 216
- `screeplot.cca` .. 217
- `simper` .. 220
- `simulate.rda` ... 222
- `sipoo` .. 224
- `spantree` ... 224
- `specaccum` .. 227
- `specpool` ... 232
- `SSarrhenius` .. 235
- `stepacross` ... 237
- `stressplot.wcmdscale` 240
- `taxondive` .. 241
- `tolerance` .. 243
- `treedive` ... 245
- `tsallis` .. 247
- `varespec` ... 249
- `varpart` .. 250
- `vegan-deprecated` ... 254
Description

The vegan package provides tools for descriptive community ecology. It has most basic functions of diversity analysis, community ordination and dissimilarity analysis. Most of its multivariate tools can be used for other data types as well.

Details

The functions in the vegan package contain tools for diversity analysis (see vignette vegandocs("diversity")), ordination and analysis of dissimilarities (see vignette vegandocs("intro")). Together with the labdsv package, the vegan package provides most standard tools of descriptive community analysis. Package ade4 provides an alternative comprehensive package, and several other packages complement vegan and provide tools for deeper analysis in specific fields. Package BiodiversityR provides a GUI for a large subset of vegan functionality.

The vegan package is developed at R-Forge (http://vegan.r-forge.r-project.org). The R-Forge provides up-to-date information and mailing lists for help queries and bug reports. Bug reports can also be emailed to the function authors or to the package maintainers.

The vegan documents can be read with vegandocs function. In addition to vignettes of basic usage, you can read NEWS on the new features and bug fixes in the release version (vegandocs("NEWS")), and more technical and fine grained ChangeLog (vegandocs("Change")). Several frequently asked questions really are answered in the vegan FAQ (vegandocs("FAQ")). The discussion on design decisions can be read with vegandocs("decision"). A tutorial of the package at http://cc.oulu.fi/~jarioksa/opetus/metodi/vegantutor.pdf provides a more thorough introduction to the package.

To see the preferable citation of the package, type citation("vegan").

Author(s)

The vegan development team is Jari Oksanen, F. Guillaume Blanchet, Roeland Kindt, Pierre Legendre, Peter R. Minchin, R. B. O’Hara, Gavin L. Simpson, Peter Solymos, M. Henry H. Stevens, Helene Wagner. Many other people have contributed to individual functions: see credits in function help pages.

The maintainers at the R-Forge are Jari Oksanen <jari.oksanen@oulu.fi> and Gavin Simpson <gavin.simpson@ucl.ac.uk>.
Examples

Example 1: Unconstrained ordination

```r
# NMDS
data(varespec)
data(varechem)
ord <- metaMDS(varespec)
plot(ord, type = "t")

# Fit environmental variables
ef <- envfit(ord, varechem)
plot(ef, p.max = 0.05)
```

Example 2: Constrained ordination (RDA)

The example uses formula interface to define the model

```r
data(dune)
data(dune.env)

# No constraints: PCA
mod0 <- rda(dune ~ 1, dune.env)
plot(mod0)

# All environmental variables: Full model
mod1 <- rda(dune ~ ., dune.env)
plot(mod1)

# Automatic selection of variables by permutation P-values
mod <- ordistep(mod0, scope=formula(mod1))
plot(mod)

# Permutation test for all variables
anova(mod)

# Permutation test of "type III" effects, or significance when a term
# is added to the model after all other terms
anova(mod, by = "margin")

# Plot only sample plots, use different symbols and draw SD ellipses
# for Management classes
plot(mod, display = "sites", type = "n")
with(dune.env, points(mod, disp = "si", pch = as.numeric(Management)))
with(dune.env, legend("topleft", levels(Management), pch = 1:4,
                         title = "Management"))
with(dune.env, ordiellipse(mod, Management, label = TRUE))

# add fitted surface of diversity to the model
ordisurf(mod, diversity(dune), add = TRUE)

### Example 3: analysis of dissimilarites a.k.a. non-parametric

```r
permutational anova
adonis(dune ~ ., dune.env)
adonis(dune ~ Management + Moisture, dune.env)
```
Description

Compute all single terms that can be added to or dropped from a constrained ordination model.

Usage

```r
S3 method for class 'cca'
add1(object, scope, test = c("none", "permutation"),
 permutations = how(nperm=199), ...)
S3 method for class 'cca'
drop1(object, scope, test = c("none", "permutation"),
 permutations = how(nperm=199), ...)
```

Arguments

- **object**: A constrained ordination object from `cca`, `rda` or `capscale`.
- **scope**: A formula giving the terms to be considered for adding or dropping; see `add1` for details.
- **test**: Should a permutation test be added using `anova.cca`.
- **permutations**: a list of control values for the permutations as returned by the function `how`, or the number of permutations required, or a permutation matrix where each row gives the permuted indices.
- **...**: Other arguments passed to `add1.default`, `drop1.default`, and `anova.cca`.

Details

With argument `test = "none"` the functions will only call `add1.default` or `drop1.default`. With argument `test = "permutation"` the functions will add test results from `anova.cca`. Function `drop1.cca` will call `anova.cca` with argument `by = "margin"`. Function `add1.cca` will implement a test for single term additions that is not directly available in `anova.cca`.

Functions are used implicitly in `step`, `ordiR2step` and `ordistep`. The `deviance.cca` and `deviance.rda` used in `step` have no firm basis, and setting argument `test = "permutation"` may help in getting useful insight into validity of model building. Function `ordistep` calls alternately `drop1.cca` and `add1.cca` with argument `test = "permutation"` and selects variables by their permutation P-values. Meticulous use of `add1.cca` and `drop1.cca` will allow more judicious model building.

The default `perm.max` is set to a low value, because permutation tests can take a long time. It should be sufficient to give a impression on the significances of the terms, but higher values of `perm.max` should be used if P values really are important.

Value

Returns a similar object as `add1` and `drop1`.

Author(s)

Jari Oksanen
See Also

add1, drop1 and anova.cca for basic methods. You probably need these functions with step and ordistep. Functions deviance.cca and extractAIC.cca are used to produce the other arguments than test results in the output. Functions cca, rda and capscale produce result objects for these functions.

Examples

data(dune)
data(dune.env)
## Automatic model building based on AIC but with permutation tests
step(cca(dune ~ 1, dune.env), reformulate(names(dune.env)), test="perm")
## see ?ordistep to do the same, but based on permutation P-values
## Not run:
ordistep(cca(dune ~ 1, dune.env), reformulate(names(dune.env)), perm.max=200)

## End(Not run)
## Manual model building
## -- define the maximal model for scope
mbig <- rda(dune ~ ., dune.env)
## -- define an empty model to start with
m0 <- rda(dune ~ 1, dune.env)
## -- manual selection and updating
add1(m0, scope=formula(mbig), test="perm")
m0 <- update(m0, . ~ . + Management)
add1(m0, scope=formula(mbig), test="perm")
m0 <- update(m0, . ~ . + Moisture)
## -- included variables still significant?
drop1(m0, test="perm")
add1(m0, scope=formula(mbig), test="perm")

adipart

Additive Diversity Partitioning and Hierarchical Null Model Testing

Description

In additive diversity partitioning, mean values of alpha diversity at lower levels of a sampling hierarchy are compared to the total diversity in the entire data set (gamma diversity). In hierarchical null model testing, a statistic returned by a function is evaluated according to a nested hierarchical sampling design (hiersimu).

Usage

adipart(...)  
## Default S3 method:
adipart(y, x, index=c("richness", "shannon", "simpson"),
       weights=c("unif", "prop"), relative = FALSE, nsimul=99, ...)
## S3 method for class 'formula'
adipart(formula, data, index=c("richness", "shannon", "simpson"),
        weights=c("unif", "prop"), relative = FALSE, nsimul=99, ...)

hiersimu(...)
## Default S3 method:
hiersimu(y, x, FUN, location = c("mean", "median"),
        relative = FALSE, drop.highest = FALSE, nsimul=99, ...)
## S3 method for class 'formula'
hiersimu(formula, data, FUN, location = c("mean", "median"),
        relative = FALSE, drop.highest = FALSE, nsimul=99, ...)

Arguments

y A community matrix.

x A matrix with same number of rows as in y, columns coding the levels of sam-
   pling hierarchy. The number of groups within the hierarchy must decrease from
   left to right. If x is missing, function performs an overall decomposition into
   alpha, beta and gamma diversities.

formula A two sided model formula in the form y ~ x, where y is the community data
   matrix with samples as rows and species as column. Right hand side (x) must be
   grouping variables referring to levels of sampling hierarchy, terms from right to
   left will be treated as nested (first column is the lowest, last is the highest level,
   at least two levels specified). Interaction terms are not allowed.

data A data frame where to look for variables defined in the right hand side of
   formula. If missing, variables are looked in the global environment.

index Character, the diversity index to be calculated (see Details).

weights Character, "unif" for uniform weights, "prop" for weighting proportional to
   sample abundances to use in weighted averaging of individual alpha values
   within strata of a given level of the sampling hierarchy.

relative Logical, if TRUE then alpha and beta diversity values are given relative to the
   value of gamma for function adipart.

nsimul Number of permutations to use if matr is not of class 'permat'. If nsimul = 0,
   only the FUN argument is evaluated. It is thus possible to reuse the statistic values
   without using a null model.

FUN A function to be used by hiersimu. This must be fully specified, because cur-
   rently other arguments cannot be passed to this function via ....

location Character, identifies which function (mean or median) is to be used to calculate
   location of the samples.

drop.highest Logical, to drop the highest level or not. When FUN evaluates only arrays with
   at least 2 dimensions, highest level should be dropped, or not selected at all.

... Other arguments passed to functions, e.g. base of logarithm for Shannon diver-
   sity, or method, thin or burnin arguments for oecosimu.
Details

Additive diversity partitioning means that mean alpha and beta diversities add up to gamma diversity, thus beta diversity is measured in the same dimensions as alpha and gamma (Lande 1996). This additive procedure is then extended across multiple scales in a hierarchical sampling design with \( i = 1, 2, 3, \ldots, m \) levels of sampling (Crist et al. 2003). Samples in lower hierarchical levels are nested within higher level units, thus from \( i = 1 \) to \( i = m \) grain size is increasing under constant survey extent. At each level \( i \), \( \alpha_i \) denotes average diversity found within samples.

At the highest sampling level, the diversity components are calculated as

\[
\beta_m = \gamma - \alpha_m
\]

For each lower sampling level as

\[
\beta_i = \alpha_{i+1} - \alpha_i
\]

Then, the additive partition of diversity is

\[
\gamma = \alpha_1 + \sum_{i=1}^{m} \beta_i
\]

Average alpha components can be weighted uniformly (weight="unif") to calculate it as simple average, or proportionally to sample abundances (weight="prop") to calculate it as weighted average as follows

\[
\alpha_i = \frac{n_i \sum_{j=1}^{D_{ij}} w_{ij}}
\]

where \( D_{ij} \) is the diversity index and \( w_{ij} \) is the weight calculated for the \( j \)th sample at the \( i \)th sampling level.

The implementation of additive diversity partitioning in adipart follows Crist et al. 2003. It is based on species richness (\( S \), not \( S - 1 \)), Shannon’s and Simpson’s diversity indices stated as the index argument.

The expected diversity components are calculated \( n_{simul} \) times by individual based randomisation of the community data matrix. This is done by the "r2dtable" method in oecosimu by default.

hiersimu works almost in the same way as adipart, but without comparing the actual statistic values returned by FUN to the highest possible value (cf. gamma diversity). This is so, because in most of the cases, it is difficult to ensure additive properties of the mean statistic values along the hierarchy.

Value

An object of class "adipart" or "hiersimu" with same structure as oecosimu objects.

Author(s)

Péter Sólymos, <solymos@ualberta.ca>
References


See Also

See oecosimu for permutation settings and calculating p-values.

Examples

```r
NOTE: 'nsimul' argument usually needs to be >= 99
here much lower value is used for demonstration

data(mite)
data(mite.xy)
data(mite.env)

Function to get equal area partitions of the mite data
cutter <- function(x, cut = seq(0, 10, by = 2.5)) {
 out <- rep(1, length(x))
 for (i in 2:(length(cut) - 1))
 out[which(x > cut[i] & x <= cut[(i + 1)])] <- i
 return(out)
}

The hierarchy of sample aggregation
levsm <- with(mite.xy, data.frame(
 l1=1:nrow(mite),
 l2=cutter(y, cut = seq(0, 10, by = 2.5)),
 l3=cutter(y, cut = seq(0, 10, by = 5)),
 l4=cutter(y, cut = seq(0, 10, by = 10))))

Let's see in a map
par(mfrow=c(1,3))
plot(mite.xy, main="l1", col=as.numeric(levsm$l1)+1, asp = 1)
plot(mite.xy, main="l2", col=as.numeric(levsm$l2)+1, asp = 1)
plot(mite.xy, main="l3", col=as.numeric(levsm$l3)+1, asp = 1)
par(mfrow=c(1,1))

Additive diversity partitioning
adipart(mite, index="richness", nsimul=19)
adipart(mite ~ ., levsm, index="richness", nsimul=19)

Hierarchical null model testing
diversity analysis (similar to adipart)
hiersimu(mite, FUN=diversity, relative=TRUE, nsimul=19)
hiersimu(mite ~ ., levsm, FUN=diversity, relative=TRUE, nsimul=19)

Hierarchical testing with the Morisita index
morfun <- function(x) dispindmorisita(x)$imst
hiersimu(mite ~ ., levsm, morfun, drop.highest=TRUE, nsimul=19)
```
**Description**

Analysis of variance using distance matrices — for partitioning distance matrices among sources of variation and fitting linear models (e.g., factors, polynomial regression) to distance matrices; uses a permutation test with pseudo-$F$ ratios.

**Usage**

```r
adonis(formula, data, permutations = 999, method = "bray",
 strata = NULL, contr.unordered = "contr.sum",
 contr.ordered = "contr.poly", parallel = getOption("mc.cores"), ...)
```

**Arguments**

- `formula`: a typical model formula such as `Y ~ A + B*C`, but where `Y` is either a dissimilarity object (inheriting from class "dist") or data frame or a matrix; `A`, `B`, and `C` may be factors or continuous variables. If a dissimilarity object is supplied, no species coefficients can be calculated (see Value below).
- `data`: the data frame from which `A`, `B`, and `C` would be drawn.
- `permutations`: a list of control values for the permutations as returned by the function `how`, or the number of permutations required, or a permutation matrix where each row gives the permuted indices.
- `method`: the name of any method used in `vegdist` to calculate pairwise distances if the left hand side of the formula was a data frame or a matrix.
- `strata`: groups (strata) within which to constrain permutations.
- `contr.unordered`, `contr.ordered`: contrasts used for the design matrix (default in R is dummy or treatment contrasts for unordered factors).
- `parallel`: Number of parallel processes or a predefined socket cluster. With `parallel = 1` uses ordinary, non-parallel processing. The parallel processing is done with `parallel` package.
- `...`: Other arguments passed to `vegdist`.

**Details**

`adonis` is a function for the analysis and partitioning sums of squares using semimetric and metric distance matrices. Insofar as it partitions sums of squares of a multivariate data set, it is directly analogous to MANOVA (multivariate analysis of variance). M.J. Anderson (McArdle and Anderson 2001, Anderson 2001) refers to the method as “permutational manova” (formerly “nonparametric manova”). Further, as its inputs are linear predictors, and a response matrix of an arbitrary number of columns (2 to millions), it is a robust alternative to both parametric MANOVA and to ordination.
methods for describing how variation is attributed to different experimental treatments or uncontrolled covariates. It is also analogous to redundancy analysis (Legendre and Anderson 1999).

Typical uses of adonis include analysis of ecological community data (samples X species matrices) or genetic data where we might have a limited number of samples of individuals and thousands or millions of columns of gene expression data (e.g. Zapala and Schork 2006).

adonis is an alternative to AMOVA (nested analysis of molecular variance, Excoffier, Smouse, and Quattro, 1992; amova in the ade4 package) for both crossed and nested factors.

If the experimental design has nestedness, then use strata to test hypotheses. For instance, imagine we are testing whether a plant community is influenced by nitrate amendments, and we have two replicate plots at each of two levels of nitrate (0, 10 ppm). We have replicated the experiment in three fields with (perhaps) different average productivity. In this design, we would need to specify strata = field so that randomizations occur only within each field and not across all fields. See example below.

Like AMOVA (Excoffier et al. 1992), adonis relies on a long-understood phenomenon that allows one to partition sums of squared deviations from a centroid in two different ways (McArdle and Anderson 2001). The most widely recognized method, used, e.g., for ANOVA and MANOVA, is to first identify the relevant centroids and then to calculated the squared deviations from these points. For a centered \( n \times p \) response matrix \( Y \), this method uses the \( p \times p \) inner product matrix \( Y'Y \). The less appreciated method is to use the \( n \times n \) outer product matrix \( YY' \). Both AMOVA and adonis use this latter method. This allows the use of any semimetric (e.g. Bray-Curtis, aka Steinhaus, Czekanowski, and Sørensen) or metric (e.g. Euclidean) distance matrix (McArdle and Anderson 2001). Using Euclidean distances with the second method results in the same analysis as the first method.

Significance tests are done using \( F \)-tests based on sequential sums of squares from permutations of the raw data, and not permutations of residuals. Permutations of the raw data may have better small sample characteristics. Further, the precise meaning of hypothesis tests will depend upon precisely what is permuted. The strata argument keeps groups intact for a particular hypothesis test where one does not want to permute the data among particular groups. For instance, strata = B causes permutations among levels of A but retains data within levels of B (no permutation among levels of B). See permutations for additional details on permutation tests in Vegan.

The default contrasts are different than in R in general. Specifically, they use “sum” contrasts, sometimes known as ‘ANOVA’ contrasts. See a useful text (e.g. Crawley, 2002) for a transparent introduction to linear model contrasts. This choice of contrasts is simply a personal pedagogical preference. The particular contrasts can be set to any contrasts specified in R, including Helmert and treatment contrasts.

Rules associated with formulae apply. See "An Introduction to R" for an overview of rules.

print.adonis shows the aov.tab component of the output.

Value
This function returns typical, but limited, output for analysis of variance (general linear models).

aov.tab Typical AOV table showing sources of variation, degrees of freedom, sequential sums of squares, mean squares, \( F \) statistics, partial \( R^2 \) and \( P \) values, based on \( N \) permutations.
adonis

coefficients matrix of coefficients of the linear model, with rows representing sources of variation and columns representing species; each column represents a fit of a species abundance to the linear model. These are what you get when you fit one species to your predictors. These are NOT available if you supply the distance matrix in the formula, rather than the site x species matrix.

coeff.sites matrix of coefficients of the linear model, with rows representing sources of variation and columns representing sites; each column represents a fit of a sites distances (from all other sites) to the linear model. These are what you get when you fit distances of one site to your predictors.

f.perms an N by m matrix of the null F statistics for each source of variation based on N permutations of the data. The permutations can be inspected with permustats and its support functions.

model.matrix The model.matrix for the right hand side of the formula.

terms The terms component of the model.

Note

Anderson (2001, Fig. 4) warns that the method may confound location and dispersion effects: significant differences may be caused by different within-group variation (dispersion) instead of different mean values of the groups (see Warton et al. 2012 for a general analysis). However, it seems that adonis is less sensitive to dispersion effects than some of its alternatives (anosim, mrpp). Function betadisper is a sister function to adonis to study the differences in dispersion within the same geometric framework.

Author(s)

Martin Henry H. Stevens <HStevens@muohio.edu>, adapted to vegan by Jari Oksanen.

References


See Also

mrpp, anosim, mantel, varpart.

Examples

data(dune)
data(dune.env)
adonis(dune ~ Management*A1, data=dune.env, permutations=99)

### Example of use with strata, for nested (e.g., block) designs.

dat <- expand.grid(rep=gl(2,1), NO3=factor(c(0,10)), field=gl(3,1) )
dat
Agropyron <- with(dat, as.numeric(field) + as.numeric(NO3)+2 +rnorm(12)/2
Schizachyrium <- with(dat, as.numeric(field) - as.numeric(NO3)+2 +rnorm(12)/2

total <- Agropyron + Schizachyrium
dotplot(total ~ NO3, dat, jitter.x=TRUE, groups=field,
type=c('p','a'), xlab="NO3", auto.key=list(columns=3, lines=TRUE) )

Y <- data.frame(Agropyron, Schizachyrium)
mod <- metaMDS(Y)
plot(mod)

### Hulls show treatment

with(dat, ordihull(mod, group=NO3, show="0"))
with(dat, ordihull(mod, group=NO3, show="10", col=3))

### Spider shows fields

with(dat, ordispider(mod, group=field, lty=3, col="red"))

### Correct hypothesis test (with strata)
adonis(Y ~ NO3, data=dat, strata=dat$field, perm=999)

### Incorrect (no strata)
adonis(Y ~ NO3, data=dat, perm=999)

---

### anosim

**Analysis of Similarities**

**Description**

Analysis of similarities (ANOSIM) provides a way to test statistically whether there is a significant difference between two or more groups of sampling units.

**Usage**

```
anosim(dat, grouping, permutations = 999, distance = "bray", strata = NULL, parallel =getOption("mc.cores"))
```
**Arguments**

- **dat**
  Data matrix or data frame in which rows are samples and columns are response variable(s), or a dissimilarity object or a symmetric square matrix of dissimilarities.

- **grouping**
  Factor for grouping observations.

- **permutations**
  a list of control values for the permutations as returned by the function `how`, or the number of permutations required, or a permutation matrix where each row gives the permuted indices.

- **distance**
  Choice of distance metric that measures the dissimilarity between two observations. See `vegdist` for options. This will be used if `dat` was not a dissimilarity structure or a symmetric square matrix.

- **strata**
  An integer vector or factor specifying the strata for permutation. If supplied, observations are permuted only within the specified strata.

- **parallel**
  Number of parallel processes or a predefined socket cluster. With `parallel = 1` uses ordinary, non-parallel processing. The parallel processing is done with `parallel` package.

**Details**

Analysis of similarities (ANOSIM) provides a way to test statistically whether there is a significant difference between two or more groups of sampling units. Function `anosim` operates directly on a dissimilarity matrix. A suitable dissimilarity matrix is produced by functions `dist` or `vegdist`. The method is philosophically allied with NMDS ordination (`monoMDS`), in that it uses only the rank order of dissimilarity values.

If two groups of sampling units are really different in their species composition, then compositional dissimilarities between the groups ought to be greater than those within the groups. The `anosim` statistic $R$ is based on the difference of mean ranks between groups ($r_B$) and within groups ($r_W$):

$$ R = \frac{(r_B - r_W)}{(N(N - 1))/4} $$

The divisor is chosen so that $R$ will be in the interval $-1 \ldots +1$, value 0 indicating completely random grouping.

The statistical significance of observed $R$ is assessed by permuting the grouping vector to obtain the empirical distribution of $R$ under null-model. See `permutations` for additional details on permutation tests in Vegan. The distribution of simulated values can be inspected with the `permustats` function.

The function has `summary` and `plot` methods. These both show valuable information to assess the validity of the method: The function assumes that all ranked dissimilarities within groups have about equal median and range. The `plot` method uses `boxplot` with options `notch=TRUE` and `varwidth=TRUE`.

**Value**

The function returns a list of class "anosim" with following items:

- **call**
  Function call.
The value of ANOSIM statistic \( R \)

Significance from permutation.

Permutation values of \( R \). The distribution of permutation values can be inspected with function `permustats`.

Factor with value between for dissimilarities between classes and class name for corresponding dissimilarity within class.

Rank of dissimilarity entry.

The name of the dissimilarity index: the “method” entry of the `dist` object.

A list of control values for the permutations as returned by the function `how`.

The `anosim` function can confound the differences between groups and dispersion within groups and the results can be difficult to interpret (cf. Warton et al. 2012). The function returns a lot of information to ease studying its performance. Most `anosim` models could be analysed with `adonis` which seems to be a more robust alternative.

Jari Oksanen, with a help from Peter R. Minchin.


For a similar function using original dissimilarities instead of their ranks, `dist` and `vegdist` for obtaining dissimilarities, and `rank` for ranking real values. For comparing dissimilarities against continuous variables, see `mantel`. Function `adonis` is a more robust alternative that should preferred.

`data(dune)`
`data(dune.env)`
`dune.dist <- vegdist(dune)`
`attach(dune.env)`
`dune.ano <- anosim(dune.dist, Management)`
`summary(dune.ano)`
`plot(dune.ano)`
Description

The function performs an ANOVA like permutation test for Constrained Correspondence Analysis (cca), Redundancy Analysis (rda) or distance-based Redundancy Analysis (dbRDA, capscale) to assess the significance of constraints.

Usage

```r
S3 method for class 'cca'
anova(object, ..., permutations = how(nperm=999),
by = NULL, model = c("reduced", "direct", "full"),
parallel = getOption("mc.cores"), strata = NULL,
cutoff = 1, scope = NULL)
S3 method for class 'cca'
permutest(x, permutations = how(nperm = 99),
model = c("reduced", "direct"), first = FALSE, strata = NULL,
parallel = getOption("mc.cores"), ...)
```

Arguments

- `object`: One or several result objects from `cca`, `rda` or `capscale`. If there are several result objects, they are compared against each other in the order they were supplied. For a single object, a test specified in `by` or an overall test is given.
- `x`: A single ordination result object.
- `permutations`: a list of control values for the permutations as returned by the function `how`, or the number of permutations required, or a permutation matrix where each row gives the permuted indices.
- `by`: Setting `by = "axis"` will assess significance for each constrained axis, and setting `by = "terms"` will assess significance for each term (sequentially from first to last), and setting `by = "margin"` will assess the marginal effects of the terms (each marginal term analysed in a model with all other variables).
- `model`: Permutation model: `model="direct"` permutes community data, and `model="reduced"` permutes residuals of the community data after Conditions (partial model).
- `parallel`: Use parallel processing with the given number of cores.
- `strata`: An integer vector or factor specifying the strata for permutation. If supplied, observations are permuted only within the specified strata. It is an error to use this when `permutations` is a matrix, or if `how` defines blocks. This is a legacy argument that will be deprecated in the future: use `permutations = how(..., blocks)` instead.
- `cutoff`: Only effective with `by="axis"` where stops permutations after an axis exceeds the cutoff.
scope

Only effective with by="margin" where it can be used to select the marginal terms for testing. The default is to test all marginal terms in drop.scope.

first

Analyse only significance of the first axis.

... Parameters passed to other functions. anova.cca passes all arguments to permutest.cca. In anova with by = "axis" you can use argument cutoff (defaults 1) which stops permutations after exceeding the given level.

Details

Functions anova.cca and permutest.cca implement ANOVA like permutation tests for the joint effect of constraints in cca, rda or capscale. Functions anova.cca and permutest.cca differ in printout style and in interface. Function permutest.cca is the proper workhorse, but anova.cca passes all parameters to permutest.cca.

Function anova can analyse a sequence of constrained ordination models. The analysis is based on the differences in residual deviances in permutations of nested models.

The default test is for the sum of all constrained eigenvalues. Setting first = TRUE will perform a test for the first constrained eigenvalue. Argument first can be set either in anova.cca or in permutest.cca. It is also possible to perform significance tests for each axis or for each term (constraining variable) using argument by in anova.cca. Setting by = "axis" will perform separate significance tests for each constrained axis. All previous constrained axes will be used as conditions ("partialled out") and a test for the first constrained eigenvalues is performed (Legendre et al. 2011). You can stop permutation tests after exceeding a given significance level with argument cutoff to speed up calculations in large models. Setting by = "terms" will perform separate significance test for each term (constraining variable). The terms are assessed sequentially from first to last, and the order of the terms will influence their significances. Setting by = "margin" will perform separate significance test for each marginal term in a model with all other terms. The marginal test also accepts a scope argument for the drop.scope which can be a character vector of term labels that are analysed, or a fitted model of lower scope. The marginal effects are also known as “Type III” effects, but the current function only evaluates marginal terms. It will, for instance, ignore main effects that are included in interaction terms. In calculating pseudo-F, all terms are compared to the same residual of the full model.

Community data are permuted with choice model="direct", and residuals after partial CCA/ RDA/ dbRDA with choice model="reduced" (default). If there is no partial CCA/ RDA/ dbRDA stage, model="reduced" simply permutes the data and is equivalent to model="direct". The test statistic is “pseudo-F”, which is the ratio of constrained and unconstrained total Inertia (Chi-squares, variances or something similar), each divided by their respective ranks. If there are no conditions ("partial" terms), the sum of all eigenvalues remains constant, so that pseudo-F and eigenvalues would give equal results. In partial CCA/ RDA/ dbRDA, the effect of conditioning variables (“co-variables”) is removed before permutation, and these residuals are added to the non-permuted fitted values of partial CCA (fitted values of X ~ Z). Consequently, the total Chi-square is not fixed, and test based on pseudo-F would differ from the test based on plain eigenvalues. CCA is a weighted method, and environmental data are re-weighted at each permutation step using permuted weights.

Value

The function anova.cca calls permutest.cca and fills an anova table.
Note

Some cases of anova need access to the original data on constraints (at least by = "term" and by = "margin"), and they may fail if data are unavailable.

Author(s)

Jari Oksanen

References


See Also

anovaNcca, cca, rda, capscale to get something to analyse. Function drop1.cca calls anova.cca with by = "margin", and add1.cca an analysis for single terms additions, which can be used in automatic or semiautomatic model building (see deviance.cca).

Examples

data(varespec)
data(varechem)
vare.cca <- cca(varespec ~ A1 + P + K, varechem)
## overall test
anova(vare.cca)

---

**as.mlm.cca**

Refit Constrained Ordination as a Multiple Response Linear Model

Description

Functions refit results of constrained ordination (cca, rda, capscale) as a multiple response linear model (lm). This allows finding influence statistics (influence.measures). This also allows deriving several other statistics, but most of these are biased and misleading, since refitting ignores a major component of variation in constrained ordination.

Usage

as.mlm(x)

Arguments

x Constrained ordination result.
Details

Popular algorithm for constrained ordination is based on iteration with regression where weighted averages of sites are used as dependent variables and constraints as independent variables. Statistics of linear regression are a natural by-product in this algorithm. Constrained ordination in vegan uses different algorithm, but to obtain linear regression statistics you can refit an ordination result as a multiple response linear model (lm). This regression ignores residual unconstrained variation in the data, and therefore estimates of standard error are strongly biased and much too low. You can get statistics like t-values of coefficients, but you should not use these because of this bias. Some useful information you can get with refitted models are statistics for detecting influential observations (influence.measures including cooks.distance, hatvalues).

Value

Function returns an object of multiple response linear model of class "mlm" documented with lm.

Note

You can use these functions to find t-values of coefficients using summary.mlm, but you should not do this because the method ignores unconstrained residual variation. You also can find several other statistics for (multiple response) linear models with similar bias. This bias is not a unique feature in vegan implementation, but also applies to implementations in other software.

Some statistics of linear models can be found without using these functions: coef.cca gives the regression coefficients, spenvcor the species-environment correlation, intersetcor the interset correlation, vif.cca the variance inflation factors.

Author(s)

Jari Oksanen

See Also

cca, rda, capscale, cca.object, lm, summary.mlm, influence.measures.

Examples

data(varespec)
data(varechem)
mod <- cca(varespec ~ Al + P + K, data=varechem)
lmod <- as.mlm(mod)
## Coefficients
lmod
coef(mod)
## Influential observations
influence.measures(lmod)
plot(mod, type = "n")
points(mod, cex = 10*hatvalues(lmod), pch=16, xpd = TRUE)
text(mod, display = "bp", col = "blue")
Barro Colorado Island Tree Counts

Description
Tree counts in 1-hectare plots in the Barro Colorado Island.

Usage
data(BCI)

Format
A data frame with 50 plots (rows) of 1 hectare with counts of trees on each plot with total of 225 species (columns). Full Latin names are used for tree species. The names were updated against http://www.theplantlist.org in Jan 2014 (see ChangeLog 2.1-41 for details) which allows matching 206 of species against http://datadryad.org/resource/doi:10.5061/dryad.63q27 (Zanne et al., 2014).

Details
Data give the numbers of trees at least 10 cm in diameter at breast height (1.3 m above the ground) in each one hectare square of forest. Within each one hectare square, all individuals of all species were tallied and are recorded in this table.

The data frame contains only the Barro Colorado Island subset of the original data.

The quadrats are located in a regular grid. See examples for the coordinates.

Source
http://www.sciencemag.org/cgi/content/full/295/5555/666/DC1

References


See Also
BCI.env in BiodiversityR package for environmental data (coordinates are given below in the examples).
beals

Beals Smoothing and Degree of Absence

Description

Beals smoothing replaces each entry in the community data with a probability of a target species occurring in that particular site, based on the joint occurrences of the target species with the species that actually occur in the site. Swan’s (1970) degree of absence applies Beals smoothing to zero items so long that all zeros are replaced with smoothed values.

Usage

beals(x, species = NA, reference = x, type = 0, include = TRUE)
swan(x, maxit = Inf)

Arguments

x
Community data frame or matrix.

species
Column index used to compute Beals function for a single species. The default (NA) indicates that the function will be computed for all species.

reference
Community data frame or matrix to be used to compute joint occurrences. By default, x is used as reference to compute the joint occurrences.

type
Numeric. Specifies if and how abundance values have to be used in function beals. See details for more explanation.

include
This logical flag indicates whether the target species has to be included when computing the mean of the conditioned probabilities. The original Beals (1984) definition is equivalent to include=TRUE, while the formulation of Münzbergová and Herben is equal to include=FALSE.

maxit
Maximum number of iterations. The default Inf means that iterations are continued until there are no zeros or the number of zeros does not change. Probably only maxit = 1 makes sense in addition to the default.

Details

Beals smoothing is the estimated probability $p_{ij}$ that species $j$ occurs at site $i$. It is defined as $p_{ij} = \frac{1}{S_i} \sum_k \frac{N_{jk}}{N_k}$, where $S_i$ is the number of species at site $i$, $N_{jk}$ is the number of joint occurrences of species $j$ and $k$, $N_k$ is the number of occurrences of species $k$, and $I$ is the incidence (0 or 1) of species (this last term is usually omitted from the equation, but it is necessary). As $N_{jk}$ can be interpreted as a mean of conditional probability, the beals function can be interpreted as a mean
of conditioned probabilities (De Cáceres & Legendre 2008). The present function is generalized to abundance values (De Cáceres & Legendre 2008).

The type argument specifies if and how abundance values have to be used. type = 0 presence/absence mode. type = 1 abundances in reference (or x) are used to compute conditioned probabilities. type = 2 abundances in x are used to compute weighted averages of conditioned probabilities. type = 3 abundances are used to compute both conditioned probabilities and weighted averages.

Beals smoothing was originally suggested as a method of data transformation to remove excessive zeros (Beals 1984, McCune 1994). However, it is not a suitable method for this purpose since it does not maintain the information on species presences: a species may have a higher probability of occurrence at a site where it does not occur than at sites where it occurs. Moreover, it regularizes data too strongly. The method may be useful in identifying species that belong to the species pool (Ewald 2002) or to identify suitable unoccupied patches in metapopulation analysis (Münzbergová & Herben 2004). In this case, the function should be called with include=FALSE for cross-validation smoothing for species; argument species can be used if only one species is studied.

Swan (1970) suggested replacing zero values with degrees of absence of a species in a community data matrix. Swan expressed the method in terms of a similarity matrix, but it is equivalent to applying Beals smoothing to zero values, at each step shifting the smallest initially non-zero item to value one, and repeating this so many times that there are no zeros left in the data. This is actually very similar to extended dissimilarities (implemented in function stepacross), but very rarely used.

Value

The function returns a transformed data matrix or a vector if Beals smoothing is requested for a single species.

Author(s)

Miquel De Cáceres and Jari Oksanen

References


See Also

decostand for proper standardization methods, specpool for an attempt to assess the size of species pool. Function indpower assesses the power of each species to estimate the probabilities predicted by beals.

Examples

data(dune)
## Default
x <- beals(dune)
## Remove target species
x <- beals(dune, include = FALSE)
## Smoothed values against presence or absence of species
pa <- decostand(dune, "pa")
boxplot(as.vector(x) ~ unlist(pa), xlab="Presence", ylab="Beals")
## Remove the bias of target species: Yields lower values.
beals(dune, type =3, include = FALSE)
## Uses abundance information.
## Vector with beals smoothing values corresponding to the first species
## in dune.
beals(dune, species=1, include=TRUE)

betadisper

**Multivariate homogeneity of groups dispersions (variances)**

Description

Implements Marti Anderson’s PERMDISP2 procedure for the analysis of multivariate homogeneity of group dispersions (variances). betadisper is a multivariate analogue of Levene’s test for homogeneity of variances. Non-euclidean distances between objects and group centroids are handled by reducing the original distances to principal coordinates. This procedure has latterly been used as a means of assessing beta diversity. There are anova, scores, plot and boxplot methods.

TukeyHSD.betadisper creates a set of confidence intervals on the differences between the mean distance-to-centroid of the levels of the grouping factor with the specified family-wise probability of coverage. The intervals are based on the Studentized range statistic, Tukey’s ‘Honest Significant Difference’ method.

Usage

betadisper(d, group, type = c("median","centroid"), bias.adjust = FALSE)

## S3 method for class 'betadisper'
anova(object, ...)

## S3 method for class 'betadisper'
scores(x, display = c("sites", "centroids"),
choices = c(1,2), ...)
## S3 method for class 'betadisper'
eigenvals(x, ...)

## S3 method for class 'betadisper'
plot(x, axes = c(1,2), cex = 0.7, hull = TRUE, ylab, xlab, main, sub, ...)

## S3 method for class 'betadisper'
boxplot(x, ylab = "Distance to centroid", ...)

## S3 method for class 'betadisper'
TukeyHSD(x, which = "group", ordered = FALSE, conf.level = 0.95, ...)

### Arguments

- **d**
  - a distance structure such as that returned by `dist`, `betadiver` or `vegdist`

- **group**
  - vector describing the group structure, usually a factor or an object that can be coerced to a factor using `as.factor`. Can consist of a factor with a single level (i.e., one group).

- **type**
  - the type of analysis to perform. Use the spatial median or the group centroid? The spatial median is now the default.

- **bias.adjust**
  - logical: adjust for small sample bias in beta diversity estimates?

- **display**
  - character; partial match to access scores for "sites" or "species".

- **object, x**
  - an object of class "betadisper", the result of a call to `betadisper`.

- **choices, axes**
  - the principal coordinate axes wanted.

- **hull**
  - logical; should the convex hull for each group be plotted?

- **cex, ylab, xlab, main, sub**
  - graphical parameters. For details, see `plot.default`.

- **which**
  - A character vector listing terms in the fitted model for which the intervals should be calculated. Defaults to the grouping factor.

- **ordered**
  - Logical; see `TukeyHSD`.

- **conf.level**
  - A numeric value between zero and one giving the family-wise confidence level to use.

- **...**
  - arguments, including graphical parameters (for `plot.betadisper` and `boxplot.betadisper`), passed to other methods.

### Details

One measure of multivariate dispersion (variance) for a group of samples is to calculate the average distance of group members to the group centroid or spatial median (both referred to as 'centroid' from now on unless stated otherwise) in multivariate space. To test if the dispersions (variances) of one or more groups are different, the distances of group members to the group centroid are subject to ANOVA. This is a multivariate analogue of Levene’s test for homogeneity of variances if the distances between group members and group centroids is the Euclidean distance.
However, better measures of distance than the Euclidean distance are available for ecological data. These can be accommodated by reducing the distances produced using any dissimilarity coefficient to principal coordinates, which embeds them within a Euclidean space. The analysis then proceeds by calculating the Euclidean distances between group members and the group centroid on the basis of the principal coordinate axes rather than the original distances.

Non-metric dissimilarity coefficients can produce principal coordinate axes that have negative Eigenvalues. These correspond to the imaginary, non-metric part of the distance between objects. If negative Eigenvalues are produced, we must correct for these imaginary distances. The distance to its centroid of a point is

\[ z_{ij}^c = \sqrt{\Delta^2(u_{ij}^+, c_i^+) - \Delta^2(u_{ij}^-, c_i^-)}, \]

where \( \Delta^2 \) is the squared Euclidean distance between \( u_{ij} \), the principal coordinate for the \( j \)th point in the \( i \)th group, and \( c_i \), the coordinate of the centroid for the \( i \)th group. The super-scripted ‘+’ and ‘−’ indicate the real and imaginary parts respectively. This is equation (3) in Anderson (2006). If the imaginary part is greater in magnitude than the real part, then we would be taking the square root of a negative value, resulting in NaN. Function takes the absolute value of the real distance minus the imaginary distance, before computing the square root. This is in line with the behaviour of Marti Anderson’s PERMDISP2 programme.

To test if one or more groups is more variable than the others, ANOVA of the distances to group centroids can be performed and parametric theory used to interpret the significance of \( F \). An alternative is to use a permutation test. \texttt{permutest.betadisper} permutes model residuals to generate a permutation distribution of \( F \) under the Null hypothesis of no difference in dispersion between groups.

Pairwise comparisons of group mean dispersions can also be performed using \texttt{permutest.betadisper}. An alternative to the classical comparison of group dispersions, is to calculate Tukey’s Honest Significant Differences between groups, via \texttt{TukeyHSD.betadisper}. This is a simple wrapper to \texttt{TukeyHSD}. The user is directed to read the help file for \texttt{TukeyHSD} before using this function. In particular, note the statement about using the function with unbalanced designs.

The results of the analysis can be visualised using the \texttt{plot} and \texttt{boxplot} methods.

One additional use of these functions is in assessing beta diversity (Anderson \textit{et al} 2006). Function \texttt{betadiver} provides some popular dissimilarity measures for this purpose.

As noted in passing by Anderson (2006) and in a related context by O’Neill (2000), estimates of dispersion around a central location (median or centroid) that is calculated from the same data will be biased downward. This bias matters most when comparing diversity among treatments with small, unequal numbers of samples. Setting \texttt{bias.adjust=TRUE} when using \texttt{betadisper} imposes a \( \sqrt{n/(n-1)} \) correction (Stier \textit{et al}. 2013).

\textbf{Value}

The \texttt{anova} method returns an object of class "anova" inheriting from class "data.frame". The \texttt{scores} method returns a list with one or both of the components "sites" and "centroids". The \texttt{plot} function invisibly returns an object of class "ordiplot", a plotting structure which can be used by \texttt{identify.ordiplot} (to identify the points) or other functions in the \texttt{ordiplot} family. The \texttt{boxplot} function invisibly returns a list whose components are documented in \texttt{boxplot}.
betadisper

eigenvals.betadisper returns a named vector of eigenvalues.
TukeyHSD.betadisper returns a list. See TukeyHSD for further details.
betadisper returns a list of class "betadisper" with the following components:

- **eig** numeric; the eigenvalues of the principal coordinates analysis.
- **vectors** matrix; the eigenvectors of the principal coordinates analysis.
- **distances** numeric; the Euclidean distances in principal coordinate space between the samples and their respective group centroid.
- **group** factor; vector describing the group structure
- **centroids** matrix; the locations of the group centroids on the principal coordinates.
- **call** the matched function call.

**Warning**

Stewart Schultz noticed that the permutation test for type="centroid" had the wrong type I error and was anti-conservative. As such, the default for type has been changed to "median", which uses the spatial median as the group centroid. Tests suggest that the permutation test for this type of analysis gives the correct error rates.

**Note**

If group consists of a single level or group, then the anova and permutest methods are not appropriate and if used on such data will stop with an error.

Missing values in either d or group will be removed prior to performing the analysis.

**Author(s)**

Gavin L. Simpson; bias correction by Adrian Stier and Ben Bolker.

**References**


**See Also**

permutest.betadisper, anova.lm, scores, boxplot, TukeyHSD. Further measure of beta diversity can be found in betadiver.
Examples

data(varespec)

## Bray-Curtis distances between samples
dis <- vegdist(varespec)

## First 16 sites grazed, remaining 8 sites ungrazed
groups <- factor(c(rep(1,16), rep(2,8)), labels = c("grazed","ungrazed"))

## Calculate multivariate dispersions
mod <- betadisper(dis, groups)
mod

## Perform test
anova(mod)

## Permutation test for F
permutest(mod, pairwise = TRUE, permutations = 99)

## Tukey's Honest Significant Differences
(mod.HSD <- TukeyHSD(mod))
plot(mod.HSD)

## Plot the groups and distances to centroids on the
## first two PCoA axes
plot(mod)

## can also specify which axes to plot, ordering respected
plot(mod, axes = c(3,1))

## Draw a boxplot of the distances to centroid for each group
boxplot(mod)

## 'scores' and 'eigenvals' also work
scrs <- scores(mod)
str(scrs)
head(scores(mod, 1:4, display = "sites"))
# group centroids/medians
scores(mod, 1:4, display = "centroids")
# eigenvalues from the underlying principal coordinates analysis
eigenvals(mod)

## try out bias correction; compare with mod3
(mod3B <- betadisper(dis, groups, type = "median", bias.adjust=TRUE))

## should always work for a single group
group <- factor(rep("grazed", NROW(varespec)))
tmp <- betadisper(dis, group, type = "median")
tmp <- betadisper(dis, group, type = "centroid")

## simulate missing values in 'd' and 'group'
## using spatial medians
betadiver

Indices of beta Diversity

Description

The function estimates any of the 24 indices of beta diversity reviewed by Koleff et al. (2003). Alternatively, it finds the co-occurrence frequencies for triangular plots (Koleff et al. 2003).

Usage

betadiver(x, method = NA, order = FALSE, help = FALSE, ...)
## S3 method for class 'betadiver'
plot(x, ...)
## S3 method for class 'betadiver'
scores(x, triangular = TRUE, ...)

Arguments

- **x**: Community data matrix, or the betadiver result for plot and scores functions.
- **method**: The index of beta diversity as defined in Koleff et al. (2003), Table 1. You can use either the subscript of $\beta$ or the number of the index. See argument help below.
- **order**: Order sites by increasing number of species. This will influence the configuration in the triangular plot and non-symmetric indices.
- **help**: Show the numbers, subscript names and the defining equations of the indices and exit.
- **triangular**: Return scores suitable for triangular plotting of proportions. If FALSE, returns a 3-column matrix of raw counts.
- **...**: Other arguments to functions.
The most commonly used index of beta diversity is $\beta_w = S/\alpha - 1$, where $S$ is the total number of species, and $\alpha$ is the average number of species per site (Whittaker 1960). A drawback of this model is that $S$ increases with sample size, but the expectation of $\alpha$ remains constant, and so the beta diversity increases with sample size. A solution to this problem is to study the beta diversity of pairs of sites. If we denote the number of species shared between two sites as $a$ and the numbers of unique species (not shared) as $b$ and $c$, then $S = a + b + c$ and $\alpha = (2a + b + c)/2$ so that $\beta_w = (b + c)/(2a + b + c)$. This is the Sørensen dissimilarity as defined in vegan function `vegdist` with argument `binary = TRUE`. Many other indices are dissimilarity indices as well.

Function `betadiver` finds all indices reviewed by Koleff et al. (2003). All these indices could be found with function `designdist`, but the current function provides a conventional shortcut. The function only finds the indices. The proper analysis must be done with functions such as `betadisper`, `adonis` or `mantel`.

The indices are directly taken from Table 1 of Koleff et al. (2003), and they can be selected either by the index number or the subscript name used by Koleff et al. The numbers, names and defining equations can be seen using `betadiver(help = TRUE)`. In all cases where there are two alternative forms, the one with the term $-1$ is used. There are several duplicate indices, and the number of distinct alternatives is much lower than 24 formally provided. The formulations used in functions differ occasionally from those in Koleff et al. (2003), but they are still mathematically equivalent. With method = `NA`, no index is calculated, but instead an object of class `betadiver` is returned. This is a list of elements $a$, $b$, and $c$. Function `plot` can be used to display the proportions of these elements in triangular plot as suggested by Koleff et al. (2003), and `scores` extracts the triangular coordinates or the raw scores. Function `plot` returns invisibly the triangular coordinates as an “ordiplot” object.

With method = `NA`, the function returns an object of class “betadisper” with elements $a$, $b$, and $c$. If method is specified, the function returns a “dist” object which can be used in any function analysing dissimilarities. For beta diversity, particularly useful functions are `betadisper` to study the betadiversity in groups, `adonis` for any model, and `mantel` to compare beta diversities to other dissimilarities or distances (including geographical distances). Although `betadiver` returns a “dist” object, some indices are similarities and cannot be used as such in place of dissimilarities, but that is a severe user error. Functions 10 (“j”) and 11 (“sor”) are two such similarity indices.

Some indices return similarities instead of dissimilarities.

Jari Oksanen


**See Also**

`designdist` for an alternative to implement all these functions, `vegdist` for some canned alternatives, and `betadisper`, `adonis`, `mantel` for analysing beta diversity objects. Functions `nestedbetasor` and `nestedbetajac` implement decomposition beta diversity measures (Sørensen and Jaccard) into turnover and nestedness components following Baselga (2010).

**Examples**

```r
Raw data and plotting
data(sipoo)
m <- betadiver(sipoo)
plot(m)
The indices
betadiver(help=TRUE)
The basic Whittaker index
d <- betadiver(sipoo, "w")
This should be equal to Sorensen index (binary Bray-Curtis in
vegan)
range(d - vegdist(sipoo, binary=TRUE))
```

---

**bgdispersal**

### Coefficients of Biogeographical Dispersal Direction

**Description**

This function computes coefficients of dispersal direction between geographically connected areas, as defined by Legendre and Legendre (1984), and also described in Legendre and Legendre (2012, section 13.3.4).

**Usage**

`bgdispersal(mat, PAonly = FALSE, abc = FALSE)`

**Arguments**

- `mat`  
  Data frame or matrix containing a community composition data table (species presence-absence or abundance data).

- `PAonly`  
  FALSE if the four types of coefficients, DD1 to DD4, are requested; TRUE if DD1 and DD2 only are sought (see Details).

- `abc`  
  If TRUE, return tables a, b and c used in DD1 and DD2.
Details

The signs of the DD coefficients indicate the direction of dispersal, provided that the asymmetry is significant. A positive sign indicates dispersal from the first (row in DD tables) to the second region (column); a negative sign indicates the opposite. A McNemar test of asymmetry is computed from the presence-absence data to test the hypothesis of a significant asymmetry between the two areas under comparison.

In the input data table, the rows are sites or areas, the columns are taxa. Most often, the taxa are species, but the coefficients can be computed from genera or families as well. DD1 and DD2 only are computed for presence-absence data. The four types of coefficients are computed for quantitative data, which are converted to presence-absence for the computation of DD1 and DD2. $\text{PAonly} = \text{FALSE}$ indicates that the four types of coefficients are requested. $\text{PAonly} = \text{TRUE}$ if DD1 and DD2 only are sought.

Value

Function bgdisper$\text{sal}$ returns a list containing the following matrices:

- $\text{DD1}_{j,k} = (a(b - c))/(a + b + c)^2$
- $\text{DD2}_{j,k} = (2a(b - c))/((2a + b + c)(a + b + c))$ where $a$, $b$, and $c$ have the same meaning as in the computation of binary similarity coefficients.
- $\text{DD3}_{j,k} = W(A - B)/(A + B - W)^2$
- $\text{DD4}_{j,k} = 2W(A - B)/((A + B)(A + B - W))$ where $W = \text{sum}(\text{pmin(vector1, vector2)})$, $A = \text{sum(vector1)}$, $B = \text{sum(vector2)}$

- McNemar: McNemar chi-square statistic of asymmetry (Sokal and Rohlf 1995): $2(b \log(b) + c \log(c) - (b + c) \log((b + c)/2))/q$, where $q = 1 + 1/(2(b + c))$ (Williams correction for continuity)
- $\text{prob.McNemar}$: probabilities associated with McNemar statistics, chi-square test. H0: no asymmetry in $(b - c)$.

Note

The function uses a more powerful alternative for the McNemar test than the classical formula. The classical formula was constructed in the spirit of Pearson’s Chi-square, but the formula in this function was constructed in the spirit of Wilks Chi-square or the $G$ statistic. Function mcnemar.test uses the classical formula. The new formula was introduced in vegan version 1.10-11, and the older implementations of bgdisper$\text{sal}$ used the classical formula.

Author(s)

Pierre Legendre, Departement de Sciences Biologiques, Universite de Montreal

References


**Examples**

```r
mat <- matrix(c(32,15,10,70,30,100,4,10,30,25,0,18,0,40,
 0,0,20,0,0,0,4,0,30,20,0,0,0,25,74,42,1,45,89,5,16,16,20),
 4, 10, byrow=TRUE)
bgdispersal(mat)
```

**bioenv**

*Best Subset of Environmental Variables with Maximum (Rank) Correlation with Community Dissimilarities*

**Description**

Function finds the best subset of environmental variables, so that the Euclidean distances of scaled environmental variables have the maximum (rank) correlation with community dissimilarities.

**Usage**

```r
Default S3 method:
bioenv(comm, env, method = "spearman", index = "bray",
 upto = ncol(env), trace = FALSE, partial = NULL,
 metric = c("euclidean", "mahalanobis", "manhattan", "gower"),
 parallel = getOption("mc.cores"), ...)
S3 method for class 'formula'
bioenv(formula, data, ...)
bioenvdist(x, which = "best")
```

**Arguments**

- `comm` Community data frame or a dissimilarity object or a square matrix that can be interpreted as dissimilarities.
- `env` Data frame of continuous environmental variables.
- `method` The correlation method used in `cor`.
- `index` The dissimilarity index used for community data (`comm`) in `vegdist`. This is ignored if `comm` are dissimilarities.
- `upto` Maximum number of parameters in studied subsets.
- `formula, data` Model `formula` and data.
- `trace` Trace the calculations
- `partial` Dissimilarities partialled out when inspecting variables in `env`.
- `metric` Metric used for distances of environmental distances. See Details.
- `parallel` Number of parallel processes or a predefined socket cluster. With `parallel = 1` uses ordinary, non-parallel processing. The parallel processing is done with `parallel` package.
The function calculates a community dissimilarity matrix using `vegdist`. Then it selects all possible subsets of environmental variables, scales the variables, and calculates Euclidean distances for this subset using `dist`. The function finds the correlation between community dissimilarities and environmental distances, and for each size of subsets, saves the best result. There are \( 2^p - 1 \) subsets of \( p \) variables, and an exhaustive search may take a very, very, very long time (parameter `upto` offers a partial relief).

The argument `metric` defines distances in the given set of environmental variables. With `metric = "euclidean"`, the variables are scaled to unit variance and Euclidean distances are calculated. With `metric = "mahalanobis"`, the Mahalanobis distances are calculated: in addition to scaling to unit variance, the matrix of the current set of environmental variables is also made orthogonal (uncorrelated). With `metric = "manhattan"`, the variables are scaled to unit range and Manhattan distances are calculated, so that the distances are sums of differences of environmental variables. With `metric = "gower"`, the Gower distances are calculated using function `daisy`. This allows also using factor variables, but with continuous variables the results are equal to `metric = "manhattan"`.

The function can be called with a model `formula` where the LHS is the data matrix and RHS lists the environmental variables. The formula interface is practical in selecting or transforming environmental variables.

With argument `partial` you can perform “partial” analysis. The partializing item must be a dissimilarity object of class `dist`. The partial item can be used with any correlation method, but it is strictly correct only for Pearson.

Function `bioenvdist` recalculates the environmental distances used within the function. The default is to calculate distances for the best model, but the number of any model can be given.

Clarke & Ainsworth (1993) suggested this method to be used for selecting the best subset of environmental variables in interpreting results of nonmetric multidimensional scaling (NMDS). They recommended a parallel display of NMDS of community dissimilarities and NMDS of Euclidean distances from the best subset of scaled environmental variables. They warned against the use of Procrustes analysis, but to me this looks like a good way of comparing these two ordinations.

Clarke & Ainsworth wrote a computer program BIO-ENV giving the name to the current function. Presumably BIO-ENV was later incorporated in Clarke’s PRIMER software (available for Windows). In addition, Clarke & Ainsworth suggested a novel method of rank correlation which is not available in the current function.

**Value**

The function returns an object of class `bioenv` with a summary method.

**Note**

If you want to study the ‘significance’ of `bioenv` results, you can use function `mantel` or `mantel.partial` which use the same definition of correlation. However, `bioenv` standardizes environmental vari-
ables depending on the used metric, and you must do the same in mantel for comparable results (the standardized data are returned as item x in the result object). It is safest to use bioenvdist to extract the environmental distances that really were used within bioenv. NB., bioenv selects variables to maximize the Mantel correlation, and significance tests based on a priori selection of variables are biased.

Author(s)

Jari Oksanen

References


See Also

vegdist, dist, cor for underlying routines, monoMDS and metaMDS for ordination, procrustes for Procrustes analysis, protest for an alternative, and rankindex for studying alternatives to the default Bray-Curtis index.

Examples

# The method is very slow for large number of possible subsets.
# Therefore only 6 variables in this example.
data(varespec)
data(varechem)
sol <- bioenv(wisconsin(varespec) - log(N) + P + K + Ca + pH + Al, varechem)
sol
summary(sol)

biplot.rda

PCA biplot

Description

Draws a PCA biplot with species scores indicated by biplot arrows

Usage

## S3 method for class 'rda'
biplot(x, choices = c(1, 2), scaling = 2,
       display = c("sites", "species"), type, xlim, ylim, col = c(1,2),
       const, ...)
Arguments

x A rda result object.
choices Axes to show.
scaling Scaling for species and site scores. Either species (2) or site (1) scores are scaled by eigenvalues, and the other set of scores is left unscaled, or with 3 both are scaled symmetrically by square root of eigenvalues. With negative scaling values in rda, species scores are divided by standard deviation of each species and multiplied with an equalizing constant. Unscaled raw scores stored in the result can be accessed with scaling = 0.
display Scores shown. These must some of the alternatives "species" for species scores, and/or "sites" for site scores.
type Type of plot: partial match to text for text labels, points for points, and none for setting frames only. If omitted, text is selected for smaller data sets, and points for larger. Can be of length 2 (e.g. type = c("text", "points")), in which case the first element describes how species scores are handled, and the second how site scores are drawn.
xlim, ylim the x and y limits (min, max) of the plot.
col Colours used for sites and species (in this order). If only one colour is given, it is used for both.
const General scaling constant for scores.rda.
... Other parameters for plotting functions.

Details

Produces a plot or biplot of the results of a call to rda. It is common for the "species" scores in a PCA to be drawn as biplot arrows that point in the direction of increasing values for that variable. The biplot.rda function provides a wrapper to plot.cca to allow the easy production of such a plot.

biplot.rda is only suitable for unconstrained models. If used on an ordination object with constraints, an error is issued.

If species scores are drawn using "text", the arrows are drawn from the origin to 0.85 * species score, whilst the labels are drawn at the species score. If the type used is "points", then no labels are drawn and therefore the arrows are drawn from the origin to the actual species score.

Value

The plot function returns invisibly a plotting structure which can be used by identify.ordiplot to identify the points or other functions in the ordiplot family.

Author(s)

Gavin Simpson, based on plot.cca by Jari Oksanen.

See Also

plot.cca, rda for something to plot, ordiplot for an alternative plotting routine and more support functions, and text, points and arrows for the basic routines.
**Examples**

```r
data(dune)
mod <- rda(dune, scale = TRUE)
biplot(mod, scaling = 3)

different type for species and site scores
biplot(mod, scaling = 3, type = c("text", "points"))
```

---

**capscale**

* [Partial] Constrained Analysis of Principal Coordinates or distance-based RDA*

**Description**

Constrained Analysis of Principal Coordinates (CAP) is an ordination method similar to Redundancy Analysis (*rda*), but it allows non-Euclidean dissimilarity indices, such as Manhattan or Bray–Curtis distance. Despite this non-Euclidean feature, the analysis is strictly linear and metric. If called with Euclidean distance, the results are identical to *rda*, but *capscale* will be much more inefficient. Function *capscale* is a constrained version of metric scaling, a.k.a. principal coordinates analysis, which is based on the Euclidean distance but can be used, and is more useful, with other dissimilarity measures. The function can also perform unconstrained principal coordinates analysis, optionally using extended dissimilarities.

**Usage**

```r
capscale(formula, data, distance = "euclidean", sqrt.dist = FALSE,
 comm = NULL, add = FALSE, dfun = vegdist, metaMDSdist = FALSE,
 na.action = na.fail, subset = NULL, ...)
```

**Arguments**

- **formula**: Model formula. The function can be called only with the formula interface. Most usual features of `formula` hold, especially as defined in `cca` and `rda`. The LHS must be either a community data matrix or a dissimilarity matrix, e.g., from `vegdist` or `dist`. If the LHS is a data matrix, function `vegdist` will be used to find the dissimilarities. The RHS defines the constraints. The constraints can be continuous variables or factors, they can be transformed within the formula, and they can have interactions as in a typical `formula`. The RHS can have a special term `Condition` that defines variables to be “partialled out” before constraints, just like in `rda` or `cca`. This allows the use of partial CAP.

- **data**: Data frame containing the variables on the right hand side of the model formula.

- **distance**: The name of the dissimilarity (or distance) index if the LHS of the formula is a data frame instead of dissimilarity matrix.

- **sqrt.dist**: Take square roots of dissimilarities. See section Notes below.
Community data frame which will be used for finding species scores when the LHS of the formula was a dissimilarity matrix. This is not used if the LHS is a data frame. If this is not supplied, the “species scores” are the axes of initial metric scaling (`cmdscale`) and may be confusing.

Logical indicating if an additive constant should be computed, and added to the non-diagonal dissimilarities such that all eigenvalues are non-negative in the underlying Principal Co-ordinates Analysis (see `cmdscale` for details). This implements “correction method 2” of Legendre & Legendre (2012, p. 503). The negative eigenvalues are caused by using semi-metric or non-metric dissimilarities with basically metric `cmdscale`. They are harmless and ignored in `capscale`, but you also can avoid warnings with this option.

Distance or dissimilarity function used. Any function returning standard "dist" and taking the index name as the first argument can be used. Use `metaMDSdist` similarly as in `metaMDS`. This means automatic data transformation and using extended flexible shortest path dissimilarities (function `stepacross`) when there are many dissimilarities based on no shared species.

Handling of missing values in constraints or conditions. The default (`na.fail`) is to stop with missing values. Choices `na.omit` and `na.exclude` delete rows with missing values, but differ in representation of results. With `na.omit` only non-missing site scores are shown, but `na.exclude` gives NA for scores of missing observations. Unlike in `rda`, no WA scores are available for missing constraints or conditions.

Subset of data rows. This can be a logical vector which is TRUE for kept observations, or a logical expression which can contain variables in the working environment, data or species names of the community data (if given in the formula or as `comm` argument).

Other parameters passed to `rda` or to `metaMDSdist`.

Canonical Analysis of Principal Coordinates (CAP) is simply a Redundancy Analysis of results of Metric (Classical) Multidimensional Scaling (Anderson & Willis 2003). Function `capscale` uses two steps: (1) it ordinates the dissimilarity matrix using `cmdscale` and (2) analyses these results using `rda`. If the user supplied a community data frame instead of dissimilarities, the function will find the needed dissimilarity matrix using `vegdist` with specified distance. However, the method will accept dissimilarity matrices from `vegdist`, `dist`, or any other method producing similar matrices. The constraining variables can be continuous or factors or both, they can have interaction terms, or they can be transformed in the call. Moreover, there can be a special term `Condition` just like in `rda` and `cca` so that “partial” CAP can be performed.

The current implementation differs from the method suggested by Anderson & Willis (2003) in three major points which actually make it similar to distance-based redundancy analysis (Legendre & Anderson 1999):

1. Anderson & Willis used the orthonormal solution of `cmdscale`, whereas `capscale` uses axes weighted by corresponding eigenvalues, so that the ordination distances are the best approximations of original dissimilarities. In the original method, later “noise” axes are just as important as first major axes.
2. Anderson & Willis take only a subset of axes, whereas capscale uses all axes with positive eigenvalues. The use of subset is necessary with orthonormal axes to chop off some ‘noise’, but the use of all axes guarantees that the results are the best approximation of original dissimilarities.

3. Function capscale adds species scores as weighted sums of (residual) community matrix (if the matrix is available), whereas Anderson & Willis have no fixed method for adding species scores.

With these definitions, function capscale with Euclidean distances will be identical to rda in eigenvalues and in site, species and biplot scores (except for possible sign reversal). However, it makes no sense to use capscale with Euclidean scores, since direct use of rda is much more efficient. Even with non-Euclidean dissimilarities, the rest of the analysis will be metric and linear.

The function can be also used to perform ordinary metric scaling a.k.a. principal coordinates analysis by using a formula with only a constant on the left hand side, or comm ~ 1. With metaMDSdist = TRUE, the function can do automatic data standardization and use extended dissimilarities using function stepacross similarly as in non-metric multidimensional scaling with metaMDS.

Value

The function returns an object of class capscale which is identical to the result of rda. At the moment, capscale does not have specific methods, but it uses cca and rda methods plot.cca, scores.rda etc. Moreover, you can use anova.cca for permutation tests of “significance” of the results.

Note

The function produces negative eigenvalues with non-Euclidean dissimilarity indices. The non-Euclidean component of inertia is given under the title Imaginary in the printed output. The Total inertia is the sum of all eigenvalues, but the sum of all non-negative eigenvalues is given as Real Total (which is higher than the Total). The ordination is based only on the real dimensions with positive eigenvalues, and therefore the proportions of inertia components only apply to the Real Total and ignore the Imaginary component. Permutation tests with anova.cca use only the real solution of positive eigenvalues. Function adonis gives similar significance tests, but it also handles the imaginary dimensions (negative eigenvalues) and therefore its results may differ from permutation test results of capscale.

If the negative eigenvalues are disturbing, you can use argument add = TRUE passed to cmdscale, or, preferably, a distance measure that does not cause these warnings. Alternatively, after square root transformation of distances (argument sqrt.dist = TRUE) many indices do not produce negative eigenvalues.

The inertia is named after the dissimilarity index as defined in the dissimilarity data, or as unknown distance if such an information is missing. Function rda usually divides the ordination scores by number of sites minus one. In this way, the inertia is variance instead of sum of squares, and the eigenvalues sum up to variance. Many dissimilarity measures are in the range 0 to 1, so they have already made a similar division. If the largest original dissimilarity is less than or equal to 4 (allowing for stepacross), this division is undone in capscale and original dissimilarities are used. Keyword mean is added to the inertia in cases where division was made, e.g. in Euclidean and Manhattan distances. Inertia is based on squared index, and keyword squared is added to the name of distance,
unless data were square root transformed (argument sqrt.dist = TRUE). If an additive constant was used, keyword euclidified is added to the the name of inertia, and the value of the constant is printed (argument add = TRUE).

Author(s)

Jari Oksanen

References


See Also

*rda, cca, plot.cca, anova.cca, vegdist, dist, cmdscale.*

The function returns similar result object as *rda* (see *cca.object*). This section for *rda* gives a more complete list of functions that can be used to access and analyse *capscale* results.

Examples

data(varespec)
data(varechem)
### Basic Analysis
vare.cap <- capscale(varespec ~ N + P + K + Condition(Al), varechem,  
                      dist="bray")
vare.cap
plot(vare.cap)
anova(vare.cap)
### Avoid negative eigenvalues with additive constant
capscale(varespec ~ N + P + K + Condition(Al), varechem,  
         dist="bray", add =TRUE)
### Avoid negative eigenvalues by taking square roots of dissimilarities
capscale(varespec ~ N + P + K + Condition(Al), varechem,  
         dist = "bray", sqrt.dist= TRUE)
### Principal coordinates analysis with extended dissimilarities
capscale(varespec ~ 1, dist="bray", metaMDS = TRUE)
cascadeKM is a function that performs K-means partitioning using a range of values of K. It creates several partitions forming a cascade from a small to a large number of groups.

### Usage

```r
cascadeKM(data, inf.gr, sup.gr, iter = 100, criterion = "calinski")
cIndexKM(y, x, index = "all")
```

`## S3 method for class 'cascadeKM'
plot(x, min.g, max.g, grpmts.plot = TRUE,
        sortg = FALSE, gridcol = NA, ...)`

### Arguments

- **data**: The data matrix. The objects (samples) are the rows.
- **inf.gr**: The number of groups for the partition with the smallest number of groups of the cascade (min).
- **sup.gr**: The number of groups for the partition with the largest number of groups of the cascade (max).
- **iter**: The number of random starting configurations for each value of K.
- **criterion**: The criterion that will be used to select the best partition. The default value is "calinski", which refers to the Calinski-Harabasz (1974) criterion. The simple structure index ("ssi") is also available. Other indices are available in function clustIndex (package cclust). In our experience, the two indices that work best and are most likely to return their maximum value at or near the optimal number of clusters are "calinski" and "ssi".
- **y**: Object of class "kmeans" returned by a clustering algorithm such as `kmeans`.
- **x**: Data matrix where columns correspond to variables and rows to observations, or the plotting object in plot.
- **index**: The available indices are: "calinski" and "ssi". Type "all" to obtain both indices. Abbreviations of these names are also accepted.
- **min.g, max.g**: The minimum and maximum numbers of groups to be displayed.
- **grpmts.plot**: Show the plot (TRUE or FALSE).
- **sortg**: Sort the objects as a function of their group membership to produce a more easily interpretable graph. See Details. The original object names are kept; they are used as labels in the output table x, although not in the graph. If there were no row names, sequential row numbers are used to keep track of the original order of the objects.
gridcol The colour of the grid lines in the plots. \text{NA}, which is the default value, removes the grid lines.

... Other parameters to the functions (ignored).

Details

The function creates several partitions forming a cascade from a small to a large number of groups formed by \texttt{kmeans}. Most of the work is performed by function \texttt{cIndex} which is based on the \texttt{clustIndex} function (package \texttt{cclust}). Some of the criteria were removed from this version because computation errors were generated when only one object was found in a group.

The default value is "calinski", which refers to the well-known Calinski-Harabasz (1974) criterion. The other available index is the simple structure index "ssi" (Dolnicar et al. 1999). In the case of groups of equal sizes, "calinski" is generally a good criterion to indicate the correct number of groups. Users should not take its indications literally when the groups are not equal in size. Type "all" to obtain both indices. The indices are defined as:

\textbf{calinski}: \( \frac{SSB/(K-1) / SSW/(n-K)}{n} \), where \( n \) is the number of data points and \( K \) is the number of clusters. \( SSW \) is the sum of squares within the clusters while \( SSB \) is the sum of squares among the clusters. This index is simply an \( F \) (ANOVA) statistic.

\textbf{ssi}: the “Simple Structure Index” multiplicatively combines several elements which influence the interpretability of a partitioning solution. The best partition is indicated by the highest SSI value.

In a simulation study, Milligan and Cooper (1985) found that the Calinski-Harabasz criterion recovered the correct number of groups the most often. We recommend this criterion because, if the groups are of equal sizes, the maximum value of "calinski" usually indicates the correct number of groups. Another available index is the simple structure index "ssi". Users should not take the indications of these indices literally when the groups are not equal in size and explore the groups corresponding to other values of \( K \).

Function \texttt{cascadeKM} has a \texttt{plot} method. Two plots are produced. The graph on the left has the objects in abscissa and the number of groups in ordinate. The groups are represented by colours. The graph on the right shows the values of the criterion ("calinski" or "ssi") for determining the best partition. The highest value of the criterion is marked in red. Points marked in orange, if any, indicate partitions producing an increase in the criterion value as the number of groups increases; they may represent other interesting partitions.

If \texttt{sortg=TRUE}, the objects are reordered by the following procedure: (1) a simple matching distance matrix is computed among the objects, based on the table of K-means assignments to groups, from \( K = \min \text{ g to } K = \max \text{ g} \). (2) A principal coordinate analysis (PCoA, Gower 1966) is computed on the centred distance matrix. (3) The first principal coordinate is used as the new order of the objects in the graph. A simplified algorithm is used to compute the first principal coordinate only, using the iterative algorithm described in Legendre & Legendre (2012). The full distance matrix among objects is never computed; this avoids the problem of storing it when the number of objects is large. Distance values are computed as they are needed by the algorithm.

\textbf{Value}

Function \texttt{cascadeKM} returns an object of class \texttt{cascadeKM} with items:
Table with the partitions found for different numbers of groups \( K \), from \( K = \inf. \text{gr} \) to \( K = \sup. \text{gr} \).

Values of the criterion to select the best partition.

The name of the criterion used.

The number of objects found in each group, for all partitions (columns).

Function cIndex returns a vector with the index values. The maximum value of these indices is supposed to indicate the best partition. These indices work best with groups of equal sizes. When the groups are not of equal sizes, one should not put too much faith in the maximum of these indices, and also explore the groups corresponding to other values of \( K \).

Author(s)

Marie-Helene Ouellette <Marie-Helene.Ouellette@umontreal.ca>, Sebastien Durand <Sebastien.Durand@umontreal.ca> and Pierre Legendre <Pierre.Legendre@umontreal.ca>. Edited for vegan by Jari Oksanen.

References


Weingessel, A., Dimitriadou, A. and Dolnicar, S. An Examination Of Indexes For Determining The Number OfClusters In Binary Data Sets, http://www.wu-wien.ac.at/am/wp99.htm#29

See Also

kmeans, clustIndex.

Examples

# Partitioning a (10 x 10) data matrix of random numbers
mat <- matrix(rnorm(100),10,10)
res <- cascadeKM(mat, 2, 5, iter = 25, criterion = 'calinski')
toto <- plot(res)

# Partitioning an autocorrelated time series
vec <- sort(matrix(rnorm(30),30,1))
res <- cascadeKM(vec, 2, 5, iter = 25, criterion = 'calinski')
toto <- plot(res)

# Partitioning a large autocorrelated time series
# Note that we remove the grid lines
vec <- sort(matrix(runif(1000), 1000, 1))
res <- cascadeKM(vec, 2, 7, iter = 10, criterion = 'calinski')
toto <- plot(res, gridcol=NA)

## [Partial] [Constrained] Correspondence Analysis and Redundancy Analysis

### Description

Function `cca` performs correspondence analysis, or optionally constrained correspondence analysis (a.k.a. canonical correspondence analysis), or optionally partial constrained correspondence analysis. Function `rda` performs redundancy analysis, or optionally principal components analysis. These are all very popular ordination techniques in community ecology.

### Usage

```r
S3 method for class 'formula'
cca(formula, data, na.action = na.fail, subset = NULL,
 ...)
Default S3 method:
cca(X, Y, Z, ...)
S3 method for class 'formula'
rda(formula, data, scale=FALSE, na.action = na.fail,
 subset = NULL, ...)
Default S3 method:
rda(X, Y, Z, scale=FALSE, ...)
```

### Arguments

- **formula**: Model formula, where the left hand side gives the community data matrix, right hand side gives the constraining variables, and conditioning variables can be given within a special function `Condition`.
- **data**: Data frame containing the variables on the right hand side of the model formula.
- **X**: Community data matrix.
- **Y**: Constraining matrix, typically of environmental variables. Can be missing.
- **Z**: Conditioning matrix, the effect of which is removed ('partialled out') before next step. Can be missing.
- **scale**: Scale species to unit variance (like correlations).
- **na.action**: Handling of missing values in constraints or conditions. The default (`na.fail`) is to stop with missing value. Choice `na.omit` removes all rows with missing values. Choice `na.exclude` keeps all observations but gives NA for results that cannot be calculated. The WA scores of rows may be found also for missing values in constraints. Missing values are never allowed in dependent community data.
subset Subset of data rows. This can be a logical vector which is TRUE for kept observations, or a logical expression which can contain variables in the working environment, data or species names of the community data.

Details

Since their introduction (ter Braak 1986), constrained, or canonical, correspondence analysis and its spin-off, redundancy analysis, have been the most popular ordination methods in community ecology. Functions cca and rda are similar to popular proprietary software Canoco, although the implementation is completely different. The functions are based on Legendre & Legendre’s (2012) algorithm: in cca Chi-square transformed data matrix is subjected to weighted linear regression on constraining variables, and the fitted values are submitted to correspondence analysis performed via singular value decomposition (svd). Function rda is similar, but uses ordinary, unweighted linear regression and unweighted SVD. Legendre & Legendre (2012), Table 11.5 (p. 650) give a skeleton of the RDA algorithm of vegan. The algorithm of CCA is similar, but involves standardization by row and column weights.

The functions can be called either with matrix-like entries for community data and constraints, or with formula interface. In general, the formula interface is preferred, because it allows a better control of the model and allows factor constraints.

In the following sections, X, Y and Z, although referred to as matrices, are more commonly data frames.

In the matrix interface, the community data matrix X must be given, but the other data matrices may be omitted, and the corresponding stage of analysis is skipped. If matrix Z is supplied, its effects are removed from the community matrix, and the residual matrix is submitted to the next stage. This is called 'partial' correspondence or redundancy analysis. If matrix Y is supplied, it is used to constrain the ordination, resulting in constrained or canonical correspondence analysis, or redundancy analysis. Finally, the residual is submitted to ordinary correspondence analysis (or principal components analysis). If both matrices Z and Y are missing, the data matrix is analysed by ordinary correspondence analysis (or principal components analysis).

Instead of separate matrices, the model can be defined using a model formula. The left hand side must be the community data matrix (X). The right hand side defines the constraining model. The constraints can contain ordered or unordered factors, interactions among variables and functions of variables. The defined contrasts are honoured in factor variables. The constraints can also be matrices (but not data frames). The formula can include a special term Condition for conditioning variables (“covariables”) “partialed out” before analysis. So the following commands are equivalent: cca(X, Y, Z), cca(X ~ Y + Condition(Z)), where Y and Z refer to constraints and conditions matrices respectively.

Constrained correspondence analysis is indeed a constrained method: CCA does not try to display all variation in the data, but only the part that can be explained by the used constraints. Consequently, the results are strongly dependent on the set of constraints and their transformations or interactions among the constraints. The shotgun method is to use all environmental variables as constraints. However, such exploratory problems are better analysed with unconstrained methods such as correspondence analysis (decorana, corresp) or non-metric multidimensional scaling (metaMDS) and environmental interpretation after analysis (envfit, ordisurf). CCA is a good choice if the user has clear and strong a priori hypotheses on constraints and is not interested in the major structure in the data set.
CCA is able to correct the curve artefact commonly found in correspondence analysis by forcing the configuration into linear constraints. However, the curve artefact can be avoided only with a low number of constraints that do not have a curvilinear relation with each other. The curve can reappear even with two badly chosen constraints or a single factor. Although the formula interface makes easy to include polynomial or interaction terms, such terms often produce curved artefacts (that are difficult to interpret), these should probably be avoided.

According to folklore, rda should be used with “short gradients” rather than cca. However, this is not based on research which finds methods based on Euclidean metric as uniformly weaker than those based on Chi-squared metric. However, standardized Euclidean distance may be an appropriate measures (see Hellinger standardization in decostand in particular).

Partial CCA (pCCA; or alternatively partial RDA) can be used to remove the effect of some conditioning or “background” or “random” variables or “covariables” before CCA proper. In fact, pCCA compares models cca(X ~ Z) and cca(X ~ Y + Z) and attributes their difference to the effect of Y cleansed of the effect of Z. Some people have used the method for extracting “components of variance” in CCA. However, if the effect of variables together is stronger than sum of both separately, this can increase total Chi-square after “partialling out” some variation, and give negative “components of variance”. In general, such components of “variance” are not to be trusted due to interactions between two sets of variables.

The functions have summary and plot methods which are documented separately (see plot.cca, summary.cca).

Value

Function cca returns a huge object of class cca, which is described separately in cca.object.
Function rda returns an object of class rda which inherits from class cca and is described in cca.object. The scaling used in rda scores is described in a separate vignette with this package.

Author(s)

The responsible author was Jari Oksanen, but the code borrows heavily from Dave Roberts (http://labdsv.nr.usu.edu/).

References

The original method was by ter Braak, but the current implementations follows Legendre and Legendre.


See Also

This help page describes two constrained ordination functions, cca and rda. A related method, distance-based redundancy analysis (dbRDA) is described separately (capscale). All these functions return similar objects (described in cca.object). There are numerous support functions that can be used to access the result object. In the list below, functions of type cca will handle all three constrained ordination objects, and functions of rda only handle rda and capscale results.

The main plotting functions are plot.cca for all methods, and biplot.rda for RDA and dbRDA. However, generic vegan plotting functions can also handle the results. The scores can be accessed and scaled with scores.cca, and summarized with summary.cca. The eigenvalues can be accessed with eigenvals.cca and the regression coefficients for constraints with coef.cca. The eigenvalues can be plotted with screeplot.cca, and the (adjusted) $R^2$ can be found with RsquareAdj.rda. The scores can be also calculated for new data sets with predict.cca which allows adding points to ordinations. The values of constraints can be inferred from ordination and community composition with calibrate.cca.

Diagnostic statistics can be found with goodness.cca, inertcomp, spenvcor, intersetcor, tolerance.cca, and vif.cca. Function as.mlm.cca refits the result object as a multiple lm object, and this allows finding influence statistics (lm.influence, cooks.distance etc.).

Permutation based significance for the overall model, single constraining variables or axes can be found with anova.cca. Automatic model building with R step function is possible with deviance.cca, add1.cca and drop1.cca. Functions ordistep and ordiR2step (for RDA) are special functions for constrained ordination. Randomized data sets can be generated with simulate.cca.

Separate methods based on constrained ordination model are principal response curves (prc) and variance partitioning between several components (varpart).

Design decisions are explained in vignette `decision-vegan` which also can be accessed with vegandocs.

Package ade4 provides alternative constrained ordination functions cca and pcaiv.

Examples

data(varespec)
data(varechem)
## Common but bad way: use all variables you happen to have in your
## environmental data matrix
vare.cca <- cca(varespec, varechem)
vare.cca
plot(vare.cca)
## Formula interface and a better model
vare.cca <- cca(varespec ~ Al + P*(K + Baresoil), data=varechem)
vare.cca
plot(vare.cca)
## 'Partialling out' and 'negative components of variance'
cca(varespec ~ Ca, varechem)
cca(varespec ~ Ca + Condition(pH), varechem)
## RDA
data(dune)
data(dune.env)
dune.Manure <- rda(dune ~ Manure, dune.env)
plot(dune.Manure)
Description

Ordination methods `cca`, `rda` and `capscale` return similar result objects. Function `capscale` inherits from `rda` and `rda` inherits from `cca`. This inheritance structure is due to historic reasons: `cca` was the first of these implemented in vegan. Hence the nomenclature in `cca.object` reflects `cca`. This help page describes the internal structure of the `cca.object` for programmers.

Value

A `cca` object has the following elements:

- **call**
  - the function call.

- **colsum, rowsum, rowsum.excluded**
  - Column and row sums in `cca`. In `rda`, `colsum` contains standard deviations of species and `rowsum` is NA. If some data were removed in `na.action`, the row sums of excluded observations are in `rowsum.excluded` in `cca` (but not in `rda`). The `rowsum.excluded` add to the total (one) of `rowsum`.

- **grand.total**
  - Grand total of community data in `cca` and NA in `rda`.

- **inertia**
  - Text used as the name of inertia.

- **method**
  - Text used as the name of the ordination method.

- **terms**
  - The `terms` component of the `formula`. This is missing if the ordination was not called with `formula`.

- **terminfo**
  - Further information on terms with three subitems: `terms` which is like the `terms` component above, but lists conditions and constraints similarly; `xlev` which lists the factor levels, and `ordered` which is `TRUE` to ordered factors. This is produced by `vegan` internal function `ordiTerminfo`, and it is needed in `predict.cca` with `newdata`. This is missing if the ordination was not called with `formula`.

- **tot.chi**
  - Total inertia or the sum of all eigenvalues.

- **na.action**
  - The result of `na.action` if missing values in constraints were handled by `na.omit` or `na.exclude` (or NULL if there were no missing values). This is a vector of indices of missing value rows in the original data and a class of the action, usually either "omit" or "exclude".

- **pCCA, CCA, CA**
  - Actual ordination results for conditioned (partial), constrained and unconstrained components of the model. If constraints or conditions are not given, the corresponding components `CCA` and `pCCA` are NULL. If they are specified but have zero rank and zero eigenvalue (e.g., due to aliasing), they have a standard structure.
like described below, but the result scores have zero columns, but the correct number of rows. The residual component is never NULL, and if there is no residual variation (like in overdefined model), its scores have zero columns. The standard print command does not show NULL components, but it prints zeros for zeroed components. Items pCCA, CCA and CA contain following items:

**alias** The names of the aliased constraints or conditions. Function alias.cca does not access this item directly, but it finds the aliased variables and their defining equations from the QR item.

**biplot** Biplot scores of constraints. Only in CCA.

**centroids** (Weighted) centroids of factor levels of constraints. Only in CCA. Missing if the ordination was not called with formula.

**eig** Eigenvalues of axes. In CCA and CA.

**envcentre** (Weighted) means of the original constraining or conditioning variables. In pCCA and in CCA.

**Fit** The fitted values of standardized data matrix after fitting conditions. Only in pCCA.

**QR** The QR decomposition of explanatory variables as produced by qr. The constrained ordination algorithm is based on QR decomposition of constraints and conditions (environmental data). The environmental data are first centred in rda or weighted and centred in cca. The QR decomposition is used in many functions that access cca results, and it can be used to find many items that are not directly stored in the object. For examples, see coef.cca, coef.rda, vif.cca, permutest.cca, predict.cca, predict.rda, calibrate.cca. For possible uses of this component, see qr. In pCCA and CCA.

**rank** The rank of the ordination component.

**qrank** The rank of the constraints which is the difference of the ranks of QR decompositions in pCCA and CCA components. Only in CCA.

**tot.chi** Total inertia or the sum of all eigenvalues of the component.

**imaginary.chi, imaginary.rank, imaginary.u.eig** The sum, rank (number) of negative eigenvalues and scaled site scores for imaginary axes in capscale. Only in CA item and only if negative eigenvalues were found in capscale.

**u** (Weighted) orthonormal site scores. Please note that scaled scores are not stored in the cca object, but they are made when the object is accessed with functions like scores.cca, summary.cca or plot.cca, or their rda variants. Only in CCA and CA. In the CCA component these are the so-called linear combination scores.

**v** (Weighted) orthonormal species scores. If missing species were omitted from the analysis, this will contain attribute na.action that lists the omitted species. Only in CCA and CA.

**wa** Site scores found as weighted averages (cca) or weighted sums (rda) of v with weights Xbar, but the multiplying effect of eigenvalues removed. These often are known as WA scores in cca. Only in CCA.

**wa.excluded, u.excluded** WA scores for rows removed by na.action = na.exclude in CCA and CA components if these could be calculated.
The standardized data matrix after previous stages of analysis. In CCA this is after possible pCCA or after partialling out the effects of conditions, and in CA after both pCCA and CCA. In ca the standardization is Chi-square, and in rda centring and optional scaling by species standard deviations using function scale.

NA Action and Subset

If the constraints had missing values or subsets, and na.action was set to na.exclude or na.omit, the result will have some extra items:

subset subset evaluated as a logical vector (TRUE for included cases).

na.action The object returned by na.action which is a named vector of indices of removed items. The class of the vector is either "omit" or "exclude" as set by na.action. The na.action is applied after subset so that the indices refer to the subset data.

residuals.zombie A zombie vector of the length of number of rows in the residual ordination. R versions before 2.13.0 may use this vector to find the number of valid observations, and it is provided for their use although this is useless in R 2.13.0 and in vegan. Currently R uses nobs.cca to find the number of observations.

rowsum.excluded Row sums of removed observations. Only in cca.

CCA$wa.excluded The WA scores for sites (found from community data) in constrained ordination if na.action was na.exclude and the scores could be calculated. The scores cannot be found for capscale and in partial ordination.

CA$u.excluded Row scores for sites in unconstrained ordination with identical conditions as above.

capscale

Function capscale may add some items depending on its arguments:

metaMDSdist The data set name if metaMDSdist = TRUE.

ac Additive constant used if add = TRUE.

adjust Adjustment of dissimilarities: see capscale, section “Notes”.

Note

In old versions of vegan the object also included scores scaled by eigenvalues (u.eig, v.eig and wa.eig), but these were removed in vegan 2.2-0. The scores are scaled when they are accessed with scores function. It is advisable to always use scores in accessing the results instead of directly accessing the elements of the the cca object.

Author(s)

Jari Oksanen

References

CCorA

See Also
The description here provides a hacker’s interface. User level functions for further analysis and handling of cca objects are described in this section in cca. Also for a hacker interface, it may be better to use following low level functions to access the results: scores.cca (which also scales results), predict.cca (which can also use newdata), fitted.cca, residuals.cca, alias.cca, coef.cca, model.frame.cca, model.matrix.cca, deviance.cca, eigenvals.cca, RsquareAdj.cca, weights.cca, nobs.cca, or rda variants of these functions. You can use as.mlm to cast a cca.object into result of multiple response linear model (lm) in order to more easily find some statistics (which in principle could be directly found from the cca object as well).

This section in cca gives a more complete list of methods to handle the constrained ordination result object.

Examples

```r
Some species will be missing in the analysis, because only a subset
of sites is used below.
data(dune)
data(dune.env)
mod <- cca(dune[1:15,] ~ ., dune.env[1:15,])
Look at the names of missing species
attr(modCCAv, "na.action")
Look at the names of the aliased variables:
modCCAalias
Access directly constrained weighted orthonormal species and site
scores, constrained eigenvalues and margin sums.
spec <- modCCAv
sites <- modCCAu
eig <- modCCAeig
rsum <- mod$rowsum
csum <- mod$colsum
```

---

### CCorA

**Canonical Correlation Analysis**

**Description**

Canonical correlation analysis, following Brian McArdle’s unpublished graduate course notes, plus improvements to allow the calculations in the case of very sparse and collinear matrices, and permutation test of Pillai’s trace statistic.

**Usage**

```r
CCorA(Y, X, stand.Y=FALSE, stand.X=FALSE, permutations = 0, ...)
```

```r
S3 method for class 'CCorA'
biplot(x, plot.type="ov", xlabs, plot.axes = 1:2, int=0.5,
 col.Y="red", col.X="blue", cex=c(0.7,0.9), ...)
```
Arguments

Y
Left matrix (object class: matrix or data.frame).

X
Right matrix (object class: matrix or data.frame).

stand.Y
Logical; should Y be standardized?

stand.X
Logical; should X be standardized?

permutations
a list of control values for the permutations as returned by the function how, or
the number of permutations required, or a permutation matrix where each row
gives the permuted indices.

x
CCoR result object.

plot.type
A character string indicating which of the following plots should be produced:
"objects", "variables", "ov" (separate graphs for objects and variables), or
"biplots". Any unambiguous subset containing the first letters of these names
can be used instead of the full names.

xlabs
Row labels. The default is to use row names, NULL uses row numbers instead,
and NA suppresses plotting row names completely.

plot.axes
A vector with 2 values containing the order numbers of the canonical axes to be
plotted. Default: first two axes.

int
Radius of the inner circles plotted as visual references in the plots of the vari-
ables. Default: int=0.5. With int=0, no inner circle is plotted.

col.Y
Color used for objects and variables in the first data table (Y) plots. In biplots,
the objects are in black.

col.X
Color used for objects and variables in the second data table (X) plots.

cex
A vector with 2 values containing the size reduction factors for the object and
variable names, respectively, in the plots. Default values: cex=c(0.7, 0.9).

... Other arguments passed to these functions. The function biplot.CCorA passes
graphical arguments to biplot and biplot.default. CCorA currently ignores
extra arguments.

Details

Canonical correlation analysis (Hotelling 1936) seeks linear combinations of the variables of Y that
are maximally correlated to linear combinations of the variables of X. The analysis estimates the re-
lationships and displays them in graphs. Pillai’s trace statistic is computed and tested parametrically
(F-test); a permutation test is also available.

Algorithmic note – The blunt approach would be to read the two matrices, compute the covariance
matrices, then the matrix \( S_{12} \times S_{22}^{-1} \times T_{12}^{-1} \times S_{11}^{-1} \). Its trace is Pillai’s trace
statistic. This approach may fail, however, when there is heavy multicollinearity in very sparse data
matrices. The safe approach is to replace all data matrices by their PCA object scores.

The function can produce different types of plots depending on the option chosen: "objects"
produces two plots of the objects, one in the space of Y, the second in the space of X; "variables"
produces two plots of the variables, one of the variables of Y in the space of Y, the second of
the variables of X in the space of X; "ov" produces four plots, two of the objects and two of the
variables; "biplots" produces two biplots, one for the first matrix (Y) and one for second matrix
(X) solutions. For biplots, the function passes all arguments to biplot.default; consult its help
page for configuring biplots.
**Value**

Function CCorA returns a list containing the following elements:

- **Pillai**: Pillai's trace statistic = sum of the canonical eigenvalues.
- **Eigenvalues**: Canonical eigenvalues. They are the squares of the canonical correlations.
- **CanCorr**: Canonical correlations.
- **Mat.ranks**: Ranks of matrices $Y$ and $X$.
- **RDA.Rsquares**: Bimultivariate redundancy coefficients (R-squares) of RDAs of $Y|X$ and $X|Y$.
- **RDA.adj.Rsq**: RDA.Rsquares adjusted for $n$ and the number of explanatory variables.
- **nperm**: Number of permutations.
- **p.Pillai**: Parametric probability value associated with Pillai’s trace.
- **p.perm**: Permutational probability associated with Pillai’s trace.
- **Cy**: Object scores in $Y$ biplot.
- **Cx**: Object scores in $X$ biplot.
- **corr.Y.Cy**: Scores of $Y$ variables in $Y$ biplot, computed as $\text{cor}(Y, Cy)$.
- **corr.X.Cx**: Scores of $X$ variables in $X$ biplot, computed as $\text{cor}(X, Cx)$.
- **corr.Y.Cx**: $\text{cor}(Y, Cy)$ available for plotting variables $Y$ in space of $X$ manually.
- **corr.X.Cy**: $\text{cor}(X, Cx)$ available for plotting variables $X$ in space of $Y$ manually.
- **control**: A list of control values for the permutations as returned by the function `how`.
- **call**: Call to the CCorA function.

**Author(s)**

Pierre Legendre, Departement de Sciences Biologiques, Universite de Montreal. Implemented in `vegan` with the help of Jari Oksanen.

**References**


**Examples**

```r
Example using two mite groups. The mite data are available in vegan
data(mite)

Two mite species associations (Legendre 2005, Fig. 4)
group.1 <- c(1,2,4:8,10:15,17,19:22,24,26:30)
group.2 <- c(3,9,16,18,23,25,31:35)

Separate Hellinger transformations of the two groups of species
mite.hel.1 <- decostand(mite[,group.1], "hel")
mite.hel.2 <- decostand(mite[,group.2], "hel")
rownames(mite.hel.1) = paste("S",1:nrow(mite),sep="")
rownames(mite.hel.2) = paste("S",1:nrow(mite),sep="")
out <- CCorA(mite.hel.1, mite.hel.2)
```
clamtest

Multinomial Species Classification Method (CLAM)

Description

The CLAM statistical approach for classifying generalists and specialists in two distinct habitats is described in Chazdon et al. (2011).

Usage

clamtest(comm, groups, coverage.limit = 10, specialization = 2/3, npoints = 20, alpha = 0.05/20)
## S3 method for class 'clamtest'
summary(object, ...)
## S3 method for class 'clamtest'
plot(x, xlab, ylab, main, pch = 21:24, col.points = 1:4, col.lines = 2:4, lty = 1:3, position = "bottomright", ...)

Arguments

comm Community matrix, consisting of counts.
groups A vector identifying the two habitats. Must have exactly two unique values or levels. Habitat IDs in the grouping vector must match corresponding rows in the community matrix comm.
coverage.limit Integer, the sample coverage based correction is applied to rare species with counts below this limit. Sample coverage is calculated separately for the two habitats. Sample relative abundances are used for species with higher than or equal to coverage.limit total counts per habitat.
specialization Numeric, specialization threshold value between 0 and 1. The value of 2/3 represents ‘supermajority’ rule, while a value of 1/2 represents a ‘simple majority’ rule to assign shared species as habitat specialists.
npoints Integer, number of points used to determine the boundary lines in the plots.
alpha Numeric, nominal significance level for individual tests. The default value reduces the conventional limit of 0.05 to account for overdispersion and multiple testing for several species simultaneously. However, there is no firm reason for exactly this limit.

x, object Fitted model object of class "clamtest".

xlab, ylab Labels for the plot axes.

main Main title of the plot.

pch, col.points Symbols and colors used in plotting species groups.

lty, col.lines Line types and colors for boundary lines in plot to separate species groups.

position Position of figure legend, see legend for specification details. Legend not shown if position = NULL.

... Additional arguments passed to methods.

Details

The method uses a multinomial model based on estimated species relative abundance in two habitats (A, B). It minimizes bias due to differences in sampling intensities between two habitat types as well as bias due to insufficient sampling within each habitat. The method permits a robust statistical classification of habitat specialists and generalists, without excluding rare species a priori (Chazdon et al. 2011). Based on a user-defined specialization threshold, the model classifies species into one of four groups: (1) generalists; (2) habitat A specialists; (3) habitat B specialists; and (4) too rare to classify with confidence.

Value

A data frame (with class attribute "clamtest"), with columns:

- Species: species name (column names from comm),
- Total_*A*: total count in habitat A,
- Total_*B*: total count in habitat B,
- Classes: species classification, a factor with levels Generalist, Specialist_*A*, Specialist_*B*, and Too_rare.

_*A* and _*B* are placeholders for habitat names/labels found in the data.

The summary method returns descriptive statistics of the results. The plot method returns values invisibly and produces a bivariate scatterplot of species total abundances in the two habitats. Symbols and boundary lines are shown for species groups.

Note

The code was tested against standalone CLAM software provided on the website of Anne Chao (http://chao.stat.nthu.edu.tw/softwarece.html); minor inconsistencies were found, especially for finding the threshold for 'too rare' species. These inconsistencies are probably due to numerical differences between the two implementations. The current R implementation uses root finding for iso-lines instead of iterative search.

The original method (Chazdon et al. 2011) has two major problems:
1. It assumes that the error distribution is multinomial. This is a justified choice if individuals are freely distributed, and there is no over-dispersion or clustering of individuals. In most ecological data, the variance is much higher than multinomial assumption, and therefore test statistic are too optimistic.

2. The original authors suggest that multiple testing adjustment for multiple testing should be based on the number of points \( (\text{npoints}) \) used to draw the critical lines on the plot, whereas the adjustment should be based on the number of tests (i.e., tested species). The function uses the same numerical values as the original paper, but there is no automatic connection between npoints and alpha arguments, but you must work out the adjustment yourself.

**Author(s)**

Peter Solymos <solymos@ualberta.ca>

**References**


**Examples**

data(mite)
data(mite.env)
sol <- with(mite.env, clamtest(mite, Shrub="None", alpha=0.005))
summary(sol)
head(sol)
plot(sol)

---

**commsim**

Create a Object for Null Model Algorithms

**Description**

The `commsim` function can be used to feed Null Model algorithms into `nullmodel` analysis. The `make.commsim` function returns various predefined algorithm types (see Details). These functions represent low level interface for community null model infrastructure in `vegan` with the intent of extensibility, and less emphasis on direct use by users.

**Usage**

```r
commsim(method, fun, binary, isSeq, mode)
make.commsim(method)
S3 method for class 'commsim'
print(x, ...)
```
Arguments

method Character, name of the algorithm.
fun A function. For possible formal arguments of this function see Details.
binary Logical, if the algorithm applies to presence-absence or count matrices.
isSeq Logical, if the algorithm is sequential (needs burnin) or not.
mode Character, storage mode of the community matrix, either "integer" or "double".
x An object of class commsim.
... Additional arguments.

Details

The function fun must return an array of dim(nr, nc, n), and must take some of the following arguments:

- x: input matrix,
- n: number of permuted matrices in output,
- nr: number of rows,
- nc: number of columns,
- rs: vector of row sums,
- cs: vector of column sums,
- rf: vector of row frequencies (non-zero cells),
- cf: vector of column frequencies (non-zero cells),
- s: total sum of x,
- fill: matrix fill (non-zero cells),
- thin: thinning value for sequential algorithms,
- ...: additional arguments.

Several null model algorithm are pre-defined and can be called by their name. The predefined algorithms are described in detail in the following chapters. The binary null models produce matrices of zeros (absences) and ones (presences) also when input matrix is quantitative. There are two types of quantitative data: Counts are integers with a natural unit so that individuals can be shuffled, but abundances can have real (floating point) values and do not have a natural subunit for shuffling. All quantitative models can handle counts, but only some are able to handle real values. Some of the null models are sequential so that the next matrix is derived from the current one. This makes models dependent on each other, and usually you must thin these matrices and study the sequences for stability: see oecosimu for details and instructions.

See Examples for structural constraints imposed by each algorithm and defining your own null model.
Value

An object of class `commsim` with elements corresponding to the arguments (`method`, `binary`, `isSeq`, `mode`, `fun`).

If the input of `make.commsim` is a `commsim` object, it is returned without further evaluation. If this is not the case, the character `method` argument is matched against predefined algorithm names. An error message is issued if none such is found. If the method argument is missing, the function returns names of all currently available null model algorithms as a character vector.

Binary null models

All binary null models retain fill: number of absences or conversely the number of absences. The classic models may also column (species) frequencies (`c0`) or row frequencies or species richness of each site (`r0`) and take into account commonness and rarity of species (`r1`, `r2`). Algorithms `swap`, `tswap`, `quasiswap` and `backtracking` preserve both row and column frequencies. Two first of these are sequential but the two latter are non-sequential and produce independent matrices. Basic algorithms are reviewed by Wright et al. (1998).

- "r0": non-sequential algorithm for binary matrices that only maintains the number of presences (fill).
- "r0", "r0_old": non-sequential algorithm for binary matrices that maintains the site (row) frequencies. Methods "r0" and "r0_old" implement the same method, but use different random number sequences; use "r0_old" if you want to reproduce results in vegan 2.0-0 or older using commsimulator (now deprecated).
- "r1": non-sequential algorithm for binary matrices that maintains the site (row) frequencies, but uses column marginal frequencies as probabilities of selecting species.
- "r2": non-sequential algorithm for binary matrices that maintains the site (row) frequencies, and uses squared column sums as as probabilities of selecting species.
- "c0": non-sequential algorithm for binary matrices that maintains species frequencies (Jonsdson 2001).
- "swap": sequential algorithm for binary matrices that changes the matrix structure, but does not influence marginal sums (Gotelli & Entsminger 2003). This inspects $2 \times 2$ submatrices so long that a swap can be done.
- "tswap": sequential algorithm for binary matrices. Same as the "swap" algorithm, but it tries a fixed number of times and performs zero to many swaps at one step (according the thin argument in later call). This approach was suggested by Miklós & Podani (2004) because they found that ordinary swap may lead to biased sequences, since some columns or rows may be more easily swapped.
- "quasiswap": non-sequential algorithm for binary matrices that implements a method where matrix is first filled honouring row and column totals, but with integers that may be larger than one. Then the method inspects random $2 \times 2$ matrices and performs a quasiswap on them. Quasiswap is similar to ordinary swap, but it can reduce numbers above one to ones maintaining marginal totals (Miklós & Podani 2004). This is the recommended algorithm if you want to retain both species and row frequencies.
- "backtracking": non-sequential algorithm for binary matrices that implements a filling method with constraints both for row and column frequencies (Gotelli & Entsminger 2001).
The matrix is first filled randomly using row and column frequencies as probabilities. Typically row and column sums are reached before all incidences are filled in. After that begins "backtracking", where some of the points are removed, and then filling is started again, and this backtracking is done so may times that all incidences will be filled into matrix. The function may be very slow for some matrices.

**Quantitative Models for Counts with Fixed Marginal Sums**

These models shuffle individuals of counts but keep marginal sums fixed, but marginal frequencies are not preserved. Algorithm \texttt{r2dtable} uses standard R function \texttt{r2dtable} also used for simulated \(P\)-values in \texttt{chisq.test}. Algorithm \texttt{quasiswap_count} uses the same, but retains the original fill. Typically this means increasing numbers of zero cells and the result is zero-inflated with respect to \texttt{r2dtable}.

- "\texttt{r2dtable}": non-sequential algorithm for count matrices. This algorithm keeps matrix sum and row/column sums constant. Based on \texttt{r2dtable}.
- "\texttt{quasiswap_count}": non-sequential algorithm for count matrices. This algorithm is similar as Carsten Dormann’s \texttt{swap.web} function in the package \texttt{bipartite}. First, a random matrix is generated by the \texttt{r2dtable} function retaining row and column sums. Then the original matrix fill is reconstructed by sequential steps to increase or decrease matrix fill in the random matrix. These steps are based on swapping \(2 \times 2\) submatrices (see "\texttt{swap_count}” algorithm for details) to maintain row and column totals.

**Quantitative Swap Models**

Quantitative swap models are similar to binary swap, but they swap the largest permissible value. The models in this section all maintain the fill and perform a quantitative swap only if this can be done without changing the fill. Single step of swap often changes the matrix very little. In particular, if cell counts are variable, high values change very slowly. Checking the chain stability and independence is even more crucial than in binary swap, and very strong thinning is often needed. These models should never be used without inspecting their properties for the current data.

- "\texttt{swap_count}”: sequential algorithm for count matrices. This algorithm find \(2 \times 2\) submatrices that can be swapped leaving column and row totals and fill unchanged. The algorithm finds the largest value in the submatrix that can be swapped (\(d\)). Swap means that the values in diagonal or antidiagonal positions are decreased by \(d\), while remaining cells are increased by \(d\). A swap is made only if fill does not change.
- "\texttt{abuswap_r}”: sequential algorithm for count or nonnegative real valued matrices with fixed row frequencies (see also \texttt{permatswap}). The algorithm is similar to \texttt{swap_count}, but uses different swap value for each row of the \(2 \times 2\) submatrix. Each step changes the the corresponding column sums, but honours matrix fill, row sums, and row/column frequencies (Hardy 2008; randomization scheme 2x).
- "\texttt{abuswap_c}”: sequential algorithm for count or nonnegative real valued matrices with fixed column frequencies (see also \texttt{permatswap}). The algorithm is similar as the previous one, but operates on columns. \(2 \times 2\) submatrices. Each step changes the the corresponding row sums, but honours matrix fill, column sums, and row/column frequencies (Hardy 2008; randomization scheme 3x).
Quantitative Swap and Shuffle Models

Quantitative Swap and Shuffle methods (swsh methods) preserve fill and column and row frequencies, and also either row or column sums. The methods first perform a binary quasi-swap and then shuffle original quantitative data to non-zero cells. The samp methods shuffle original non-zero cell values and can be used also with non-integer data. The both methods redistribute individuals randomly among non-zero cells and can only be used with integer data. The shuffling is either free over the whole matrix, or within rows (r methods) or within columns (c methods). Shuffling within a row preserves row sums, and shuffling within a column preserves column sums.

- "swsh_samp": non-sequential algorithm for quantitative data (either integer counts or non-integer values). Original non-zero values values are shuffled.
- "swsh_both": non-sequential algorithm for count data. Individuals are shuffled freely over non-zero cells.
- "swsh_samp_r": non-sequential algorithm for quantitative data. Non-zero values (samples) are shuffled separately for each row.
- "swsh_samp_c": non-sequential algorithm for quantitative data. Non-zero values (samples) are shuffled separately for each column.
- "swsh_both_r": non-sequential algorithm for count matrices. Individuals are shuffled freely for non-zero values within each row.
- "swsh_both_c": non-sequential algorithm for count matrices. Individuals are shuffled freely for non-zero values with each column.

Quantitative Shuffle Methods

Quantitative shuffle methods are generalizations of binary models r00, r0 and c0. The _ind methods shuffle individuals so that the grand sum, row sum or column sums are similar as in the observed matrix. These methods are similar as r2dtable but with still slacker constraints on marginal sums. The _samp and _both methods first perform the corresponding binary model with similar restriction on marginal frequencies, and then distribute quantitative values over non-zero cells. The _samp models shuffle original cell values and can therefore handle also non-count real values. The _both models shuffle individuals among non-zero values. The shuffling is over the whole matrix in r00_, and within row in r0_ and within column in c0_ in all cases.

- "r00_ind": non-sequential algorithm for count matrices. This algorithm keeps total sum constant, individuals are shuffled among cells of the matrix.
- "r0_ind": non-sequential algorithm for count matrices. This algorithm keeps row sums constant, individuals are shuffled among cells of each row of the matrix.
- "c0_ind": non-sequential algorithm for count matrices. This algorithm keeps column sums constant, individuals are shuffled among cells of each column of the matrix.
- "r00_samp": non-sequential algorithm for count or nonnegative real valued (mode = "double") matrices. This algorithm keeps total sum constant, cells of the matrix are shuffled.
- "r0_samp": non-sequential algorithm for count or nonnegative real valued (mode = "double") matrices. This algorithm keeps row sums constant, cells within each row are shuffled.
- "c0_samp": non-sequential algorithm for count or nonnegative real valued (mode = "double") matrices. This algorithm keeps column sums constant, cells within each column are shuffled.
• "r00_both": non-sequential algorithm for count matrices. This algorithm keeps total sum constant, cells and individuals among cells of the matrix are shuffled.
• "r0_both": non-sequential algorithm for count matrices. This algorithm keeps total sum constant, cells and individuals among cells of each row are shuffled.
• "c0_both": non-sequential algorithm for count matrices. This algorithm keeps total sum constant, cells and individuals among cells of each column are shuffled.

Author(s)
Jari Oksanen and Peter Solymos

References

See Also
See *permatfull, permatswap* for alternative specification of quantitative null models. Function *oecosimu* gives a higher-level interface for applying null models in hypothesis testing and analysis of models. Function *nullmodel* and *simulate.nullmodel* are used to generate arrays of simulated null model matrices.

Examples
```r
write the r00 algorithm
f <- function(x, n, ...)
 array(replicate(n, sample(x)), c(dim(x), n))
(cs <- oecosim("r00", fun=f, binary=TRUE,
 isSeq=FALSE, mode="integer"))

retrieving the sequential swap algorithm
(cs <- make.oecosim("swap"))

feeding a oecosim object as argument
```
make.commsim(cs)

## structural constraints
diagfun <- function(x, y) {
c(sum = sum(y) == sum(x),
   fill = sum(y > 0) == sum(x > 0),
   rowSums = all(rowSums(y) == rowSums(x)),
   colSums = all(colSums(y) == colSums(x)),
   rowFreq = all(rowSums(y > 0) == rowSums(x > 0)),
   colFreq = all(colSums(y > 0) == colSums(x > 0)))}
evalfun <- function(meth, x, n) {
m <- nullmodel(x, meth)
y <- simulate(m, nsim=n)
out <- rowMeans(sapply(1:dim(y)[3],
   function(i) diagfun(attr(y, "data"), y[i,i])))
z <- as.numeric(c(attr(y, "binary"), attr(y, "isSeq"),
   attr(y, "mode") == "double"))
names(z) <- c("binary", "isSeq", "double")
c(z, out)
}
x <- matrix(rbinom(10*12, 1, 0.5)*rpois(10*12, 3), 12, 10)
algos <- make.commsim()
a <- t(sapply(algos, evalfun, x=x, n=10))
print(as.table(ifelse(a==1,1,0)), zero.print = ".")

contribdiv

### Contribution Diversity Approach

**Description**

The contribution diversity approach is based on the differentiation of within-unit and among-unit diversity by using additive diversity partitioning and unit distinctiveness.

**Usage**

```r
contribdiv(comm, index = c("richness", "simpson"),
 relative = FALSE, scaled = TRUE, drop.zero = FALSE)
```

**Arguments**

- `comm` The community data matrix with samples as rows and species as column.
- `index` Character, the diversity index to be calculated.
- `relative` Logical, if TRUE then contribution diversity values are expressed as their signed deviation from their mean. See details.
Logical, if TRUE then relative contribution diversity values are scaled by the sum of gamma values (if index = "richness") or by sum of gamma values times the number of rows in comm (if index = "simpson"). See details.

Logical, should empty rows dropped from the result? If empty rows are not dropped, their corresponding results will be NAs.

An object of class "contribdiv".

Graphical arguments passed to plot.

Other arguments passed to plot.

Details

This approach was proposed by Lu et al. (2007). Additive diversity partitioning (see adipart for more references) deals with the relation of mean alpha and the total (gamma) diversity. Although alpha diversity values often vary considerably. Thus, contributions of the sites to the total diversity are uneven. This site specific contribution is measured by contribution diversity components. A unit that has e.g. many unique species will contribute more to the higher level (gamma) diversity than another unit with the same number of species, but all of which common.

Distinctiveness of species $j$ can be defined as the number of sites where it occurs ($n_j$), or the sum of its relative frequencies ($p_j$). Relative frequencies are computed sitewise and $\sum_i p_{ij}$ at site $i$ sum up to 1.

The contribution of site $i$ to the total diversity is given by $\alpha_i = \sum_j (1/n_{ij})$ when dealing with richness and $\alpha_i = \sum(p_{ij} \times (1 - p_{ij}))$ for the Simpson index.

The unit distinctiveness of site $i$ is the average of the species distinctiveness, averaging only those species which occur at site $i$. For species richness: $\alpha_i = \text{mean}(n_i)$ (in the paper, the second equation contains a typo, $n$ is without index). For the Simpson index: $\alpha_i = \text{mean}(n_i)$.

The Lu et al. (2007) gives an in-depth description of the different indices.

Value

An object of class "contribdiv" in heriting from data frame.

Returned values are alpha, beta and gamma components for each sites (rows) of the community matrix. The "diff.coef" attribute gives the differentiation coefficient (see Examples).

Author(s)

Péter Sólymos, <solymos@ualberta.ca>

References


See Also

adipart, diversity
Examples

```r
Artificial example given in
Table 2 in Lu et al. 2007
x <- matrix(c(
 1/3, 1/3, 1/3, 0, 0, 0,
 0, 0, 1/3, 1/3, 0,
 0, 0, 0, 1/3, 1/3, 1/3),
 3, 6, byrow = TRUE,
dimnames = list(LETTERS[1:3], letters[1:6]))
x
Compare results with Table 2
contribdiv(x, "richness")
contribdiv(x, "simpson")
Relative contribution (C values), compare with Table 2
(cd1 <- contribdiv(x, "richness", relative = TRUE, scaled = FALSE))
(cd2 <- contribdiv(x, "simpson", relative = TRUE, scaled = FALSE))
Differentiation coefficients
attr(cd1, "diff.coef") # D_ST
attr(cd2, "diff.coef") # D_DT
BCI data set
data(BCI)
opar <- par(mfrow=c(2,2))
plot(contribdiv(BCI, "richness"), main = "Absolute")
plot(contribdiv(BCI, "richness", relative = TRUE), main = "Relative")
plot(contribdiv(BCI, "simpson"))
plot(contribdiv(BCI, "simpson", relative = TRUE))
par(opar)
```

---

**decorana**  
*Detrended Correspondence Analysis and Basic Reciprocal Averaging*

**Description**

Performs detrended correspondence analysis and basic reciprocal averaging or orthogonal correspondence analysis.

**Usage**

```r
decorana(veg, iweigh=0, iresc=4, ira=0, mk=26, short=0,
 before=NULL, after=NULL)
```

```r
S3 method for class 'decorana'
plot(x, choices=c(1,2), origin=TRUE,
 display=c("both","sites","species","none"),
 cex = 0.8, cols = c(1,2), type, xlim, ylim, ...)
```

```r
S3 method for class 'decorana'
text(x, display = c("sites", "species"), labels,
 choices = 1:2, origin = TRUE, select, ...)
```
## S3 method for class 'decorana'
points(x, display = c("sites", "species"),
       choices=1:2, origin = TRUE, select, ...)

## S3 method for class 'decorana'
summary(object, digits=3, origin=TRUE,
         display=c("both", "species","sites","none"), ...)

## S3 method for class 'summary.decorana'
print(x, head = NA, tail = head, ...)

downweight(veg, fraction = 5)

## S3 method for class 'decorana'
scores(x, display=c("sites","species"), choices=1:4,
       origin=TRUE, ...)

### Arguments

- **veg**: Community data, a matrix-like object.
- **iweigh**: Downweighting of rare species (0: no).
- **iresc**: Number of rescaling cycles (0: no rescaling).
- **ira**: Type of analysis (0: detrended, 1: basic reciprocal averaging).
- **mk**: Number of segments in rescaling.
- **short**: Shortest gradient to be rescaled.
- **before**: Hill’s piecewise transformation: values before transformation.
- **after**: Hill’s piecewise transformation: values after transformation – these must correspond to values in before.
- **x, object**: A decorana result object.
- **choices**: Axes shown.
- **origin**: Use true origin even in detrended correspondence analysis.
- **display**: Display only sites, only species, both or neither.
- **cex**: Plot character size.
- **cols**: Colours used for sites and species.
- **type**: Type of plots, partial match to "text", "points" or "none".
- **labels**: Optional text to be used instead of row names.
- **select**: Items to be displayed. This can either be a logical vector which is TRUE for displayed items or a vector of indices of displayed items.
- **xlim, ylim**: the x and y limits (min,max) of the plot.
- **digits**: Number of digits in summary output.
- **head, tail**: Number of rows printed from the head and tail of species and site scores. Default NA prints all.
- **fraction**: Abundance fraction where downweighting begins.
- **...**: Other arguments for plot function.
Details

In late 1970s, correspondence analysis became the method of choice for ordination in vegetation science, since it seemed better able to cope with non-linear species responses than principal components analysis. However, even correspondence analysis can produce an arc-shaped configuration of a single gradient. Mark Hill developed detrended correspondence analysis to correct two assumed ‘faults’ in correspondence analysis: curvature of straight gradients and packing of sites at the ends of the gradient.

The curvature is removed by replacing the orthogonalization of axes with detrending. In orthogonalization successive axes are made non-correlated, but detrending should remove all systematic dependence between axes. Detrending is performed using a five-segment smoothing window with weights (1,2,3,2,1) on mk segments — which indeed is more robust than the suggested alternative of detrending by polynomials. The packing of sites at the ends of the gradient is undone by rescaling the axes after extraction. After rescaling, the axis is supposed to be scaled by ‘SD’ units, so that the average width of Gaussian species responses is supposed to be one over whole axis. Other innovations were the piecewise linear transformation of species abundances and downweighting of rare species which were regarded to have an unduly high influence on ordination axes.

It seems that detrending actually works by twisting the ordination space, so that the results look non-curved in two-dimensional projections (‘lolly paper effect’). As a result, the points usually have an easily recognized triangular or diamond shaped pattern, obviously an artefact of detrending. Rescaling works differently than commonly presented, too. decorana does not use, or even evaluate, the widths of species responses. Instead, it tries to equalize the weighted variance of species scores on axis segments (parameter mk has only a small effect, since decorana finds the segment number from the current estimate of axis length). This equalizes response widths only for the idealized species packing model, where all species initially have unit width responses and equally spaced modes.

The summary method prints the ordination scores, possible prior weights used in downweighting, and the marginal totals after applying these weights. The plot method plots species and site scores. Classical decorana scaled the axes so that smallest site score was 0 (and smallest species score was negative), but summary, plot and scores use the true origin, unless origin = FALSE.

In addition to proper eigenvalues, the function also reports ‘decorana values’ in detrended analysis. These ‘decorana values’ are the values that the legacy code of decorana returns as ‘eigenvalues’. They are estimated internally during iteration, and it seems that detrending interferes the estimation so that these values are generally too low and have unclear interpretation. Moreover, ‘decorana values’ are estimated before rescaling which will change the eigenvalues. The proper eigenvalues are estimated after extraction of the axes and they are the ratio of biased weighted variances of site and species scores even in detrended and rescaled solutions. The ‘decorana values’ are provided only for the compatibility with legacy software, and they should not be used.

Value

decorana returns an object of class "decorana", which has print, summary and plot methods.

Note

decorana uses the central numerical engine of the original Fortran code (which is in the public domain), or about 1/3 of the original program. I have tried to implement the original behaviour, although a great part of preparatory steps were written in R language, and may differ somewhat
from the original code. However, well-known bugs are corrected and strict criteria used (Oksanen & Minchin 1997).

Please note that there really is no need for piecewise transformation or even downweighting within decorana, since there are more powerful and extensive alternatives in R, but these options are included for compliance with the original software. If a different fraction of abundance is needed in downweighting, function `downweight` must be applied before `decorana`. Function `downweight` indeed can be applied prior to correspondence analysis, and so it can be used together with `cca`, too. The function finds only four axes: this is not easily changed.

**Author(s)**

Mark O. Hill wrote the original Fortran code, the R port was by Jari Oksanen.

**References**


**See Also**

For unconstrained ordination, non-metric multidimensional scaling in `monoMDS` may be more robust (see also `metaMDS`). Constrained (or ‘canonical’) correspondence analysis can be made with `cca`. Orthogonal correspondence analysis can be made with `corresp`, or with `decorana` or `cca`, but the scaling of results vary (and the one in `decorana` corresponds to scaling = -1 in `cca`). See `predict.decorana` for adding new points to an ordination.

**Examples**

```r
data(varespec)
vare.dca <- decorana(varespec)
vare.dca
summary(vare.dca)
plot(vare.dca)

the detrending rationale:
gaussresp <- function(x,u) exp(-(x-u)^2/2)
x <- seq(0,5,length=15) ## The gradient
u <- seq(-2,8,len=23) ## The optima
pack <- outer(x,u,gaussresp)
matplot(x, pack, type="l", main="Species packing")
opar <- par(mfrow=c(2,2))
plot(scores(prcomp(pack)), asp=1, type="b", main="PCA")
plot(scores(decorana(pack, ira=1)), asp=1, type="b", main="CA")
plot(scores(decorana(pack-)), asp=1, type="b", main="DCA")
plot(scores(cca(pack ~ x), dis="sites"), asp=1, type="b", main="CCA")

Let's add some noise:
noisy <- (0.5 + runif(length(pack)))*pack
```
par(mfrow=c(2,1))
matplot(x, pack, type="l", main="Ideal model")
matplot(x, noisy, type="l", main="Noisy model")
par(mfrow=c(2,2))
plot(scores(prcomp(noisy)), type="b", main="PCA", asp=1)
plot(scores(decorana(noisy, ira=1)), type="b", main="CA", asp=1)
plot(scores(decorana(noisy)), type="b", main="DCA", asp=1)
plot(scores(cca(noisy - x), dis="sites"), asp=1, type="b", main="CCA")
par(omp)

decostand

Standardization Methods for Community Ecology

Description
The function provides some popular (and effective) standardization methods for community ecologists.

Usage
decostand(x, method, MARGIN, range.global, logbase = 2, na.rm=FALSE, ...)
wisconsin(x)

Arguments

x
Community data, a matrix-like object.

method
Standardization method. See Details for available options.

MARGIN
Margin, if default is not acceptable. 1 = rows, and 2 = columns of x.

range.global
Matrix from which the range is found in method = "range". This allows using same ranges across subsets of data. The dimensions of MARGIN must match with x.

logbase
The logarithm base used in method = "log".

na.rm
Ignore missing values in row or column standardizations.

...
Other arguments to the function (ignored).

Details
The function offers following standardization methods for community data:

- total: divide by margin total (default MARGIN = 1).
- max: divide by margin maximum (default MARGIN = 2).
- freq: divide by margin maximum and multiply by the number of non-zero items, so that the average of non-zero entries is one (Oksanen 1983; default MARGIN = 2).
- normalize: make margin sum of squares equal to one (default MARGIN = 1).
- range: standardize values into range 0 ... 1 (default MARGIN = 2). If all values are constant, they will be transformed to 0.
• standardize: scale \( x \) to zero mean and unit variance (default \( \text{MARGIN} = 2 \)).
• pa: scale \( x \) to presence/absence scale (0/1).
• chi-square: divide by row sums and square root of column sums, and adjust for square root of matrix total (Legendre & Gallagher 2001). When used with the Euclidean distance, the distances should be similar to the Chi-square distance used in correspondence analysis. However, the results from \text{cmdscale} would still differ, since CA is a weighted ordination method (default \( \text{MARGIN} = 1 \)).
• hellinger: square root of method = “total” (Legendre & Gallagher 2001).
• log: logarithmic transformation as suggested by Anderson et al. (2006): \( \log_b(x) + 1 \) for \( x > 0 \), where \( b \) is the base of the logarithm; zeros are left as zeros. Higher bases give less weight to quantities and more to presences, and \( \log_{\text{base}} = \text{Inf} \) gives the presence/absence scaling. Please note this is not \( \log(x + 1) \). Anderson et al. (2006) suggested this for their (strongly) modified Gower distance (implemented as method = "altgower" in \text{vegdist}"), but the standardization can be used independently of distance indices.

Standardization, as contrasted to transformation, means that the entries are transformed relative to other entries.

All methods have a default margin. \( \text{MARGIN}=1 \) means rows (sites in a normal data set) and \( \text{MARGIN}=2 \) means columns (species in a normal data set).

Command \text{wisconsin} is a shortcut to common Wisconsin double standardization where species (\( \text{MARGIN}=2 \)) are first standardized by maxima (\( \text{max} \)) and then sites (\( \text{MARGIN}=1 \)) by site totals (\( \text{tot} \)).

Most standardization methods will give nonsense results with negative data entries that normally should not occur in the community data. If there are empty sites or species (or constant with method = “\text{range}”), many standardization will change these into NaN.

**Value**

Returns the standardized data frame, and adds an attribute “\text{decostand}” giving the name of applied standardization “\text{method}”.

**Note**

Common transformations can be made with standard \text{R} functions.

**Author(s)**

Jari Oksanen, Etienne Laliberté (\text{method} = “log”).

**References**


Examples

```r
data(varespec)
sprans <- decostand(varespec, "max")
apply(sprans, 2, max)
sprans <- wisconsin(varespec)

Chi-square: PCA similar but not identical to CA.
Use wcmdscale for weighted analysis and identical results.
sprans <- decostand(varespec, "chi.square")
plot(procrustes(rda(sprans), cca(varespec)))
```

---

**designdist**

*Design your own Dissimilarities*

**Description**

You can define your own dissimilarities using terms for shared and total quantities, number of rows and number of columns. The shared and total quantities can be binary, quadratic or minimum terms. In binary terms, the shared component is number of shared species, and totals are numbers of species on sites. The quadratic terms are cross-products and sums of squares, and minimum terms are sums of parallel minima and row totals.

**Usage**

```r
designdist(x, method = "(A+B-2*J)/(A+B)",
 terms = c("binary", "quadratic", "minimum"),
 abcd = FALSE, name)
```

**Arguments**

- `x` Input data.
- `method` Equation for your dissimilarities. This can use terms J for shared quantity, A and B for totals, N for the number of rows (sites) and P for the number of columns (species). The equation can also contain any R functions that accepts vector arguments and returns vectors of the same length.
- `terms` How shared and total components are found. For vectors x and y the "quadratic" terms are J = sum(x+y), A = sum(x^2), B = sum(y^2), and "minimum" terms are J = sum(pmin(x,y)), A = sum(x) and B = sum(y), and "binary" terms are either of these after transforming data into binary form (shared number of species, and number of species for each row).
- `abcd` Use 2x2 contingency table notation for binary data: `a` is the number of shared species, `b` and `c` are the numbers of species occurring only one of the sites but not in both, and `d` is the number of species that occur on neither of the sites.
- `name` The name you want to use for your index. The default is to combine the method equation and `terms` argument.
Details

Most popular dissimilarity measures in ecology can be expressed with the help of terms \( J \), \( A \) and \( B \), and some also involve matrix dimensions \( N \) and \( P \). Some examples you can define in `designdist` are:

\[
\begin{align*}
A+B-2+J & \quad "quadratic" \quad \text{squared Euclidean} \\
A+B-2+J & \quad "minimum" \quad \text{Manhattan} \\
(A+B-2+J)/(A+B) & \quad "minimum" \quad \text{Bray-Curtis} \\
(A+B-2+J)/(A+B) & \quad "binary" \quad \text{Sørensen} \\
(A+B-2+J)/(A+B-J) & \quad "binary" \quad \text{Jaccard} \\
(A+B-2+J)/(A+B-J) & \quad "minimum" \quad \text{Ružička} \\
(A+B-2+J)/(A+B-J) & \quad "quadratic" \quad \text{(dis)similarity ratio} \\
1-J/sqrt(A*B) & \quad "binary" \quad \text{Ochiai} \\
1-J/sqrt(A*B) & \quad "quadratic" \quad \text{cosine complement} \\
1-phyper(J-1, A, P-A, B) & \quad "binary" \quad \text{Raup-Crick (but see raupcrick)}
\end{align*}
\]

The function `designdist` can implement most dissimilarity indices in `vegdist` or elsewhere, and it can also be used to implement many other indices, amongst them, most of those described in Legendre & Legendre (2012). It can also be used to implement all indices of beta diversity described in Koleff et al. (2003), but there also is a specific function `betadiver` for the purpose.

If you want to implement binary dissimilarities based on the 2x2 contingency table notation, you can set `abcd = TRUE`. In this notation \( a = J, b = A-J, c = B-J, d = P-A-B+J \). This notation is often used instead of the more more tangible default notation for reasons that are opaque to me.

Value

designdist returns an object of class `dist`.

Note

designdist does not use compiled code, and may be slow or use plenty of memory in large data sets. It is very easy to make errors when defining a function by hand. If an index is available in a function using compiled code, it is better to use the canned alternative.

Author(s)

Jari Oksanen

References


See Also

`vegdist`, `betadiver`, `dist`.
Examples

```r
Arrhenius dissimilarity: the value of z in the species-area model
$ = c*A^z$ when combining two sites of equal areas, where S is the
number of species, A is the area, and c and z are model parameters.
The A below is not the area (which cancels out), but number of
species in one of the sites, as defined in designdist().
data(BCI)
dis <- designdist(BCI, "(log(A+B)-log(A+B)+log(z))/log(2)"
This can be used in clustering or ordination...
ordiplot(cmdscale(dis))
... or in analysing beta diversity (without gradients)
summary(dis)
```

## Statistics Resembling Deviance and AIC for Constrained Ordination

### Description

The functions extract statistics that resemble deviance and AIC from the result of constrained correspondence analysis `cca` or redundancy analysis `rda`. These functions are rarely needed directly, but they are called by `step` in automatic model building. Actually, `cca` and `rda` do not have AIC and these functions are certainly wrong.

### Usage

```r
S3 method for class 'cca'
deviance(object, ...)

S3 method for class 'cca'
evaluateAIC(fit, scale = 0, k = 2, ...)
```

### Arguments

- `object` the result of a constrained ordination (`cca` or `rda`).
- `fit` fitted model from constrained ordination.
- `scale` optional numeric specifying the scale parameter of the model, see scale in `step`.
- `k` numeric specifying the "weight" of the `equivalent degrees of freedom` (= `edf`) part in the AIC formula.
- `...` further arguments.
Details

The functions find statistics that resemble deviance and AIC in constrained ordination. Actually, constrained ordination methods do not have a log-Likelihood, which means that they cannot have AIC and deviance. Therefore you should not use these functions, and if you use them, you should not trust them. If you use these functions, it remains as your responsibility to check the adequacy of the result.

The deviance of cca is equal to the Chi-square of the residual data matrix after fitting the constraints. The deviance of rda is defined as the residual sum of squares. The deviance function of rda is also used for capscale. Function extractAIC mimics extractAIC.1m in translating deviance to AIC.

There is little need to call these functions directly. However, they are called implicitly in step function used in automatic selection of constraining variables. You should check the resulting model with some other criteria, because the statistics used here are unfounded. In particular, the penalty k is not properly defined, and the default k = 2 is not justified theoretically. If you have only continuous covariates, the step function will base the model building on magnitude of eigenvalues, and the value of k only influences the stopping point (but the variables with the highest eigenvalues are not necessarily the most significant in permutation tests in anova.cca). If you also have multi-class factors, the value of k will have a capricious effect in model building. The step function will pass arguments to add1.cca and drop1.cca, and setting test = "permutation" will provide permutation tests of each deletion and addition which can help in judging the validity of the model building.

Value

The deviance functions return “deviance”, and extractAIC returns effective degrees of freedom and “AIC”.

Note

These functions are unfounded and untested and they should not be used directly or implicitly. Moreover, usual caveats in using step are very valid.

Author(s)

Jari Oksanen

References


See Also

cca, rda, anova.cca, step, extractAIC, add1.cca, drop1.cca.

Examples

# The deviance of correspondence analysis equals Chi-square
data(dune)
data(dune.env)
dispindmorisita

```r
chisq.test(dune)
deviance(cca(dune))
Stepwise selection (forward from an empty model "dune - 1")
ord <- cca(dune - ., dune.env)
step(cca(dune - 1, dune.env), scope = formula(ord))
```

**dispindmorisita**

*Morisita index of intraspecific aggregation*

**Description**

Calculates the Morisita index of dispersion, standardized index values, and the so called clumped-ness and uniform indices.

**Usage**

```r
dispindmorisita(x, unique.rm = FALSE, crit = 0.05, na.rm = FALSE)
```

**Arguments**

- `x` community data matrix, with sites (samples) as rows and species as columns.
- `unique.rm` logical, if TRUE, unique species (occurring in only one sample) are removed from the result.
- `crit` two-sided p-value used to calculate critical Chi-squared values.
- `na.rm` logical. Should missing values (including NaN) be omitted from the calculations?

**Details**

The Morisita index of dispersion is defined as (Morisita 1959, 1962):

\[
Imor = \frac{n \times (\text{sum}(xi^2) - \text{sum}(xi))}{(\text{sum}(xi)^2 - \text{sum}(xi))}
\]

where \(xi\) is the count of individuals in sample \(i\), and \(n\) is the number of samples \((i = 1, 2, \ldots, n)\). \(Imor\) has values from 0 to \(n\). In uniform (hyperdispersed) patterns its value falls between 0 and 1, in clumped patterns it falls between 1 and \(n\). For increasing sample sizes (i.e. joining neighbouring quadrats), \(Imor\) goes to \(n\) as the quadrat size approaches clump size. For random patterns, \(Imor = 1\) and counts in the samples follow Poisson frequency distribution.

The deviation from random expectation (null hypothesis) can be tested using critical values of the Chi-squared distribution with \(n - 1\) degrees of freedom. Confidence intervals around 1 can be calculated by the clumped \(Mc\)\(lu\) and uniform \(Mu\)\(ni\) indices (Hairston et al. 1971, Krebs 1999) (\(Ch2\)\(l\)\(ower\) and \(Ch2\)\(upper\) refers to e.g. 0.025 and 0.975 quantile values of the Chi-squared distribution with \(n - 1\) degrees of freedom, respectively, for \(crit = 0.05\)):

\[
Mc\ = \frac{(\text{Ch2}\_\text{Lower} - n + \text{sum}(xi))}{(\text{sum}(xi) - 1)} \\
Mu\ = \frac{(\text{Ch2}\_\text{Upper} - n + \text{sum}(xi))}{(\text{sum}(xi) - 1)}
\]

Smith-Gill (1975) proposed scaling of Morisita index from \([0, n]\) interval into \([-1, 1]\), and setting up -0.5 and 0.5 values as confidence limits around random distribution with rescaled value 0. To
rescale the Morisita index, one of the following four equations apply to calculate the standardized index $Imst$:

(a) $Imor > Mclu > 1: Imst = 0.5 + 0.5 \frac{(Imor - Mclu)}{(n - Mclu)}$,
(b) $Mclu > Imor > 1: Imst = 0.5 \frac{(Imor - 1)}{(Mclu - 1)}$,
(c) $1 > Imor > Muni: Imst = -0.5 \frac{(Imor - 1)}{(Muni - 1)}$,
(d) $1 > Muni > Imor: Imst = -0.5 + 0.5 \frac{(Imor - Muni)}{Muni}$.

**Value**

Returns a data frame with as many rows as the number of columns in the input data, and with four columns. Columns are: $imor$ the unstandardized Morisita index, $mclu$ the clumpedness index, $muni$ the uniform index, $imst$ the standardized Morisita index, $pchisq$ the Chi-squared based probability for the null hypothesis of random expectation.

**Note**

A common error found in several papers is that when standardizing as in the case (b), the denominator is given as $Muni - 1$. This results in a hiatus in the [0, 0.5] interval of the standardized index. The root of this typo is the book of Krebs (1999), see the Errata for the book (Page 217, http://www.zoology.ubc.ca/~krebs/downloads/errors_2nd_printing.pdf).

**Author(s)**

Péter Sólymos, <solymos@ualberta.ca>

**References**


**Examples**

data(dune)
x <- dispindmorisita(dune)
x
y <- dispindmorisita(dune, unique.rm = TRUE)
y
dim(x) ## with unique species
dim(y) ## unique species removed
dispweight  

Dispersion-based weighting of species counts

Description

Transform abundance data downweighting species that are overdispersed to the Poisson error.

Usage

```r
dispweight(comm, groups, nsimul = 999, nullmodel = "c0_ind", plimit = 0.05)
gdispweight(formula, data, plimit = 0.05)

S3 method for class 'dispweight'
summary(object, ...)
```

Arguments

- `comm` Community data matrix.
- `groups` Factor describing the group structure. If missing, all sites are regarded as belonging to one group. NA values are not allowed.
- `nsimul` Number of simulations.
- `nullmodel` The `nullmodel` used in `commsim` within `groups`. The default follows Clarke et al. (2006).
- `plimit` Downweight species if their p-value is at or below this limit.
- `formula, data` Formula where the left-hand side is the community data frame and right-hand side gives the explanatory variables. The explanatory variables are found in the data frame given in `data` or in the parent frame.
- `object` Result object from `dispweight` or `gdispweight`.
- `...` Other parameters passed to functions.

Details

The dispersion index \((D)\) is calculated as ratio between variance and expected value for each species. If the species abundances follow Poisson distribution, expected dispersion is \(E(D) = 1\), and if \(D > 1\), the species is overdispersed. The inverse \(1/D\) can be used to downweight species abundances. Species are only downweighted when overdispersion is judged to be statistically significant (Clarke et al. 2006).

Function `dispweight` implements the original procedure of Clarke et al. (2006). Only one factor can be used to group the sites and to find the species means. The significance of overdispersion is assessed freely distributing individuals of each species within factor levels. This is achieved by using `nullmodel"c0_ind"` (which accords to Clarke et al. 2006), but other nullmodels can be used, though they may not be meaningful (see `commsim` for alternatives). If a species is absent in some factor level, the whole level is ignored in calculation of overdispersion, and the number of degrees of freedom can vary among species. The reduced number of degrees of freedom is used as
dispweight

a divisor for overdispersion \( D \), and such species have higher dispersion and hence lower weights in transformation.

Function gdispweight is a generalized parametric version of dispweight. The function is based on glm with quasipoisson error family. Any glm model can be used, including several factors or continuous covariates. Function gdispweight uses the same test statistic as dispweight (Pearson Chi-square), but it does not ignore factor levels where species is absent, and the number of degrees of freedom is equal for all species. Therefore transformation weights can be higher than in dispweight. The gdispweight function evaluates the significance of overdispersion parametrically from Chi-square distribution (pchisq).

Functions dispweight and gdispweight transform data, but they add information on overdispersion and weights as attributes of the result. The summary can be used to extract and print that information.

Value

Function returns transformed data with the following new attributes:

- \( D \) dispersion statistic.
- \( df \) degrees of freedom for each species.
- \( p \) \( p \)-value of the Dispersion statistic \( D \).
- weights weights applied to community data.
- nsimul Number of simulations used to assess the \( p \)-value, or NA when simulations were not performed.
- nullmodel The name of commsim null model, or NA when simulations were not performed.

Author(s)

Eduard Szöcs <eduardszoesc@gmail.com> wrote the original dispweight, Jari Oksanen significantly modified the code, provided support functions and developed gdispweight.

References


Examples

```r
data(mite, mite.env)
dispweight and its summary
mite.dw <- with(mite.env, dispweight(mite, Shrub, nsimul = 99))
summary(mite.dw)
generalized dispersion weighting
mite.dw <- gdispweight(mite ~ Shrub + WatrCont, data = mite.env)
rda(mite.dw ~ Shrub + WatrCont, data = mite.env)
```
distconnected  

**Description**

Function distconnected finds groups that are connected disregarding dissimilarities that are at or above a threshold or NA. The function can be used to find groups that can be ordinated together or transformed by `stepacross`. Function `no.shared` returns a logical dissimilarity object, where TRUE means that sites have no species in common. This is a minimal structure for distconnected or can be used to set missing values to dissimilarities.

**Usage**

```r
distconnected(dis, toolong = 1, trace = TRUE)
no.shared(x)
```

**Arguments**

- `dis`: Dissimilarity data inheriting from class `dist` or an object, such as a matrix, that can be converted to a dissimilarity matrix. Functions `vegdist` and `dist` are some functions producing suitable dissimilarity data.

- `toolong`: Shortest dissimilarity regarded as NA. The function uses a fuzz factor, so that dissimilarities close to the limit will be made NA, too. If `toolong` = 0 (or negative), no dissimilarity is regarded as too long.

- `trace`: Summarize results of distconnected

- `x`: Community data.

**Details**

Data sets are disconnected if they have sample plots or groups of sample plots which share no species with other sites or groups of sites. Such data sets cannot be sensibly ordinated by any unconstrained method because these subsets cannot be related to each other. For instance, correspondence analysis will polarize these subsets with eigenvalue 1. Neither can such dissimilarities be transformed with `stepacross`, because there is no path between all points, and result will contain NAs. Function distconnected will find such subsets in dissimilarity matrices. The function will return a grouping vector that can be used for sub-setting the data. If data are connected, the result vector will be all 1s. The connectedness between two points can be defined either by a threshold toolong or using input dissimilarities with NAs.

Function `no.shared` returns a `dist` structure having value TRUE when two sites have nothing in common, and value FALSE when they have at least one shared species. This is a minimal structure that can be analysed with distconnected. The function can be used to select dissimilarities with no shared species in indices which do not have a fixed upper limit.

Function distconnected uses depth-first search (Sedgewick 1990).
Value

Function `distconnected` returns a vector for observations using integers to identify connected groups. If the data are connected, values will be all 1. Function `no.shared` returns an object of class `dist`.

Author(s)

Jari Oksanen

References


See Also

`vegdist` or `dist` for getting dissimilarities, `stepacross` for a case where you may need `distconnected`, and for connecting points `spantree`.

Examples

```r
There are no disconnected data in vegan, and the following uses an
extremely low threshold limit for connectedness. This is for
illustration only, and not a recommended practice.
data(dune)
dis <- vegdist(dune)
gr <- distconnected(dis, toolong=0.4)
Make sites with no shared species as NA in Manhattan dissimilarities
dis <- vegdist(dune, "manhattan")
is.na(dis) <- no.shared(dune)
```

**diversity**  
**Ecological Diversity Indices and Rarefaction Species Richness**

Description

Shannon, Simpson, and Fisher diversity indices and rarefied species richness for community ecologists.

Usage

diversity(x, index = "shannon", MARGIN = 1, base = exp(1))
rarefy(x, sample, se = FALSE, MARGIN = 1)
rarefy(x, sample)
drarefy(x, sample)
rarecurve(x, step = 1, sample, xlab = "Sample Size", ylab = "Species", 
    label = TRUE, col, lty, ...)
fisher.alpha(x, MARGIN = 1, ...)
specnumber(x, groups, MARGIN = 1)
Arguments

x Community data, a matrix-like object or a vector.
index Diversity index, one of "shannon", "simpson" or "invsimpson".
MARGIN Margin for which the index is computed.
base The logarithm base used in shannon.
sample Subsample size for rarefying community, either a single value or a vector.
se Estimate standard errors.
step Step size for sample sizes in rarefaction curves.
xlab, ylab Axis labels in plots of rarefaction curves.
label Label rarefaction curves by rownames of x (logical).
col, lty plotting colour and line type, see par. Can be a vector of length nrow(x), one per sample, and will be extended to such a length internally.
groups A grouping factor: if given, finds the total number of species in each group.
...

Details

Shannon or Shannon–Weaver (or Shannon–Wiener) index is defined as

$$H' = -\sum_i p_i \log_b p_i,$$

where $p_i$ is the proportional abundance of species $i$ and $b$ is the base of the logarithm. It is most popular to use natural logarithms, but some argue for base $b = 2$ (which makes sense, but no real difference).

Both variants of Simpson’s index are based on $D = \sum p_i^2$. Choice simpson returns $1 - D$ and invsimpson returns $1/D$.

Function rarefy gives the expected species richness in random subsamples of size sample from the community. The size of sample should be smaller than total community size, but the function will silently work for larger sample as well and return non-rarefied species richness (and standard error = 0). If sample is a vector, rarefaction of all observations is performed for each sample size separately. Rarefaction can be performed only with genuine counts of individuals. The function rarefy is based on Hurlbert’s (1971) formulation, and the standard errors on Heck et al. (1975).

Function rrarefy generates one randomly rarefied community data frame or vector of given sample size. The sample can be a vector giving the sample sizes for each row, and its values must be less or equal to observed number of individuals. The random rarefaction is made without replacement so that the variance of rarefied communities is rather related to rarefaction proportion than to the size of the sample.

Function drarefy returns probabilities that species occur in a rarefied community of size sample. The sample can be a vector giving the sample sizes for each row.

Function rarecurve draws a rarefaction curve for each row of the input data. The rarefaction curves are evaluated using the interval of step sample sizes, always including 1 and total sample size. If sample is specified, a vertical line is drawn at sample with horizontal lines for the rarefied species richnesses.

fisher.alpha estimates the $\alpha$ parameter of Fisher’s logarithmic series (see fisherfit). The estimation is possible only for genuine counts of individuals.
Function `specnumber` finds the number of species. With `MARGIN = 2`, it finds frequencies of species. If `groups` is given, finds the total number of species in each group (see example on finding one kind of beta diversity with this option).

Better stories can be told about Simpson’s index than about Shannon’s index, and still grander narratives about rarefaction (Hurlbert 1971). However, these indices are all very closely related (Hill 1973), and there is no reason to despise one more than others (but if you are a graduate student, don’t drag me in, but obey your Professor’s orders). In particular, the exponent of the Shannon index is linearly related to inverse Simpson (Hill 1973) although the former may be more sensitive to rare species. Moreover, inverse Simpson is asymptotically equal to rarefied species richness in sample of two individuals, and Fisher’s $\alpha$ is very similar to inverse Simpson.

**Value**

A vector of diversity indices or rarefied species richness values. With a single `sample` and `se = TRUE`, function `rarefy` returns a 2-row matrix with rarefied richness ($S$) and its standard error (`se`). If `sample` is a vector in `rarefy`, the function returns a matrix with a column for each `sample` size, and if `se = TRUE`, rarefied richness and its standard error are on consecutive lines.

Function `rarecurve` returns `invisible` list of `rarefy` results corresponding each drawn curve.

With option `se = TRUE`, function `fisher.alpha` returns a data frame with items for $\alpha$ (alpha), its approximate standard errors (`se`), residual degrees of freedom (`df.residual`), and the code returned by `nlm` on the success of estimation.

**Author(s)**

Jari Oksanen and Bob O’Hara (`fisher.alpha`).

**References**


**See Also**

Function `renyi` for generalized Rényi diversity and Hill numbers.

**Examples**

```r
data(BCI)
H <- diversity(BCI)
simp <- diversity(BCI, "simpson")
invsimp <- diversity(BCI, "inv")
Unbiased Simpson of Hurlbert 1971 (eq. 5):
unbias.simp <- rarefy(BCI, 2) - 1
Fisher alpha
```
alpha <- fisher.alpha(BCI)
# Plot all
pairs(cbind(H, simp, invsimp, unbias.simp, alpha), pch="+", col="blue")
# Species richness (S) and Pielou's evenness (J):
S <- specnumber(BCI)  ## rowSums(BCI > 0) does the same...
J <- H/log(S)
# beta diversity defined as gamma/alpha - 1:
data(dune)
data(dune.env)
alpha <- with(dune.env, tapply(specnumber(dune), Management, mean))
gamma <- with(dune.env, specnumber(dune, Management))
gamma/alpha - 1
# Rarefaction
(raremax <- min(rowSums(BCI)))
Srare <- rarefy(BCI, raremax)
plot(S, Srare, xlab = "Observed No. of Species", ylab = "Rarefied No. of Species")
abline(0, 1)
rarecurve(BCI, step = 20, sample = raremax, col = "blue", cex = 0.6)

---
dune        Vegetation and Environment in Dutch Dune Meadows.

Description

The dune meadow vegetation data, dune, has cover class values of 30 species on 20 sites. The corresponding environmental data frame dune.env has following entries:

Usage

data(dune)
data(dune.env)

Format

dune is a data frame of observations of 30 species at 20 sites. The species names are abbreviated to 4+4 letters (see make.cepnames). The following names are changed from the original source (Jongman et al. 1987): Leontodon autumnalis to Scorzoneraoides, and Potentilla palustris to Comarum.
dune.env is a data frame of 20 observations on the following 5 variables:


Moisture: an ordered factor with levels: 1 < 2 < 4 < 5.

Management: a factor with levels: BF (Biological farming), HF (Hobby farming), NM (Nature Conservation Management), and SF (Standard Farming).

Use: an ordered factor of land-use with levels: Hayfield < Haypastu < Pasture.

Manure: an ordered factor with levels: 0 < 1 < 2 < 3 < 4.
**Source**


**Examples**

data(dune)
data(dune.env)

dune.taxon  *Taxonomic Classification and Phylogeny of Dune Meadow Species*

**Description**

Classification table of the species in the *dune* data set.

**Usage**

data(dune.taxon)
data(dune.phylodis)

**Format**

dune.taxon is data frame with 30 species (rows) classified into five taxonomic levels (columns). dune.phylodis is a *dist* object of estimated coalescence ages extracted from [http://datadryad.org/resource/doi:10.5061/dryad.63q27](http://datadryad.org/resource/doi:10.5061/dryad.63q27) (Zanne et al. 2014) using tools in packages *ape* and *phylobase*.

**Details**

The classification of vascular plants is based on APG (2009), and that of mosses on Hill et al. (2006).

**References**


See Also

Functions `taxondive`, `treedive`, and `treedist` use these data sets.

Examples

```r
data(dune.taxon)
data(dune.phylodis)
```

### `eigenvals`

*Extract Eigenvalues from an Ordination Object*

**Description**

Function extracts eigenvalues from an object that has them. Many multivariate methods return such objects.

**Usage**

```r
eigenvals(x, ...)
S3 method for class 'cca'
eigenvals(x, constrained = FALSE, ...)
S3 method for class 'eigenvals'
summary(object, ...)
```

**Arguments**

- `x`: An object from which to extract eigenvalues.
- `object`: An `eigenvals` result object.
- `constrained`: Return only constrained eigenvalues.
- `...`: Other arguments to the functions (usually ignored)

**Details**

This is a generic function that has methods for `cca`, `wcmdscale`, `prcomp`, `princomp`, `dudi` (of `ade4`), and `pca` and `pco` (of `labdsv`) result objects. The default method also extracts eigenvalues if the result looks like being from `eigen` or `svd`. Functions `prcomp` and `princomp` contain square roots of eigenvalues that all called standard deviations, but `eigenvals` function returns their squares. Function `svd` contains singular values, but function `eigenvals` returns their squares. For constrained ordination methods `cca`, `rda` and `capscale` the function returns the both constrained and unconstrained eigenvalues concatenated in one vector, but the partial component will be ignored. However, with argument `constrained = TRUE` only constrained eigenvalues are returned.

The `summary` of `eigenvals` result returns eigenvalues, proportion explained and cumulative proportion explained. The result object can have some negative eigenvalues (`wcmdscale`, `capscale`, `pcnm`) which correspond to imaginary axes of Euclidean mapping of non-Euclidean distances (Gower 1985). In these cases, the sum of absolute values of eigenvalues is used in calculating the proportions explained, and real axes (corresponding to positive eigenvalues) will only explain a part of total variation (Mardia et al. 1979, Gower 1985).
envfit 85

Value
An object of class "eigenvals" which is a vector of eigenvalues.

Author(s)
Jari Oksanen.

References


See Also
eigen, svd, prcomp, princomp, cca, rda, capscale, wcmdscale, cca.object.

Examples
data(varespec)
data(varechem)
mod <- cca(varespec - A1 + P + K, varechem)
ev <- eigenvals(mod)
ev
summary(ev)

data(varespec)
data(varechem)
mod <- cca(varespec - A1 + P + K, varechem)
ev <- eigenvals(mod)
ev
summary(ev)

envfit  Fits an Environmental Vector or Factor onto an Ordination

Description
The function fits environmental vectors or factors onto an ordination. The projections of points onto vectors have maximum correlation with corresponding environmental variables, and the factors show the averages of factor levels.

Usage
```r
Default S3 method:
envfit(ord, env, permutations = 999, strata = NULL,
 choices=c(1,2), display = "sites", w = weights(ord), na.rm = FALSE, ...)
S3 method for class 'formula'
envfit(formula, data, ...)
S3 method for class 'envfit'
plot(x, choices = c(1,2), labels, arrow.mul, at = c(0,0),
 axis = FALSE, p.max = NULL, col = "blue", bg, add = TRUE, ...)
S3 method for class 'envfit'
scores(x, display, choices, ...)
```
vectorfit(X, P, permutations = 0, strata = NULL, w, ...)
factorfit(X, P, permutations = 0, strata = NULL, w, ...)

Arguments

ord An ordination object or other structure from which the ordination scores can
be extracted (including a data frame or matrix of scores).
env Data frame, matrix or vector of environmental variables. The variables can be
of mixed type (factors, continuous variables) in data frames.
x Matrix or data frame of ordination scores.
P Data frame, matrix or vector of environmental variable(s). These must be con-
tinuous for vectorfit and factors or characters for factorfit.
permutations a list of control values for the permutations as returned by the function how, or
the number of permutations required, or a permutation matrix where each row
gives the permuted indices. Set permutations = 0 to skip permutations.
formula, data Model formula and data.
na.rm Remove points with missing values in ordination scores or environmental vari-
ables. The operation is casewise: the whole row of data is removed if there is a
missing value and na.rm = TRUE.
x A result object from envfit.
choices Axes to plotted.
lables Change plotting labels. The argument should be a list with elements vectors
and factors which give the new plotting labels. If either of these elements is
omitted, the default labels will be used. If there is only one type of elements
(only vectors or only factors), the labels can be given as vector. The default
labels can be displayed with labels command.
arro.mul Multiplier for vector lengths. The arrows are automatically scaled similarly as
in plot.cca if this is not given and add = TRUE.
at The origin of fitted arrows in the plot. If you plot arrows in other places then
origin, you probably have to specify arrow.mul.
axis Plot axis showing the scaling of fitted arrows.
p.max Maximum estimated P value for displayed variables. You must calculate P
values with setting permutations to use this option.
col Colour in plotting.
bg Background colour for labels. If bg is set, the labels are displayed with ordilabel
instead of text. See Examples for using semitransparent background.
add Results added to an existing ordination plot.
strata An integer vector or factor specifying the strata for permutation. If supplied,
observations are permuted only within the specified strata.

display In fitting functions these are ordinary site scores or linear combination scores
("lc") in constrained ordination (cca, rda, capscale). In scores function they
are either "vectors" or "factors" (with synonyms "bp" or "cn", resp.).
w Weights used in fitting (concerns mainly cca and decorana results which have
nonconstant weights).
... Parameters passed to scores.
Details

Function `envfit` finds vectors or factor averages of environmental variables. Function `plot.envfit` adds these in an ordination diagram. If `x` is a `data.frame`, `envfit` uses `factorfit` for `factor` variables and `vectorfit` for other variables. If `x` is a matrix or a vector, `envfit` uses only `vectorfit`. Alternatively, the model can be defined a simplified model `formula`, where the left hand side must be an ordination result object or a matrix of ordination scores, and right hand side lists the environmental variables. The formula interface can be used for easier selection and/or transformation of environmental variables. Only the main effects will be analysed even if interaction terms were defined in the formula.

The printed output of continuous variables (vectors) gives the direction cosines which are the coordinates of the heads of unit length vectors. In `plot` these are scaled by their correlation (square root of the column $r^2$) so that “weak” predictors have shorter arrows than “strong” predictors. You can see the scaled relative lengths using command `scores`. The plotted (and scaled) arrows are further adjusted to the current graph using a constant multiplier: this will keep the relative $r^2$-scaled lengths of the arrows but tries to fill the current plot. You can see the multiplier using `vegan::ordiArrowMul(result_of_envfit)`, and set it with the argument `arrow.mul`.

Functions `vectorfit` and `factorfit` can be called directly. Function `vectorfit` finds directions in the ordination space towards which the environmental vectors change most rapidly and to which they have maximal correlations with the ordination configuration. Function `factorfit` finds averages of ordination scores for factor levels. Function `factorfit` treats ordered and unordered factors similarly.

If `permutations > 0`, the ‘significance’ of fitted vectors or factors is assessed using permutation of environmental variables. The goodness of fit statistic is squared correlation coefficient ($r^2$). For factors this is defined as $r^2 = 1 - \frac{ss_w}{ss_t}$, where $ss_w$ and $ss_t$ are within-group and total sums of squares. See `permutations` for additional details on permutation tests in Vegan.

User can supply a vector of prior weights $w$. If the ordination object has weights, these will be used. In practise this means that the row totals are used as weights with `cca` or `decorana` results. If you do not like this, but want to give equal weights to all sites, you should set $w = \text{NULL}$. The weighted fitting gives similar results to biplot arrows and class centroids in `cca`. For complete similarity between fitted vectors and biplot arrows, you should set `display = "lc"` (and possibly `scaling = 2`).

The lengths of arrows for fitted vectors are automatically adjusted for the physical size of the plot, and the arrow lengths cannot be compared across plots. For similar scaling of arrows, you must explicitly set the `arrow.mul` argument in the `plot` command.

The results can be accessed with `scores.envfit` function which returns either the fitted vectors scaled by correlation coefficient or the centroids of the fitted environmental variables.

Value

Functions `vectorfit` and `factorfit` return lists of classes `vectorfit` and `factorfit` which have a `print` method. The result object have the following items:

- **arrows** Arrow endpoints from `vectorfit`. The arrows are scaled to unit length.
- **centroids** Class centroids from `factorfit`.
- **r** Goodness of fit statistic: Squared correlation coefficient
- **permutations** Number of permutations.
control A list of control values for the permutations as returned by the function \texttt{how}.
pvals Empirical P-values for each variable.

Function \texttt{envfit} returns a list of class \texttt{envfit} with results of \texttt{vectorfit} and \texttt{envfit} as items. Function \texttt{plot.envfit} scales the vectors by correlation.

\textbf{Note}

Fitted vectors have become the method of choice in displaying environmental variables in ordination. Indeed, they are the optimal way of presenting environmental variables in Constrained Correspondence Analysis \texttt{cca}, since there they are the linear constraints. In unconstrained ordination the relation between external variables and ordination configuration may be less linear, and therefore other methods than arrows may be more useful. The simplest is to adjust the plotting symbol sizes (\texttt{cex}, \texttt{symbols}) by environmental variables. Fancier methods involve smoothing and regression methods that abound in \texttt{R}, and \texttt{ordisurf} provides a wrapper for some.

\textbf{Author(s)}

Jari Oksanen. The permutation test derives from the code suggested by Michael Scroggie.

\textbf{See Also}

A better alternative to vectors may be \texttt{ordisurf}.

\textbf{Examples}

```r
data(varespec)
data(varechem)
library(MASS)
ord <- metaMDS(varespec)
(fit <- envfit(ord, varechem, perm = 999))
scores(fit, "vectors")
plot(ord)
plot(fit)
plot(fit, p.max = 0.05, col = "red")
Adding fitted arrows to CCA. We use "lc" scores, and hope
that arrows are scaled similarly in cca and envfit plots
ord <- cca(varespec ~ A1 + P + K, varechem)
plot(ord, type="p")
fit <- envfit(ord, varechem, perm = 999, display = "lc")
plot(fit, p.max = 0.05, col = "red")
Class variables, formula interface, and displaying the
inter-class variability with ‘ordispider’, and semitransparent
white background for labels (semitransparent colours are not
supported by all graphics devices)
data(dune)
data(dune.env)
attach(dune.env)
ord <- cca(dune)
fit <- envfit(ord ~ Moisture + A1, dune.env, perm = 0)
plot(ord, type = "n")
```
eventstar

ordispider(ord, Moisture, col="skyblue")
points(ord, display = "sites", col = as.numeric(Moisture), pch=16)
plot(fit, cex=1.2, axis=TRUE, bg = rgb(1, 1, 1, 0.5))
## Use shorter labels for factor centroids
labels(fit)
plot(ord)
plot(fit, labels=list(factors = paste("M", c(1,2,4,5), sep = "")),
     bg = rgb(1,1,0,0.5))

eventstar  Scale Parameter at the Minimum of the Tsallis Evenness Profile

Description

The function eventstar finds the minimum ($q^*$) of the evenness profile based on the Tsallis entropy. This scale factor of the entropy represents a specific weighting of species relative frequencies that leads to minimum evenness of the community (Mendes et al. 2008).

Usage

eventstar(x, qmax = 5)

Arguments

- **x**: A community matrix or a numeric vector.
- **qmax**: Maximum scale parameter of the Tsallis entropy to be used in finding the minimum of Tsallis based evenness in the range $c(0, q_{max})$.

Details

The function eventstar finds a characteristic value of the scale parameter $q$ of the Tsallis entropy corresponding to minimum of the evenness (equitability) profile based on Tsallis entropy. This value was proposed by Mendes et al. (2008) as $q^*$. The $q^*$ index represents the scale parameter of the one parameter Tsallis diversity family that leads to the greatest deviation from the maximum equitability given the relative abundance vector of a community.

The value of $q^*$ is found by identifying the minimum of the evenness profile over scaling factor $q$ by one-dimensional minimization. Because evenness profile is known to be a convex function, it is guaranteed that underlying optimize function will find a unique solution if it is in the range $c(0, q_{max})$.

The scale parameter value $q^*$ is used to find corresponding values of diversity ($H_{q^*}$), evenness ($H_{q^*(\max)}$), and numbers equivalent ($D_{q^*}$). For calculation details, see tsallis and Examples below.

Mendes et al. (2008) advocated the use of $q^*$ and corresponding diversity, evenness, and Hill numbers, because it is a unique value representing the diversity profile, and is is positively associated with rare species in the community, thus it is a potentially useful indicator of certain relative abundance distributions of the communities.
Value
A data frame with columns:

- qstar scale parameter value $q^*$ corresponding to minimum value of Tsallis based evenness profile.
- Estar Value of evenness based on normalized Tsallis entropy at $q^*$.
- Hstar Value of Tsallis entropy at $q^*$.
- Dstar Value of Tsallis entropy at $q^*$ converted to numbers equivalents (also called as Hill numbers, effective number of species, ‘true’ diversity; cf. Jost 2007).

See tsallis for calculation details.

Note
Values for $q^*$ found by Mendes et al. (2008) ranged from 0.56 and 1.12 presenting low variability, so an interval between 0 and 5 should safely encompass the possibly expected $q^*$ values in practice, but profiling the evenness and changing the value of the $qmax$ argument is advised if output values near the range limits are found.

Author(s)
Eduardo Ribeiro Cunha <edurcunha@gmail.com> and Heloisa Beatriz Antoniazi Evangelista <helobeatriz@gmail.com>, with technical input of Péter Sólymos.

References

See Also
Tsallis entropy: tsallis

Examples
data(BCI)
(x <- eventstar(BCI[1:5,]))
## profiling
y <- as.numeric(BCI[10,])
(z <- eventstar(y))
q <- seq(0, 2, 0.05)
Eprof <- tsallis(y, scales=q, norm=TRUE)
Hprof <- tsallis(y, scales=q)
Dprof <- tsallis(y, scales=q, hill=TRUE)
opar <- par(mfrow=c(3,1))
plot(q, Eprof, type="l", main="Evenness")
fit Fisher's Logseries and Preston's Lognormal Model to Abundance Data

Description

Function `fisherfit` fits Fisher's logseries to abundance data. Function `prestonfit` groups species frequencies into doubling octave classes and fits Preston's lognormal model, and function `prestondistr` fits the truncated lognormal model without pooling the data into octaves.

Usage

```r
fisherfit(x, ...) prestonfit(x, tiesplit = TRUE, ...) prestondistr(x, truncate = -1, ...) ## S3 method for class 'prestonfit'
plot(x, xlab = "Frequency", ylab = "Species", bar.col = "skyblue",
 line.col = "red", lwd = 2, ...) ## S3 method for class 'prestonfit'
lines(x, line.col = "red", lwd = 2, ...) veiledspec(x, ...)
as.fisher(x, ...)
S3 method for class 'fisher'
plot(x, xlab = "Frequency", ylab = "Species", bar.col = "skyblue",
 kind = c("bar", "hiplot", "points", "lines"), add = FALSE, ...)
as.preston(x, tiesplit = TRUE, ...)
S3 method for class 'preston'
plot(x, xlab = "Frequency", ylab = "Species", bar.col = "skyblue", ...)
S3 method for class 'preston'
lines(x, xadjust = 0.5, ...)
```

Arguments

- **x**: Community data vector for fitting functions or their result object for plot functions.
- **tiesplit**: Split frequencies 1, 2, 4, 8 etc between adjacent octaves.
- **truncate**: Truncation point for log-Normal model, in log2 units. Default value -1 corresponds to the left border of zero Octave. The choice strongly influences the fitting results.
- **xlab, ylab**: Labels for x and y axes.
In Fisher’s logarithmic series the expected number of species \( f \) with \( n \) observed individuals is \( f_n = \alpha x^n/n \) (Fisher et al. 1943). The estimation is possible only for genuine counts of individuals. The parameter \( \alpha \) is used as a diversity index, and \( \alpha \) and its standard error can be estimated with a separate function `fisher.alpha`. The parameter \( x \) is taken as a nuisance parameter which is not estimated separately but taken to be \( n/(n + \alpha) \). Helper function `as.fisher` transforms abundance data into Fisher frequency table.

Preston (1948) was not satisfied with Fisher’s model which seemed to imply infinite species richness, and postulated that rare species is a diminishing class and most species are in the middle of frequency scale. This was achieved by collapsing higher frequency classes into wider and wider “octaves” of doubling class limits: 1, 2, 3–4, 5–8, 9–16 etc. occurrences. It seems that Preston regarded frequencies 1, 2, 4, etc. as “tied” between octaves (Williamson & Gaston 2005). This means that only half of the species with frequency 1 are shown in the lowest octave, and the rest are transferred to the second octave. Half of the species from the second octave are transferred to the higher one as well, but this is usually not as large a number of species. This practise makes data look more lognormal by reducing the usually high lowest octaves. This can be achieved by setting argument `tiesplit = TRUE`. With `tiesplit = FALSE` the frequencies are not split, but all ones are in the lowest octave, all twos in the second, etc. Williamson & Gaston (2005) discuss alternative definitions in detail, and they should be consulted for a critical review of log-Normal model.

Any logseries data will look like lognormal when plotted in Preston’s way. The expected frequency \( f \) at abundance octave \( o \) is defined by \( f_o = S_0 \exp(-((\log_2(o) - \mu)^2)/2/\sigma^2) \), where \( \mu \) is the location of the mode and \( \sigma \) the width, both in \( \log_2 \) scale, and \( S_0 \) is the expected number of species at mode. The lognormal model is usually truncated on the left so that some rare species are not observed. Function `prestonfit` fits the truncated lognormal model as a second degree log-polynomial to the octave pooled data using Poisson (when `tiesplit = FALSE`) or quasi-Poisson (when `tiesplit = TRUE`) error. Function `prestondistr` fits left-truncated Normal distribution to \( \log_2 \) transformed non-pooled observations with direct maximization of log-likelihood. Function `prestondistr` is modelled after function `fitdistr` which can be used for alternative distribution models.

The functions have common `print`, `plot` and `lines` methods. The `lines` function adds the fitted curve to the octave range with line segments showing the location of the mode and the width (sd) of the response. Function `as.preston` transforms abundance data to octaves. Argument `tiesplit` will not influence the fit in `prestondistr`, but it will influence the barplot of the octaves.
The total extrapolated richness from a fitted Preston model can be found with function `veiledspec`. The function accepts results both from `prestonfit` and from `prestondistr`. If `veiledspec` is called with a species count vector, it will internally use `prestonfit`. Function `specpool` provides alternative ways of estimating the number of unseen species. In fact, Preston’s lognormal model seems to be truncated at both ends, and this may be the main reason why its result differs from lognormal models fitted in Rank–Abundance diagrams with functions `rad.lognormal`.

**Value**

The function `prestonfit` returns an object with fitted coefficients, and with observed (freq) and fitted (fitted) frequencies, and a string describing the fitting method. Function `prestondistr` omits the entry fitted. The function `fisherfit` returns the result of `nlm`, where item estimate is $\alpha$. The result object is amended with the nuisance parameter and item `fisher` for the observed data from `as.fisher`.

**Author(s)**

Bob O’Hara and Jari Oksanen.

**References**


**See Also**

diversity, `fisher.alpha`, `radfit`, `specpool`. Function `fitdistr` of `MASS` package was used as the model for `prestondistr`. Function `density` can be used for smoothed “non-parametric” estimation of responses, and `qqplot` is an alternative, traditional and more effective way of studying concordance of observed abundances to any distribution model.

**Examples**

data(BCI)
mod <- fisherfit(BCI[5,])
mod
# prestonfit seems to need large samples
mod.oct <- prestonfit(colSums(BCI))
mod.ll <- prestondistr(colSums(BCI))
mod.oct
mod.ll
plot(mod.oct)
lines(mod.ll, line.col="blue3") # Different
## Smoothed density
den <- density(log2(colSums(BCI)))
lines(den$x, ncol(BCI)*den$y, lwd=2) # Fairly similar to mod.oct
## Extrapolated richness
veiledspec(mod.oct)
veiledspec(mod.ll)

goodness.cca  Diagnostic Tools for {Constrained} Ordination (CCA, RDA, DCA, CA, PCA)

### Description

Functions `goodness` and `inertcomp` can be used to assess the goodness of fit for individual sites or species. Function `vif.cca` and `alias.cca` can be used to analyse linear dependencies among constraints and conditions. In addition, there are some other diagnostic tools (see 'Details').

### Usage

```r
S3 method for class 'cca'
goodness(object, display = c("species", "sites"), choices,
model = c("CCA", "CA"), statistic = c("explained", "distance"),
summarize = FALSE, ...)
inertcomp(object, display = c("species", "sites"),
statistic = c("explained", "distance"), proportional = FALSE)
spenvcor(object)
terisetcor(object)
vif.cca(object)
S3 method for class 'cca'
alias(object, names.only = FALSE, ...)
```

### Arguments

- **object**: A result object from `cca`, `rda` or `capscale`.
- **display**: Display "species" or "sites".
- **choices**: Axes shown. Default is to show all axes of the "model".
- **model**: Show constrained ("CCA") or unconstrained ("CA") results.
- **statistic**: Statistic used: "explained" gives the cumulative percentage accounted for, "distance" shows the residual distances. Distances are not available for sites in constrained or partial analyses.
- **summarize**: Show only the accumulated total.
- **proportional**: Give the inertia components as proportional for the corresponding total.
- **names.only**: Return only names of aliased variable(s) instead of defining equations.
- **...**: Other parameters to the functions.
Details

Function `goodness` gives the diagnostic statistics for species or sites. The alternative statistics are the cumulative proportion of inertia accounted for by the axes, and the residual distance left unaccounted for. The conditional (“partialled out”) constraints are always regarded as explained and included in the statistics.

Function `inertcomp` decomposes the inertia into partial, constrained and unconstrained components for each site or species. Instead of inertia, the function can give the total dispersion or distances from the centroid for each component.

Function `spenvcor` finds the so-called “species – environment correlation” or (weighted) correlation of weighted average scores and linear combination scores. This is a bad measure of goodness of ordination, because it is sensitive to extreme scores (like correlations are), and very sensitive to overfitting or using too many constraints. Better models often have poorer correlations. Function `ordispider` can show the same graphically.

Function `intersetcor` finds the so-called “interset correlation” or (weighted) correlation of weighted averages scores and constraints. The defined contrasts are used for factor variables. This is a bad measure since it is a correlation. Further, it focuses on correlations between single contrasts and single axes instead of looking at the multivariate relationship. Fitted vectors (`envfit`) provide a better alternative. Biplot scores (see `scores.cca`) are a multivariate alternative for (weighted) correlation between linear combination scores and constraints.

Function `vif.cca` gives the variance inflation factors for each constraint or contrast in factor constraints. In partial ordination, conditioning variables are analysed together with constraints. Variance inflation is a diagnostic tool to identify useless constraints. A common rule is that values over 10 indicate redundant constraints. If later constraints are complete linear combinations of conditions or previous constraints, they will be completely removed from the estimation, and no biplot scores or centroids are calculated for these aliased constraints. A note will be printed with default output if there are aliased constraints. Function `alias` will give the linear coefficients defining the aliased constraints, or only their names with argument `names.only = TRUE`.

Value

The functions return matrices or vectors as is appropriate.

Note

It is a common practise to use goodness statistics to remove species from ordination plots, but this may not be a good idea, as the total inertia is not a meaningful concept in `cca`, in particular for rare species.

Function `vif` is defined as generic in package `car` (`vif`), but if you have not loaded that package you must specify the call as `vif.cca`. Variance inflation factor is useful diagnostic tool for detecting nearly collinear constraints, but these are not a problem with algorithm used in this package to fit a constrained ordination.

Author(s)

Jari Oksanen. The `vif.cca` relies heavily on the code by W. N. Venables. `alias.cca` is a simplified version of `alias.lm`. 
References


See Also

`cca`, `rda`, `capscale`, `vif`.

Examples

```r
data(dune)
data(dune.env)
mod <- cca(dune ~ A1 + Management + Condition(Moisture), data=dune.env)
goodness(mod)
goodness(mod, summ = TRUE)
Inertia components
inertcomp(mod, prop = TRUE)
inertcomp(mod, stat="d")
vif.cca
vif.cca(mod)
Aliased constraints
mod <- cca(dune ~ ., dune.env)
mod
vif.cca(mod)
alias(mod)
with(dune.env, table(Management, Manure))
The standard correlations (not recommended)
spenvcor(mod)
intersetcor(mod)
```

### goodness.metaMDS

*Goodness of Fit and Shepard Plot for Nonmetric Multidimensional Scaling*

**Description**

Function `goodness.metaMDS` find goodness of fit measure for points in nonmetric multidimensional scaling, and function `stressplot` makes a *Shepard* diagram.

**Usage**

```r
S3 method for class 'metaMDS'
goodness(object, dis, ...)
Default S3 method:
stressplot(object, dis, pch, p.col = "blue", l.col = "red",
 lwd = 2, ...)
```
Arguments

object A result object from `metaMDS`, `monoMDS` or `isoMDS`.
dis Dissimilarities. This should not be used with `metaMDS` or `monoMDS`, but must be used with `isoMDS`.
pch Plotting character for points. Default is dependent on the number of points.
p.col, l.col Point and line colours.
lwd Line width. For `monoMDS` the default is `lwd = 1` if more than two lines are drawn, and `lwd = 2` otherwise.
... Other parameters to functions, e.g. graphical parameters.

Details

Function `goodness.metaMDS` finds a goodness of fit statistic for observations (points). This is defined so that sum of squared values is equal to squared stress. Large values indicate poor fit. The absolute values of the goodness statistic depend on the definition of the stress: `isoMDS` expresses stress in percents, and therefore its goodness values are 100 times higher than those of `monoMDS` which expresses the stress as a proportion.

Function `stressplot` draws a Shepard diagram which is a plot of ordination distances and monotone or linear fit line against original dissimilarities. In addition, it displays two correlation-like statistics on the goodness of fit in the graph. The nonmetric fit is based on stress $S$ and defined as $R^2 = 1 - S^2$. The “linear fit” is the squared correlation between fitted values and ordination distances. For `monoMDS`, the “linear fit” and $R^2$ from “stress type 2” are equal.

Both functions can be used with `metaMDS`, `monoMDS` and `isoMDS`. The original dissimilarities should not be given for `monoMDS` or `metaMDS` results (the latter tries to reconstruct the dissimilarities using `metaMDSredist` if `isoMDS` was used as its engine). With `isoMDS` the dissimilarities must be given. In either case, the functions inspect that dissimilarities are consistent with current ordination, and refuse to analyse inconsistent dissimilarities. Function `goodness.metaMDS` is generic in `vegan`, but you must spell its name completely with `isoMDS` which has no class.

Value

Function `goodness` returns a vector of values. Function `stressplot` returns invisibly an object with items for original dissimilarities, ordination distances and fitted values.

Author(s)

Jari Oksanen.

See Also

`metaMDS`, `monoMDS`, `isoMDS`, `Shepard`. Similar diagrams for eigenvector ordinations can be drawn with `stressplot.wcmdscale`, `stressplot.cca`, `stressplot.rda` and `stressplot.capscale`. 
Examples

```r
data(varespec)
mod <- metaMDS(varespec)
stressplot(mod)
gof <- goodness(mod)
gof
plot(mod, display = "sites", type = "n")
points(mod, display = "sites", cex = 2*gof/mean(gof))
```

---

**humpfit**  
*No-interaction Model for Hump-backed Species Richness vs. Biomass*

Description

Function `humpfit` fits a no-interaction model for species richness vs. biomass data (Oksanen 1996). This is a null model that produces a hump-backed response as an artifact of plant size and density.

Usage

```r
humpfit(mass, spno, family = poisson, start)
```

Arguments

- `mass`  
  Biomass.
- `spno`  
  Species richness.
- `start`  
  Vector of starting values for all three parameters.
- `family`  
  Family of error distribution. Any `family` can be used, but the link function is always Fisher’s diversity model, and other link functions are silently ignored.
- `x`, `object`, `fitted`  
  Result object of `humpfit`
- `newdata`  
  Values of `mass` used in `predict`. The original data values are used if missing.
- `xlab`, `ylab`  
  Axis labels in `plot`
The no-interaction model assumes that the humped species richness pattern along biomass gradient is an artifact of plant size and density (Oksanen 1996). For low-biomass sites, it assumes that plants have a fixed size, and biomass increases with increasing number of plants. When the sites becomes crowded, the number of plants and species richness reaches the maximum. Higher biomass is reached by increasing the plant size, and then the number of plants and species richness will decrease. At biomasses below the hump, plant number and biomass are linearly related, and above the hump, plant number is proportional to inverse squared biomass. The number of plants is related to the number of species by the relationship (link function) from Fisher's log-series (Fisher et al. 1943).

The parameters of the model are:

1. **hump**: the location of the hump on the biomass gradient.
2. **scale**: an arbitrary multiplier to translate the biomass into virtual number of plants.
3. **alpha**: Fisher’s $\alpha$ to translate the virtual number of plants into number of species.

The parameters scale and alpha are intermingled and this function should not be used for estimating Fisher’s $\alpha$. Probably the only meaningful and interesting parameter is the location of the hump.

Function may be very difficult to fit and easily gets trapped into local solutions, or fails with non-Poisson families, and function profile should be used to inspect the fitted models. If you have loaded package **MASS**, you can use functions `plot.profile`, `pairs.profile` for graphical inspection of the profiles, and `confint.profile.glm` for the profile based confidence intervals.

The original model intended to show that there is no need to speculate about ‘competition’ and ‘stress’ (Al-Mufti et al. 1977), but humped response can be produced as an artifact of using fixed plot size for varying plant sizes and densities.

**Value**

The function returns an object of class "humpfit" inheriting from class "glm". The result object has specific summary, predict, plot, points and lines methods. In addition, it can be accessed by the following methods for glm objects: `AIC`, `extractAIC`, `deviance`, `coef`, `residuals.glm` (except type = "partial"), `fitted`, and perhaps some others. In addition, function `ellipse.glm` (package **ellipse**) can be used to draw approximate confidence ellipses for pairs of parameters, if the normal assumptions look appropriate.
Note

The function is a replacement for the original GLIM4 function at the archive of Journal of Ecology. There the function was represented as a mixed glm with one non-linear parameter (hump) and a special one-parameter link function from Fisher's log-series. The current function directly applies non-linear maximum likelihood fitting using function nlm. Some expected problems with the current approach are:

- The function is discontinuous at hump and may be difficult to optimize in some cases (the lines will always join, but the derivative jumps).
- The function does not try very hard to find sensible starting values and can fail. The user may supply starting values in argument start if fitting fails.
- The estimation is unconstrained, but both scale and alpha should always be positive. Perhaps they should be fitted as logarithmic. Fitting Gamma family models might become easier, too.

Author(s)

Jari Oksanen

References


See Also

fisherfit, profile.glm, confint.glm.

Examples

```r
Data approximated from Al-Mufti et al. (1977)
##
mass <- c(140,230,310,310,400,510,610,670,860,900,1050,1160,1900,2480)
spno <- c(1, 4, 3, 9, 18, 30, 20, 14, 3, 2, 3, 2, 5, 2)
sol <- humpfit(mass, spno)
summary(sol) # Almost infinite alpha...
plot(sol)
confint is in MASS, and implicitly calls profile.humpfit.
Parameter 3 (alpha) is too extreme for profile and confint, and we
must use only "hump" and "scale".
library(MASS)
plot(profile(sol, parm=1:2))
confint(sol, parm=c(1,2))
```
indpower

**Description**

Indicator power calculation of Halme et al. (2009) or the congruence between indicator and target species.

**Usage**

`indpower(x, type = 0)`

**Arguments**

- `x`: Community data frame or matrix.
- `type`: The type of statistic to be returned. See Details for explanation.

**Details**

Halme et al. (2009) described an index of indicator power defined as $IP_I = \sqrt{a \times b}$, where $a = S/O_I$ and $b = 1 - (O_T - S)/(N - O_I)$. $N$ is the number of sites, $S$ is the number of shared occurrences of the indicator ($I$) and the target ($T$) species. $O_I$ and $O_T$ are number of occurrences of the indicator and target species. The `type` argument in the function call enables to choose which statistic to return. `type = 0` returns $IP_I$, `type = 1` returns $a$, `type = 2` returns $b$. Total indicator power (TIP) of an indicator species is the column mean (without its own value, see examples). Halme et al. (2009) explain how to calculate confidence intervals for these statistics, see Examples.

**Value**

A matrix with indicator species as rows and target species as columns (this is indicated by the first letters of the row/column names).

**Author(s)**

Peter Solymos

**References**


**See Also**

`indval` (package `labdsv`) for the indicator species analysis of Dufrêne & Legendre. Function `beals` estimates individual cell probabilities of species occurrences.
isomap

Isometric Feature Mapping Ordination

Description

The function performs isometric feature mapping which consists of three simple steps: (1) retain only some of the shortest dissimilarities among objects, (2) estimate all dissimilarities as shortest path distances, and (3) perform metric scaling (Tenenbaum et al. 2000).

Usage

isomap(dist, ndim=10, ...)  
isomapdist(dist, epsilon, k, path = "shortest", fragmentedOK =FALSE, ...)  
## S3 method for class 'isomap'
summary(object, axes = 4, ...)  
## S3 method for class 'isomap'
plot(x, net = TRUE, n.col = "gray", type = "points", ...)
Arguments

dist  Dissimilarities.
ndim  Number of axes in metric scaling (argument k in cmdscale).
epsilon  Shortest dissimilarity retained.
k  Number of shortest dissimilarities retained for a point. If both epsilon and k are given, epsilon will be used.
path  Method used in stepacross to estimate the shortest path, with alternatives "shortest" and "extended".
fragmentedOK  What to do if dissimilarity matrix is fragmented. If TRUE, analyse the largest connected group, otherwise stop with error.
x, object  An isomap result object.
axes  Number of axes displayed.
net  Draw the net of retained dissimilarities.
n.col  Colour of drawn net segments.
type  Plot observations either as "points", "text" or use "none" to plot no observations. The "text" will use ordilabel if net = TRUE and ordiplot if net = FALSE, and pass extra arguments to these functions.
...  Other parameters passed to functions.

Details

The function isomap first calls function isomapdist for dissimilarity transformation, and then performs metric scaling for the result. All arguments to isomap are passed to isomapdist. The functions are separate so that the isomapdist transformation could be easily used with other functions than simple linear mapping of cmdscale.

Function isomapdist retains either dissimilarities equal or shorter to epsilon, or if epsilon is not given, at least k shortest dissimilarities for a point. Then a complete dissimilarity matrix is reconstructed using stepacross using either flexible shortest paths or extended dissimilarities (for details, see stepacross).

De’ath (1999) actually published essentially the same method before Tenenbaum et al. (2000), and De’ath’s function is available in function xdis in non-CRAN package mvpart. The differences are that isomap introduced the k criterion, whereas De’ath only used epsilon criterion. In practice, De’ath also retains higher proportion of dissimilarities than typical isomap.

The plot function uses internally ordiplot, except that it adds text over net using ordilabel. The plot function passes extra arguments to these functions. In addition, vegan3d package has function rgl.isomap to make dynamic 3D plots that can be rotated on the screen.

Value

Function isomapdist returns a dissimilarity object similar to dist. Function isomap returns an object of class isomap with plot and summary methods. The plot function returns invisibly an object of class ordiplot. Function scores can extract the ordination scores.
Note

Tenenbaum et al. (2000) justify isomap as a tool of unfolding a manifold (e.g. a 'Swiss Roll'). Even with a manifold structure, the sampling must be even and dense so that dissimilarities along a manifold are shorter than across the folds. If data do not have such a manifold structure, the results are very sensitive to parameter values.

Author(s)

Jari Oksanen

References


See Also

The underlying functions that do the proper work are stepacross, distconnected and cmdscale. Function metaMDS may trigger stepacross transformation, but usually only for longest dissimilarities. The plot method of vegan minimum spanning tree function (spantree) has even more extreme way of isomapping things.

Examples

```r
The following examples also overlay minimum spanning tree to
the graphics in red.
op <- par(mar=c(4,4,1,1)+0.2, mfrow=c(2,2))
data(BCI)
dis <- vegdist(BCI)
tr <- spantree(dis)
pl <- ordiplot(cmdscale(dis), main="cmdscale")
lines(tr, pl, col="red")
ord <- isomap(dis, k=3)
ord
pl <- plot(ord, main="isomap k=3")
lines(tr, pl, col="red")
pl <- plot(isomap(dis, k=5), main="isomap k=5")
lines(tr, pl, col="red")
pl <- plot(isomap(dis, epsilon=0.45), main="isomap epsilon=0.45")
lines(tr, pl, col="red")
par(op)
```
kendall.global

Kendall coefficient of concordance

Description

Function kendall.global computes and tests the coefficient of concordance among several judges (variables, species) through a permutation test.

Function kendall.post carries out *a posteriori* tests of the contributions of individual judges (variables, species) to the overall concordance of their group through permutation tests.

If several groups of judges are identified in the data table, coefficients of concordance (kendall.global) or a posteriori tests (kendall.post) will be computed for each group separately. Use in ecology: to identify significant species associations.

Usage

```r
kendall.global(Y, group, nperm = 999, mult = "holm")
kendall.post(Y, group, nperm = 999, mult = "holm")
```

Arguments

- **Y**: Data file (data frame or matrix) containing quantitative or semiquantitative data. Rows are objects and columns are judges (variables). In community ecology, that table is often a site-by-species table.
- **group**: A vector defining how judges should be divided into groups. See example below. If groups are not explicitly defined, all judges in the data file will be considered as forming a single group.
- **nperm**: Number of permutations to be performed. Default is 999.
- **mult**: Correct P-values for multiple testing using the alternatives described in `p.adjust` and in addition "sidak" (see Details). The Bonferroni correction is overly conservative; it is not recommended. It is included to allow comparisons with the other methods.

Details

Y must contain quantitative data. They will be transformed to ranks within each column before computation of the coefficient of concordance.

The search for species associations described in Legendre (2005) proceeds in 3 steps:

(1) Correlation analysis of the species. A possible method is to compute Ward’s agglomerative clustering of a matrix of correlations among the species. In detail: (1.1) compute a Pearson or Spearman correlation matrix (`correl.matrix`) among the species; (1.2) turn it into a distance matrix: `mat.D = as.dist(1-correl.matrix)`; (1.3) carry out Ward’s hierarchical clustering of that matrix using `hclust`: `clust.ward = hclust(mat.D, "ward")`; (1.4) plot the dendrogram: `plot(clust.ward, hang=-1)`; (1.5) cut the dendrogram in two groups, retrieve the vector of species membership: `group.2 = cutree(clust.ward, k=2)`. (1.6) After steps 2 and 3 below, you may have to come back and try divisions of the species into k = 3, 4, 5, . . . groups.
(2) Compute global tests of significance of the 2 (or more) groups using the function `kendall.global` and the vector defining the groups. Groups that are not globally significant must be refined or abandoned.

(3) Compute a posteriori tests of the contribution of individual species to the concordance of their group using the function `kendall.post` and the vector defining the groups. If some species have negative values for "Spearman.mean", this means that these species clearly do not belong to the group, hence that group is too inclusive. Go back to (1.5) and cut the dendrogram more finely. The left and right groups can be cut separately, independently of the levels along the dendrogram; write your own vector of group membership if `cutree` does not produce the desired groups.

The corrections used for multiple testing are applied to the list of P-values (P); they take into account the number of tests (k) carried out simultaneously (number of groups in `kendall.global`, or number of species in `kendall.post`). The corrections are performed using function `p.adjust`; see that function for the description of the correction methods. In addition, there is Šidák correction which defined as \( P_{corr} = 1 - (1 - P)^k \).

**Value**

A table containing the following information in rows. The columns correspond to the groups of "judges" defined in vector "group". When function `kendall.post` is used, there are as many tables as the number of predefined groups.

- **W**: Kendall’s coefficient of concordance, W.
- **F**: F statistic. \( F = \frac{W^*(m-1)}{1-W} \) where m is the number of judges.
- **Prob.F**: Probability associated with the F statistic, computed from the F distribution with \( \nu1 = n-1-(2/m) \) and \( \nu2 = \nu1*(m-1) \); n is the number of objects.
- **Corrected prob.F**: Probabilities associated with F, corrected using the method selected in parameter `mult`. Shown only if there are more than one group.
- **Chi2**: Friedman’s chi-square statistic (Friedman 1937) used in the permutation test of W.
- **Prob.perm**: Permutational probabilities, uncorrected.
- **Corrected prob.perm**: Permutational probabilities corrected using the method selected in parameter `mult`. Shown only if there are more than one group.
- **Spearman.mean**: Mean of the Spearman correlations between the judge under test and all the other judges in the same group.
- **W.per.species**: Contribution of the judge under test to the overall concordance statistic for that group.

**Author(s)**

F. Guillaume Blanchet, University of Alberta, and Pierre Legendre, Université de Montréal
References


See Also

cor, friedman.test, hclust, cutree, kmeans, cascadeKM, indval

Examples

data(mite)
mite.hel <- decostand(mite, "hel")

# Reproduce the results shown in Table 2 of Legendre (2005), a single group
mite.small <- mite.hel[c(4,9,14,22,31,34,45,53,61,69),c(13:15,23)]
kendall.global(mite.small, nperm=49)
kendall.post(mite.small, mult="holm", nperm=49)

# Reproduce the results shown in Tables 3 and 4 of Legendre (2005), 2 groups
group <- c(1,1,2,1,1,1,1,1,2,1,1,1,1,2,1,1,2,1,1,1,1,1,2,2,2,2,2)
kendall.global(mite.hel, group=group, nperm=49)
kendall.post(mite.hel, group=group, mult="holm", nperm=49)

# NOTE: 'nperm' argument usually needs to be larger than 49.
# It was set to this low value for demonstration purposes.

linestack

Plots One-dimensional Diagrams without Overwriting Labels

Description

Function linestack plots vertical one-dimensional plots for numeric vectors. The plots are always labelled, but the labels are moved vertically to avoid overwriting.

Usage

linestack(x, labels, cex = 0.8, side = "right", hoff = 2, air = 1.1, at = 0, add = FALSE, axis = FALSE, ...)
Arguments

- **x**
  Numeric vector to be plotted.

- **labels**
  Labels used instead of default (names of x). May be expressions to be drawn with `plotmath`.

- **cex**
  Size of the labels.

- **side**
  Put labels to the "right" or "left" of the axis.

- **hoff**
  Distance from the vertical axis to the label in units of the width of letter “m”.

- **air**
  Multiplier to string height to leave empty space between labels.

- **at**
  Position of plot in horizontal axis.

- **add**
  Add to an existing plot.

- **axis**
  Add axis to the plot.

- **...**
  Other graphical parameters to labels.

Value

The function returns invisibly the shifted positions of labels in user coordinates.

Note

The function always draws labelled diagrams. If you want to have unlabelled diagrams, you can use, e.g., `plot`, `stripchart` or `rug`.

Author(s)

Jari Oksanen with modifications by Gavin L. Simpson

Examples

```r
First DCA axis
data(dune)
ord <- decorana(dune)
linestack(scores(ord, choices=1, display="sp"))
linestack(scores(ord, choices=1, display="si"), side="left", add=TRUE)
title(main="DCA axis 1")

Expressions as labels
N <- 10 # Number of sites
df <- data.frame(Ca = rlnorm(N, 2), NO3 = rlnorm(N, 4),
 SO4 = rlnorm(N, 10), K = rlnorm(N, 3))
ord <- rda(df, scale = TRUE)
vector of expressions for labels
labs <- expression(Ca^{2+phantom()})
 NO[3]^{-phantom()})
 SO[4]^{-2})
 K^{+phantom()})
scl <- 1
linestack(scores(ord, choices = 1, display = "species", scaling = scl),
 labels = labs, air = 2)
```
Description

A standard CEP name has four first letters of the generic name and four first letters of the specific epithet of a Latin name. The last epithet, that may be a subspecific name, is used in the current function. If the name has only one component, it is abbreviated to eight characters (see abbreviate). The returned names are made unique with function make.unique which adds numbers to the end of CEP names if needed.

Usage

make.cepnames(names, seconditem = FALSE)

Arguments

names The names to be formatted into CEP names.
seconditem Take always the second item of the original name to the abbreviated name instead of the last original item (default).

Details

Cornell Ecology Programs (CEP) used eight-letter abbreviations for species and site names. In species, the names were formed by taking four first letters of the generic name and four first letters of the specific or subspecific epithet. The current function first makes valid R names using make.names, and then splits these into elements. The CEP name is made by taking the four first letters of the first element, and four first letters of the last (default) or the second element (with seconditem = TRUE). If there was only one name element, it is abbreviated to eight letters. Finally, the names are made unique which may add numbers to duplicated names.

The CEP names were originally used, because old FORTRAN IV did not have CHARACTER data type, but text had to be stored in numerical variables, which in popular computers could hold four characters. In modern times, there is no reason for this limitation, but ecologists are used to these names, and they may be practical to avoid congestion in ordination plots.

Value

Function returns CEP names.

Note

The function is simpleminded and rigid. You must write a better one if you need.
Author(s)

Jari Oksanen

See Also

`make.names`, `strsplit`, `substring`, `paste`, `abbreviate`.

Examples

```r
make.cepnames(c("Aa madera", "Poa sp.", "Cladina rangiferina", "Cladonia cornuta", "Cladonia cornuta var. groenlandica", "Cladonia rangiformis", "Bryoerythrophyllum"))
data(BCI)
colnames(BCI) <- make.cepnames(colnames(BCI))
```

```
mantel Mantel and Partial Mantel Tests for Dissimilarity Matrices

Description

Function `mantel` finds the Mantel statistic as a matrix correlation between two dissimilarity matrices, and function `mantel.partial` finds the partial Mantel statistic as the partial matrix correlation between three dissimilarity matrices. The significance of the statistic is evaluated by permuting rows and columns of the first dissimilarity matrix.

Usage

```r
mantel(xdis, ydis, method="pearson", permutations=999, strata = NULL, na.rm = FALSE, parallel =getOption("mc.cores"))
mantel.partial(xdis, ydis, zdis, method = "pearson", permutations = 999, strata = NULL, na.rm = FALSE, parallel =getOption("mc.cores"))
```

Arguments

- `xdis, ydis, zdis`: Dissimilarity matrices or a `dist` objects.
- `method`: Correlation method, as accepted by `cor`: "pearson", "spearman" or "kendall".
- `permutations`: a list of control values for the permutations as returned by the function `how`, or the number of permutations required, or a permutation matrix where each row gives the permuted indices.
- `strata`: An integer vector or factor specifying the strata for permutation. If supplied, observations are permuted only within the specified strata.
- `na.rm`: Remove missing values in calculation of Mantel correlation. Use this option with care: Permutation tests can be biased, in particular if two matrices had missing values in matching positions.
- `parallel`: Number of parallel processes or a predefined socket cluster. With `parallel = 1` uses ordinary, non-parallel processing. The parallel processing is done with `parallel` package.
Details

Mantel statistic is simply a correlation between entries of two dissimilarity matrices (some use cross products, but these are linearly related). However, the significance cannot be directly assessed, because there are \(N(N-1)/2\) entries for just \(N\) observations. Mantel developed asymptotic test, but here we use permutations of \(N\) rows and columns of dissimilarity matrix. See \texttt{permutations} for additional details on permutation tests in Vegan.

Partial Mantel statistic uses partial correlation conditioned on the third matrix. Only the first matrix is permuted so that the correlation structure between second and first matrices is kept constant. Although \texttt{mantel.partial} silently accepts other methods than "pearson", partial correlations will probably be wrong with other methods.

The function uses \texttt{cor}, which should accept alternatives \texttt{pearson} for product moment correlations and \texttt{spearman} or \texttt{kendall} for rank correlations.

Value

The function returns a list of class \texttt{mantel} with following components:

- \texttt{call}: Function call.
- \texttt{method}: Correlation method used, as returned by \texttt{cor.test}.
- \texttt{statistic}: The Mantel statistic.
- \texttt{signif}: Empirical significance level from permutations.
- \texttt{perm}: A vector of permuted values. The distribution of permuted values can be inspected with \texttt{permustats} function.
- \texttt{permutations}: Number of permutations.
- \texttt{control}: A list of control values for the permutations as returned by the function \texttt{how}.

Note

Legendre & Legendre (2012, Box 10.4) warn against using partial Mantel correlations.

Author(s)

Jari Oksanen

References

The test is due to Mantel, of course, but the current implementation is based on Legendre and Legendre.

See Also

\texttt{cor} for correlation coefficients, \texttt{protest} ("Procrustes test") for an alternative with ordination diagrams, \texttt{anosim} and \texttt{mrpp} for comparing dissimilarities against classification. For dissimilarity matrices, see \texttt{vegdist} or \texttt{dist}. See \texttt{bioenv} for selecting environmental variables.
Examples

```r
## Is vegetation related to environment?
data(varespec)
data(varechem)
veg.dist <- vegdist(varespec) # Bray-Curtis
env.dist <- vegdist(scale(varechem), "euclid")
mantel(veg.dist, env.dist)
mantel(veg.dist, env.dist, method="spear")
```

Description

Usage

```r
mantel.correlog(D.eco, D.geo=NULL, XY=NULL, n.class=0, break pts=NULL, cutoff=TRUE, r.type="pearson", nperm=999, mult="holm", progressive=TRUE)
## S3 method for class 'mantel.correlog'
plot(x, alpha=0.05, ...)
```

Arguments

- `D.eco` An ecological distance matrix, with class either `dist` or `matrix`.
- `D.geo` A geographic distance matrix, with class either `dist` or `matrix`. Provide either `D.geo` or `XY`. Default: `D.geo=NULL`.
- `XY` A file of Cartesian geographic coordinates of the points. Default: `XY=NULL`.
- `n.class` Number of classes. If `n.class=0`, the Sturges equation will be used unless break points are provided.
- `break.pts` Vector containing the break points of the distance distribution. Provide (n.class+1) breakpoints, that is, a list with a beginning and an ending point. Default: `break.pts=NULL`.
- `cutoff` For the second half of the distance classes, `cutoff = TRUE` limits the correlogram to the distance classes that include all points. If `cutoff = FALSE`, the correlogram includes all distance classes.
- `r.type` Type of correlation in calculation of the Mantel statistic. Default: `r.type="pearson"`. Other choices are `r.type="spearman"` and `r.type="kendall"`, as in functions `cor` and `mantel`.
- `nperm` Number of permutations for the tests of significance. Default: `nperm=999`. For large data files, permutation tests are rather slow.
Correct P-values for multiple testing. The correction methods are "holm" (default), "hochberg", "sidak", and other methods available in the `p.adjust` function: "bonferroni" (best known, but not recommended because it is overly conservative), "hommel", "BH", "BY", "fdr", and "none".

Default: progressive=TRUE for progressive correction of multiple-testing, as described in Legendre and Legendre (1998, p. 721). Test of the first distance class: no correction; second distance class: correct for 2 simultaneous tests; distance class k: correct for k simultaneous tests. progressive=FALSE: correct all tests for n.class simultaneous tests.

Output of `mantel.correlog`.

Significance level for the points drawn with black symbols in the correlogram. Default: alpha=0.05.

Other parameters passed from other functions.

A correlogram is a graph in which spatial correlation values are plotted, on the ordinate, as a function of the geographic distance classes among the study sites along the abscissa. In a Mantel correlogram, a Mantel correlation (Mantel 1967) is computed between a multivariate (e.g. multi-species) distance matrix of the user's choice and a design matrix representing each of the geographic distance classes in turn. The Mantel statistic is tested through a permutational Mantel test performed by `vegan`'s `mantel` function.

When a correction for multiple testing is applied, more permutations are necessary than in the no-correction case, to obtain significant p-values in the higher correlogram classes.

The `print.mantel.correlog` function prints out the correlogram. See examples.

A table with the distance classes as rows and the class indices, number of distances per class, Mantel statistics (computed using Pearson's r, Spearman's r, or Kendall's tau), and p-values as columns. A positive Mantel statistic indicates positive spatial correlation. An additional column with p-values corrected for multiple testing is added unless mult="none".

The number of distance classes.

The break points provided by the user or computed by the program.

The name of the correction for multiple testing. No correction: mult="none".

A logical (TRUE, FALSE) value indicating whether or not a progressive correction for multiple testing was requested.

The number of distance classes for which Mantel tests have been computed and tested for significance.

The function call.

Pierre Legendre, Université de Montréal
References

Examples

```r
# Mite data available in "vegan"
data(mite)
data(mite.xy)
mite.hel <- decostand(mite, "hellinger")

# Detrend the species data by regression on the site coordinates
mite.hel.resid <- resid(lm(as.matrix(mite.hel) ~ ., data=mite.xy))

# Compute the detrended species distance matrix
mite.hel.D <- dist(mite.hel.resid)

# Compute Mantel correlogram with cutoff, Pearson statistic
mite.correlog <- mantel.correlog(mite.hel.D, XY=mite.xy, nperm=49)
summary(mite.correlog)
mite.correlog
# or: print(mite.correlog)
# or: print.mantel.correlog(mite.correlog)
plot(mite.correlog)

# Compute Mantel correlogram without cutoff, Spearman statistic
mite.correlog2 <- mantel.correlog(mite.hel.D, XY=mite.xy, cutoff=FALSE, r.type="spearman", nperm=49)
summary(mite.correlog2)
mite.correlog2
plot(mite.correlog2)

# NOTE: 'nperm' argument usually needs to be larger than 49.
# It was set to this low value for demonstration purposes.
```
MDSrotate Rotate First MDS Dimension Parallel to an External Variable

Description
Function rotates a multidimensional scaling result so that its first dimension is parallel to an external (environmental variable). The function can handle the results from `metaMDS` or `monoMDS` functions.

Usage
MDSrotate(object, vec, na.rm = FALSE, ...)

Arguments
- **object**: A result object from `metaMDS` or `monoMDS`.
- **vec**: A continuous environmental variable or a matrix of such variables. The number of variables must be lower than the number of dimensions, and the solution is rotated to these variables in the order they appear in the matrix.
- **na.rm**: Remove missing values from the continuous variable vec.
- **...**: Other arguments (ignored).

Details
The orientation and rotation are undefined in multidimensional scaling. Functions `metaMDS` and `metaMDS` can rotate their solutions to principal components so that the dispersion of the points is highest on the first dimension. Sometimes a different rotation is more intuitive, and MDSrotate allows rotation of the result so that the first axis is parallel to a given external variable or two first variables are completely in a two-dimensional plane etc. If several external variables are supplied, they are applied in the order they are in the matrix. First axis is rotated to the first supplied variable, and the second axis to the second variable. Because variables are usually correlated, the second variable is not usually aligned with the second axis, but it is uncorrelated to later dimensions. There must be at least one free dimension: the number of external variables must be lower than the number of dimensions, and all used environmental variables are uncorrelated with that free dimension.

Value
Function returns the original ordination result, but with rotated scores (both site and species if available), and the `pc` attribute of scores set to `FALSE`.

Author(s)
Jari Oksanen

See Also
`metaMDS`, `monoMDS`.
Examples

```r
data(varespec)
data(varechem)
mod <- monoMDS(vegdist(varespec))
mod <- with(varechem, MDSrotate(mod, pH))
plot(mod)
ef <- envfit(mod ~ pH, varechem, permutations = 0)
plot(ef)
ordisurf(mod ~ pH, varechem, knots = 1, add = TRUE)
```

metaMDS

Nonmetric Multidimensional Scaling with Stable Solution from Random Starts, Axis Scaling and Species Scores

Description

Function `metaMDS` performs Nonmetric Multidimensional Scaling (NMDS), and tries to find a stable solution using several random starts. In addition, it standardizes the scaling in the result, so that the configurations are easier to interpret, and adds species scores to the site ordination. The `metaMDS` function does not provide actual NMDS, but it calls another function for the purpose. Currently `monoMDS` is the default choice, and it is also possible to call the `isoMDS` (MASS package).

Usage

```r
metaMDS(comm, distance = "bray", k = 2, trymax = 20,
        engine = c("monoMDS", "isoMDS"), autotransform = TRUE,
        noshare = (engine == "isoMDS"), wascores = TRUE, expand = TRUE,
        trace = 1, plot = FALSE, previous.best, ...)
```

metaMDSdist

```r
metaMDSdist(comm, distance = "bray", autotransform = TRUE,
            noshare = TRUE, trace = 1, commname, zerodist = "ignore",
            distfun = vegdist, ...)
```

metaMDSiter

```r
metaMDSiter(dist, k = 2, trymax = 20, trace = 1, plot = FALSE,
            previous.best, engine = "monoMDS", maxit = 200,
            parallel = getOption("mc.cores"), ...)
```

initMDS

```r
initMDS(x, k=2)
```
metaMDS

postMDS(X, dist, pc=TRUE, center=TRUE, halfchange, threshold=0.8,
 nthreshold=10, plot=FALSE, ...)
metaMDSredist(object, ...)

Arguments

comm
Community data. Alternatively, dissimilarities either as a `dist` structure or as a symmetric square matrix. In the latter case all other stages are skipped except random starts and centring and pc rotation of axes.

distance
Dissimilarity index used in `vegdist`.

k
Number of dimensions. NB., the number of points \(n \) should be \(n > 2k + 1 \), and preferably higher in non-metric MDS.

trymax
Maximum number of random starts in search of stable solution.

engine
The function used for MDS. The default is to use the `monoMDS` function in `vegan`, but for backward compatibility it is also possible to use `isoMDS` of `MASS`.

autotransform
Use simple heuristics for possible data transformation of typical community data (see below). If you do not have community data, you should probably set `autotransform = FALSE`.

noshare
Triggering of calculation step-across or extended dissimilarities with function `stepacross`. The argument can be logical or a numerical value greater than zero and less than one. If `TRUE`, extended dissimilarities are used always when there are no shared species between some sites, if `FALSE`, they are never used. If `noshare` is a numerical value, `stepacross` is used when the proportion of site pairs with no shared species exceeds `noshare`. The number of pairs with no shared species is found with `noNshared` function, and `noshare` has no effect if input data were dissimilarities instead of community data.

wascores
Calculate species scores using function `wascores`.

expand
Expand weighted averages of species in `wascores`.

trace
Trace the function; `trace = 2` or higher will be more voluminous.

plot
Graphical tracing: plot interim results. You may want to set `par(ask = TRUE)` with this option.

previous.best
Start searches from a previous solution.

x
`metaMDS` result (or a dissimilarity structure for `initMDS`).

choices
Axes shown.

type
Plot type: "p" for points, "t" for text, and "n" for axes only.

display
Display "sites" or "species".

shrink
Shrink back species scores if they were expanded originally.

labels
Optional test to be used instead of row names.

select
Items to be displayed. This can either be a logical vector which is `TRUE` for displayed items or a vector of indices of displayed items.

X
Configuration from multidimensional scaling.

commname
The name of `comm`: should not be given if the function is called directly.
zerodist: Handling of zero dissimilarities: either "fail" or "add" a small positive value, or "ignore". monoMDS accepts zero dissimilarities and the default is zerodist = "ignore", but with isoMDS you may need to set zerodist = "add".

distfun: Dissimilarity function. Any function returning a dist object and accepting argument method can be used (but some extra arguments may cause name conflicts).

maxit: Maximum number of iterations in the single NMDS run; passed to the engine function monoMDS or isoMDS.

parallel: Number of parallel processes or a predefined socket cluster. If you use predefined socket clusters (say, clus), you must issue clusterEvalQ(clus, library(vegan)) to make available internal vegan functions. With parallel = 1 uses ordinary, non-parallel processing. The parallel processing is done with parallel package.

dist: Dissimilarity matrix used in multidimensional scaling.

pc: Rotate to principal components.

center: Centre the configuration.

halfchange: Scale axes to half-change units. This defaults TRUE when dissimilarities were evaluated within metaMDS and the dissimilarity index has an upper limit of 1. If FALSE, the ordination dissimilarities are scaled to the same range as the input dissimilarities.

threshold: Largest dissimilarity used in half-change scaling.

nthreshold: Minimum number of points in half-change scaling.

object: A result object from metamds.

...: Other parameters passed to functions. Function metaMDS passes all arguments to its component functions metamDSdist, metamDSiter, postMDS, and to distfun and engine.

Details

Non-metric Multidimensional Scaling (NMDS) is commonly regarded as the most robust unconstrained ordination method in community ecology (Minchin 1987). Function metaMDS is a wrapper function that calls several other functions to combine Minchin’s (1987) recommendations into one command. The complete steps in metaMDS are:

1. Transformation: If the data values are larger than common abundance class scales, the function performs a Wisconsin double standardization (wisconsin). If the values look very large, the function also performs sqrt transformation. Both of these standardizations are generally found to improve the results. However, the limits are completely arbitrary (at present, data maximum 50 triggers sqrt and > 9 triggers wisconsin). If you want to have a full control of the analysis, you should set autotransform = FALSE and standardize and transform data independently. The autotransform is intended for community data, and for other data types, you should set autotransform = FALSE. This step is performed using metamDSdist.

2. Choice of dissimilarity: For a good result, you should use dissimilarity indices that have a good rank order relation to ordering sites along gradients (Faith et al. 1987). The default is Bray-Curtis dissimilarity, because it often is the test winner. However, any other dissimilarity index in vegdist can be used. Function rankindex can be used for finding the test winner for you data and gradients. The default choice may be bad if you analyse other than community data, and you should probably select an appropriate index using argument distance. This step is performed using metamDSdist.
3. Step-across dissimilarities: Ordination may be very difficult if a large proportion of sites have no shared species. In this case, the results may be improved with stepacross dissimilarities, or flexible shortest paths among all sites. The default NMDS engine is monoMDS which is able to break tied values at the maximum dissimilarity, and this often is sufficient to handle cases with no shared species, and therefore the default is not to use stepacross with monoMDS. Function isoMDS does not handle tied values adequately, and therefore the default is to use stepacross always when there are sites with no shared species with engine = "isoMDS". The stepacross is triggered by option noshare. If you do not like manipulation of original distances, you should set noshare = FALSE. This step is skipped if input data were dissimilarities instead of community data. This step is performed using metaMDSdist.

4. NMDS with random starts: NMDS easily gets trapped into local optima, and you must start NMDS several times from random starts to be confident that you have found the global solution. The strategy in metaMDS is to first run NMDS starting with the metric scaling (cmdscale which usually finds a good solution but often close to a local optimum), or use the previous.best solution if supplied, and take its solution as the standard (Run 0). Then metaMDS starts NMDS from several random starts (maximum number is given by trymax). Function monoMDS defaults random starts, but isoMDS defaults to cmdscale, and there random starts are generated by initMDS. If a solution is better (has a lower stress) than the previous standard, it is taken as the new standard. If the solution is better or close to a standard, metaMDS compares two solutions using Procrustes analysis (function procrustes with option symmetric = TRUE). If the solutions are very similar in their Procrustes rmse and the largest residual is very small, the solutions are regarded as convergent and the better one is taken as the new standard. Please note that the conditions are stringent, and you may have found good and relatively stable solutions although the function is not yet satisfied. Setting trace = TRUE will monitor the final stresses, and plot = TRUE will display Procrustes overlay plots from each comparison. This step is performed using metaMDSiter. This is the only step performed if input data (comm) were dissimilarities.

5. Scaling of the results: metaMDS will run postMDS for the final result. Function postMDS provides the following ways of “fixing” the indeterminacy of scaling and orientation of axes in NMDS: Centring moves the origin to the average of the axes; Principal components rotate the configuration so that the variance of points is maximized on first dimension (with function MDSrotate you can alternatively rotate the configuration so that the first axis is parallel to an environmental variable); Half-change scaling scales the configuration so that one unit means halving of community similarity from replicate similarity. Half-change scaling is based on closer dissimilarities where the relation between ordination distance and community dissimilarity is rather linear (the limit is set by argument threshold). If there are enough points below this threshold (controlled by the parameter nthreshold), dissimilarities are regressed on distances. The intercept of this regression is taken as the replicate dissimilarity, and half-change is the distance where similarity halves according to linear regression. Obviously the method is applicable only for dissimilarity indices scaled to 0...1, such as Kulczynski, Bray-Curtis and Canberra indices. If half-change scaling is not used, the ordination is scaled to the same range as the original dissimilarities.

6. Species scores: Function adds the species scores to the final solution as weighted averages using function wascores with given value of parameter expand. The expansion of weighted averages can be undone with shrink = TRUE in plot or scores functions, and the calculation of species scores can be suppressed with wascores = FALSE.
Value

Function `metaMDS` returns an object of class `metaMDS`. The final site ordination is stored in the item `points`, and species ordination in the item `species`, and the stress in item `stress` (NB, the scaling of the stress depends on the engine: `isoMDS` uses percents, and `monoMDS` proportions in the range 0...1). The other items store the information on the steps taken and the items returned by the engine function. The object has `print`, `plot`, `points` and `text` methods. Functions `metaMDSdist` and `metaMDSredist` return `vegdist` objects. Function `initMDS` returns a random configuration which is intended to be used within `isoMDS` only. Functions `metaMDSiter` and `postMDS` returns the result of NMDS with updated configuration.

Warning

`metaMDS` uses `monoMDS` as its NMDS engine from `vegan` version 2.0-0, when it replaced the `isoMDS` function. You can set argument `engine` to select the old engine.

Note

Function `metaMDS` is a simple wrapper for an NMDS engine (either `monoMDS` or `isoMDS`) and some support functions (`metaMDSdist`, `stepacross`, `metaMDSiter`, `initMDS`, `postMDS`, `wascores`). You can call these support functions separately for better control of results. Data transformation, dissimilarities and possible `stepacross` are made in function `metaMDSdist` which returns a dissimilarity result. Iterative search (with starting values from `initMDS` with `monoMDS`) is made in `metaMDSiter`. Processing of result configuration is done in `postMDS`, and species scores added by `wascores`. If you want to be more certain of reaching a global solution, you can compare results from several independent runs. You can also continue analysis from previous results or from your own configuration. Function may not save the used dissimilarity matrix (`monoMDS` does), but `metaMDSredist` tries to reconstruct the used dissimilarities with original data transformation and possible `stepacross`.

The `metaMDS` function was designed to be used with community data. If you have other type of data, you should probably set some arguments to non-default values: probably at least `wascores`, `autotransform` and `noshare` should be FALSE. If you have negative data entries, `metaMDS` will set the previous to FALSE with a warning.

Author(s)

Jari Oksanen

References

See Also

`monoMDS` (and `isoMDS`), `decostand`, `wisconsin`, `vegdist`, `rankindex`, `stepacross`, `procrustes`, `wascores`, `MDSrotate`, `ordiplot`.
Examples

```r
## The recommended way of running NMDS (Minchin 1987)
##
data(dune)
# Global NMDS using monomds
sol <- metaMDS(dune)
sol
plot(sol, type="t")
## Start from previous best solution
sol <- metaMDS(dune, previous.best = sol)
## Local NMDS and stress 2 of monomds
sol2 <- metaMDS(dune, model = "local", stress=2)
sol2
## Use Arrhenius exponent 'z' as a binary dissimilarity measure
sol <- metaMDS(dune, distfun = betadiver, distance = "z")
sol
```

mite
Oribatid Mite Data with Explanatory Variables

Description

Oribatid mite data. 70 soil cores collected by Daniel Borcard in 1989. See Borcard et al. (1992, 1994) for details.

Usage

```r
data(mite)
data(mite.env)
data(mite.pcnm)
data(mite.xy)
```

Format

There are three linked data sets: mite that contains the data on 35 species of Oribatid mites, mite.env that contains environmental data in the same sampling sites, mite.xy that contains geographic coordinates, and mite.pcnm that contains 22 PCNM base functions (columns) computed from the geographic coordinates of the 70 sampling sites (Borcard & Legendre 2002). The whole sampling area was 2.5 m x 10 m in size.

The fields in the environmental data are:

SubsDens Substrate density (g/L)

WatrCont Water content of the substrate (g/L)

Substrate Substrate type, factor with levels Sphagn1, Sphagn2, Sphagn3, Sphagn4, Litter, Barepeat, Interface

Shrub Shrub density, an ordered factor with levels 1, 2, 3

Topo Microtopography, a factor with levels Blanket and Hummock
model.matrix.cca

Source
Pierre Legendre

References

Examples

data(mite)

model.matrix.cca

Reconstruct Model Frame and Model Matrices of Constrained Ordination

Description
Function model.frame.cca reconstructs a data.frame with the variables used in the constrained ordination method (cca, rda or capscale). Function model.matrix.cca creates a list of design matrices used in constrained ordination. The items of the list are called Conditions and Constraints. If either partial (Conditions) or constrained component was missing, a single matrix is returned.

Usage

S3 method for class 'cca'
model.frame(formula, ...)
S3 method for class 'cca'
model.matrix(object, ...)

Arguments

formula, object
A constrained ordination result object from which the needed information is extracted.

... Other arguments passed to the default method of the function.

Details
The constrained ordination method objects do not save data on model frame or design matrix, and the functions must reconstruct the information in the session. This will fail if the data sets and variables of the original model are unavailable.
monoMDS

Value

Returns a data frame (model.frame) or an unnamed matrix or a list of two matrices called Constraints and Conditions (model.matrix).

Author(s)

Jari Oksanen

See Also

`model.frame`, `model.matrix`.

Examples

```r
data(dune)
data(dune.env)
mod <- cca(dune ~ poly(A1, 2) + Management + Use, dune.env)
model.frame(mod)
model.matrix(mod)
```

Description

Function implements Kruskal’s (1964a,b) non-metric multidimensional scaling (NMDS) using monotone regression and primary (“weak”) treatment of ties. In addition to traditional global NMDS, the function implements local NMDS, linear and hybrid multidimensional scaling.

Usage

```r
monoMDS(dist, y, k = 2, model = c("global", "local", "linear", "hybrid"),
        threshold = 0.8, maxit = 200, weakties = TRUE, stress = 1,
        scaling = FALSE, pc = FALSE, smin = 1e-4, sfgrmin = 1e-7,
        sratmax = 0.999999, ...)
```

Arguments

- `dist`
 Input dissimilarities.
- `y`
 Starting configuration. A random configuration will be generated if this is missing.
monoMDS

k

Number of dimensions. NB., the number of points \(n \) should be \(n > 2k + 1 \), and preferably higher in non-metric MDS.

model

MDS model: "global" is normal non-metric MDS with a monotone regression, "local" is non-metric MDS with separate regressions for each point, "linear" uses linear regression, and "hybrid" uses linear regression for dissimilarities below a threshold in addition to monotone regression. See Details.

threshold

Dissimilarity below which linear regression is used alternately with monotone regression.

maxit

Maximum number of iterations.

weakties

Use primary or weak tie treatment, where equal observed dissimilarities are allowed to have different fitted values. if FALSE, then secondary (strong) tie treatment is used, and tied values are not broken.

stress

Use stress type 1 or 2 (see Details).

scaling

Scale final scores to unit root mean squares.

pc

Rotate final scores to principal components.

smin, sfgrmin, sratmax

Convergence criteria: iterations stop when stress drops below \(s_{\text{min}} \), scale factor of the gradient drops below \(s_{\text{fgrmin}} \), or stress ratio between two iterations goes over \(s_{\text{ratmax}} \) (but is still \(< 1 \)).

x

A monoMDS result.

choices

Dimensions returned or plotted. The default NA returns all dimensions.

type

The type of the plot: "t" for text, "p" for points, and "n" for none.

... Other parameters to the functions (ignored in monoMDS, passed to graphical functions in plot.).

Details

There are several versions of non-metric multidimensional scaling in R, but monoMDS offers the following unique combination of features:

- “Weak” treatment of ties (Kruskal 1964a,b), where tied dissimilarities can be broken in monotone regression. This is especially important for cases where compared sites share no species and dissimilarities are tied to their maximum value of one. Breaking ties allows these points to be at different distances and can help in recovering very long coenoclines (gradients). Function smacofSym (smacof package) also has adequate tie treatment.
- Handles missing values in a meaningful way.
- Offers “local” and “hybrid” scaling in addition to usual “global” NMDS (see below).
- Uses fast compiled code (isoMDS of the MASS package also uses compiled code).

Function monoMDS uses Kruskal’s (1964b) original monotone regression to minimize the stress. There are two alternatives of stress: Kruskal’s (1964a,b) original or “stress 1” and an alternative version or “stress 2” (Sibson 1972). Both of these stresses can be expressed with a general formula

\[
s^2 = \frac{\sum (d - \hat{d})^2}{\sum (d - d_0)^2}
\]
where \(d\) are distances among points in ordination configuration, \(\hat{d}\) are the fitted ordination distances, and \(d_0\) are the ordination distances under null model. For “stress 1” \(d_0 = 0\), and for “stress 2” \(d_0 = d\) or mean distances. “Stress 2” can be expressed as \(s^2 = 1 - R^2\), where \(R^2\) is squared correlation between fitted values and ordination distances, and so related to the “linear fit” of \texttt{stressplot}.

Function \texttt{monoMDS} can fit several alternative NMDS variants that can be selected with argument \texttt{model}. The default \texttt{model = “global”} fits global NMDS, or Kruskal’s (1964a,b) original NMDS similar to \texttt{isoMDS} (\texttt{MASS}) or \texttt{smacofSym} (\texttt{smacof}). Alternative \texttt{model = “local”} fits local NMDS where independent monotone regression is used for each point (Sibson 1972). Alternative \texttt{model = “linear”} fits a linear MDS. This fits a linear regression instead of monotone, and is not identical to metric scaling or principal coordinates analysis (\texttt{cmdscale}) that performs an eigenvector decomposition of dissimilarities (Gower 1966). Alternative \texttt{model = “hybrid”} implements hybrid MDS that uses monotone regression for all points and linear regression for dissimilarities below or at a threshold dissimilarity in alternating steps (Faith et al. 1987). Function \texttt{stressplot} can be used to display the kind of regression in each \texttt{model}.

Scaling, orientation and direction of the axes is arbitrary. However, the function always centres the axes, and the default scaling is to scale the configuration at unit root mean square and to rotate the axes (argument \texttt{pc}) to principal components so that the first dimension shows the major variation. It is possible to rotate the solution so that the first axis is parallel to a given environmental variable using function \texttt{metaMDSrotate}.

Value

Returns an object of class "\texttt{monoMDS}". The final scores are returned in item \texttt{points} (function \texttt{scores} extracts these results), and the stress in item \texttt{stress}. In addition, there is a large number of other items (but these may change without notice in the future releases).

Note

This is the default NMDS function used in \texttt{metaMDS}. Function \texttt{metaMDS} adds support functions so that NMDS can be run like recommended by Minchin (1987).

Author(s)

Peter R. Michin (Fortran core) and Jari Oksanen (R interface).

References

See Also

`metaMDS` for the *vegan* way of running NMDS, and `isoMDS` and `smacofSym` for some alternative implementations of NMDS.

Examples

```r
data(dune)
dis <- vegdist(dune)
m <- monoMDS(dis, model = "loc")
plot(m)
```

MOSTest

Mitchell-Olds & Shaw Test for the Location of Quadratic Extreme

Description

Mitchell-Olds & Shaw test concerns the location of the highest (hump) or lowest (pit) value of a quadratic curve at given points. Typically, it is used to study whether the quadratic hump or pit is located within a studied interval. The current test is generalized so that it applies generalized linear models (`glm`) with link function instead of simple quadratic curve. The test was popularized in ecology for the analysis of humped species richness patterns (Mittelbach et al. 2001), but it is more general. With logarithmic link function, the quadratic response defines the Gaussian response model of ecological gradients (ter Braak & Looman 1986), and the test can be used for inspecting the location of Gaussian optimum within a given range of the gradient. It can also be used to replace Tokeshi’s test of “bimodal” species frequency distribution.

Usage

```r
MOSTest(x, y, interval, ...)  
## S3 method for class 'MOSTest'
plot(x, which = c(1,2,3,6), ...)  
fieller.MOSTest(object, level = 0.95)  
## S3 method for class 'MOSTest'
profile(fitted, alpha = 0.01, maxsteps = 10, del = zmax/5, ...)  
## S3 method for class 'MOSTest'
confint(object, parm = 1, level = 0.95, ...)
```

Arguments

- `x` The independent variable or plotting object in `plot`.
- `y` The dependent variable.
- `interval` The two points at which the test statistic is evaluated. If missing, the extremes of `x` are used.
which Subset of plots produced. Values which = 1 and 2 define plots specific to mOStest (see Details), and larger values select graphs of plot.lm (minus 2).

object, fitted A result object from mOStest.

level The confidence level required.

alpha Maximum significance level allowed.

maxsteps Maximum number of steps in the profile.

del A step length parameter for the profile (see code).

parm Ignored.

... Other variables passed to functions. Function mOStest passes these to glm so that these can include family. The other functions pass these to underlying graphical functions.

Details

The function fits a quadratic curve \(\mu = b_0 + b_1 x + b_2 x^2 \) with given family and link function. If \(b_2 < 0 \), this defines a unimodal curve with highest point at \(u = -b_1/(2b_2) \) (ter Braak & Looman 1986). If \(b_2 > 0 \), the parabola has a minimum at \(u \) and the response is sometimes called "bimodal". The null hypothesis is that the extreme point \(u \) is located within the interval given by points \(p_1 \) and \(p_2 \). If the extreme point \(u \) is exactly at \(p_1 \), then \(b_1 = 0 \) on shifted axis \(x - p_1 \). In the test, origin of \(x \) is shifted to the values \(p_1 \) and \(p_2 \), and the test statistic is based on the differences of deviances between the original model and model where the origin is forced to the given location using the standard anova.glm function (Oksanen et al. 2001). Mitchell-Olds & Shaw (1987) used the first degree coefficient with its significance as estimated by the summary.glm function. This give identical results with Normal error, but for other error distributions it is preferable to use the test based on differences in deviances in fitted models.

The test is often presented as a general test for the location of the hump, but it really is dependent on the quadratic fitted curve. If the hump is of different form than quadratic, the test may be insignificant.

Because of strong assumptions in the test, you should use the support functions to inspect the fit. Function plot(..., which=1) displays the data points, fitted quadratic model, and its approximate 95% confidence intervals (2 times SE). Function plot with which = 2 displays the approximate confidence interval of the polynomial coefficients, together with two lines indicating the combinations of the coefficients that produce the evaluated points of \(x \). Moreover, the cross-hair shows the approximate confidence intervals for the polynomial coefficients ignoring their correlations. Higher values of which produce corresponding graphs from plot.lm. That is, you must add 2 to the value of which in plot.lm.

Function fieller.mOStest approximates the confidence limits of the location of the extreme point (hump or pit) using Fieller's theorem following ter Braak & Looman (1986). The test is based on quasideviance except if the family is poisson or binomial. Function profile evaluates the profile deviance of the fitted model, and confint finds the profile based confidence limits following Oksanen et al. (2001).

The test is typically used in assessing the significance of diversity hump against productivity gradient (Mittelbach et al. 2001). It also can be used for the location of the pit (deepest points) instead of the Tokeshi test. Further, it can be used to test the location of the the Gaussian optimum in ecological gradient analysis (ter Braak & Looman 1986, Oksanen et al. 2001).
MOStest

Value

The function is based on \texttt{glm}, and it returns the result of object of \texttt{glm} amended with the result of the test. The new items in the \texttt{MOStest} are:

- \texttt{ishump} true if the response is a hump.
- \texttt{isbracketed} true if the hump or the pit is bracketed by the evaluated points.
- \texttt{hump} Sorted vector of location of the hump or the pit and the points where the test was evaluated.
- \texttt{coefficients} Table of test statistics and their significances.

Note

Function \texttt{fieller.MOStest} is based on package \texttt{optgrad} in the Ecological Archives (http://www.esapubs.org/archive/ecol/E082/015/default.htm) accompanying Oksanen et al. (2001). The Ecological Archive package \texttt{optgrad} also contains profile deviance method for the location of the hump or pit, but the current implementation of \texttt{profile} and \texttt{confint} rather follow the example of \texttt{profile.glm} and \texttt{confint.glm} in the \texttt{MASS} package.

Author(s)

Jari Oksanen

References

See Also

The no-interaction model can be fitted with \texttt{humpfit}.

Examples

```r
## The Al-Mufti data analysed in humpfit():
mass <- c(140, 230, 310, 310, 400, 510, 610, 670, 860, 900, 1050, 1160, 1900, 2480)
spno <- c(1, 4, 3, 9, 18, 30, 20, 14, 3, 2, 3, 2, 5, 2)
mod <- MOStest(mass, spno)
## Insignificant
mod
## ... but inadequate shape of the curve
op <- par(mfrow=c(2,2), mar=c(4,4,1,1)+.1)
```
plot(mod)
Looks rather like log-link with Poisson error and logarithmic biomass
mod <- MStest(log(mass), spno, family=quasipoisson)
mod
plot(mod)
par(op)
Confidence Limits
fieller.MStest(mod)
confint(mod)
plot(profile(mod))

mrpp

Multi Response Permutation Procedure and Mean Dissimilarity Matrix

Description

Multiple Response Permutation Procedure (MRPP) provides a test of whether there is a significant difference between two or more groups of sampling units. Function `meandist` finds the mean within and between block dissimilarities.

Usage

```r
mrpp(dat, grouping, permutations = 999, distance = "euclidean",
      weight.type = 1, strata = NULL, parallel = getOption("mc.cores"))
meandist(dist, grouping, ...)
## S3 method for class 'meandist'
summary(object, ...) # S3 method for class 'meandist'
plot(x, kind = c("dendrogram", "histogram"), cluster = "average",
      ylim, axes = TRUE, ...)
```

Arguments

- `dat` : data matrix or data frame in which rows are samples and columns are response variable(s), or a dissimilarity object or a symmetric square matrix of dissimilarities.
- `grouping` : Factor or numeric index for grouping observations.
- `permutations` : a list of control values for the permutations as returned by the function `how`, or the number of permutations required, or a permutation matrix where each row gives the permuted indices. These are used to assess the significance of the MRPP statistic, `delta`.
- `distance` : Choice of distance metric that measures the dissimilarity between two observations. See `vegdist` for options. This will be used if `dat` was not a dissimilarity structure of a symmetric square matrix.
- `weight.type` : choice of group weights. See Details below for options.
strata An integer vector or factor specifying the strata for permutation. If supplied, observations are permuted only within the specified strata.

parallel Number of parallel processes or a predefined socket cluster. With parallel = 1 uses ordinary, non-parallel processing. The parallel processing is done with package.

dist A dist object of dissimilarities, such as produced by functions dist, vegdist or designdist.

object, x A meandist result object.

data A clustering method for the hclust function for kind = "dendrogram". Any hclust method can be used, but perhaps only "average" and "single" make sense.

ylim Limits for vertical axes (optional).

axes Draw scale for the vertical axis.

... Further arguments passed to functions.

Details

Multiple Response Permutation Procedure (MRPP) provides a test of whether there is a significant difference between two or more groups of sampling units. This difference may be one of location (differences in mean) or one of spread (differences in within-group distance; cf. Warton et al. 2012). Function mrpp operates on a data.frame matrix where rows are observations and responses data matrix. The response(s) may be uni- or multivariate. The method is philosophically and mathematically allied with analysis of variance, in that it compares dissimilarities within and among groups. If two groups of sampling units are really different (e.g. in their species composition), then average of the within-group compositional dissimilarities ought to be less than the average of the dissimilarities between two random collection of sampling units drawn from the entire population.

The mrpp statistic δ is the overall weighted mean of within-group means of the pairwise dissimilarities among sampling units. The choice of group weights is currently not clear. The mrpp function offers three choices: (1) group size (n), (2) a degrees-of-freedom analogue ($n - 1$), and (3) a weight that is the number of unique distances calculated among n sampling units ($n(n - 1)/2$).

The mrpp algorithm first calculates all pairwise distances in the entire dataset, then calculates δ. It then permutes the sampling units and their associated pairwise distances, and recalculates δ based on the permuted data. It repeats the permutation step $\text{perm} \times \text{times}$. The significance test is the fraction of permuted deltas that are less than the observed delta, with a small sample correction. The function also calculates the change-corrected within-group agreement $A = 1 - \delta/E(\delta)$, where $E(\delta)$ is the expected δ assessed as the average of dissimilarities.

If the first argument dat can be interpreted as dissimilarities, they will be used directly. In other cases the function treats dat as observations, and uses vegdist to find the dissimilarities. The default distance is Euclidean as in the traditional use of the method, but other dissimilarities in vegdist also are available.

Function meandist calculates a matrix of mean within-cluster dissimilarities (diagonal) and between-cluster dissimilarities (off-diagonal elements), and an attribute n of grouping counts. Function summary finds the within-class, between-class and overall means of these dissimilarities, and the MRPP statistics with all weight.type options and the Classification Strength, CS (Van Sickle and
CS is defined for dissimilarities as $\bar{B} - \bar{W}$, where \bar{B} is the mean between cluster dissimilarity and \bar{W} is the mean within cluster dissimilarity with $\text{weight.type} = 1$. The function does not perform significance tests for these statistics, but you must use mrpp with appropriate weight.type. There is currently no significance test for CS, but mrpp with $\text{weight.type} = 1$ gives the correct test for \bar{W} and a good approximation for CS. Function plot draws a dendrogram or a histogram of the result matrix based on the within-group and between group dissimilarities. The dendrogram is found with the method given in the cluster argument using function hclust. The terminal segments hang to within-cluster dissimilarity. If some of the clusters are more heterogeneous than the combined class, the leaf segment are reversed. The histograms are based on dissimilarities, but are otherwise similar to those of Van Sickle and Hughes (2000): horizontal line is drawn at the level of mean between-cluster dissimilarity and vertical lines connect within-cluster dissimilarities to this line.

Value

The function returns a list of class mrpp with following items:

- **call**: Function call.
- **delta**: The overall weighted mean of group mean distances.
- **E.delta**: expected delta, under the null hypothesis of no group structure. This is the mean of original dissimilarities.
- **CS**: Classification strength (Van Sickle and Hughes, 2000). Currently not implemented and always NA.
- **n**: Number of observations in each class.
- **classdelta**: Mean dissimilarities within classes. The overall δ is the weighted average of these values with given weight.type.
- **pvalue**: Significance of the test.
- **A**: A chance-corrected estimate of the proportion of the distances explained by group identity; a value analogous to a coefficient of determination in a linear model.
- **distance**: Choice of distance metric used; the "method" entry of the dist object.
- **weight.type**: The choice of group weights used.
- **boot.deltas**: The vector of "permuted deltas," the deltas calculated from each of the permuted datasets. The distribution of this item can be inspected with permustats function.
- **permutations**: The number of permutations used.
- **control**: A list of control values for the permutations as returned by the function how.

Note

This difference may be one of location (differences in mean) or one of spread (differences in within-group distance). That is, it may find a significant difference between two groups simply because one of those groups has a greater dissimilarities among its sampling units. Most mrpp models can be analysed with adonis which seems not suffer from the same problems as mrpp and is a more robust alternative.
Author(s)

M. Henry H. Stevens <HStevens@muohio.edu> and Jari Oksanen.

References

See Also

anosim for a similar test based on ranks, and mantel for comparing dissimilarities against continuous variables, and vegdist for obtaining dissimilarities, adonis is a more robust alternative in most cases.

Examples

data(dune)
data(dune.env)
dune.mrpp <- with(dune.env, mrpp(dune, Management))
dune.mrpp

Save and change plotting parameters
def.par <- par(no.readonly = TRUE)
layout(matrix(1:2, nr=1))

plot(dune.ord <- metaMDS(dune), type="text", display="sites")
with(dune.env, ordihull(dune.ord, Management))

with(dune.mrpp, {
 fig.dist <- hist(boot.deltas, xlim=range(c(delta, boot.deltas)),
 main="Test of Differences Among Groups")
 abline(v=delta);
 text(delta, 2*mean(fig.dist$counts), adj = -0.5,
 expression(bold(delta)), cex=1.5)
})
par(def.par)
meandist
dune.md <- with(dune.env, meandist(vegdist(dune), Management))
dune.md
summary(dune.md)
plot(dune.md)
plot(dune.md, kind="histogram")
Description

The function `mso` adds an attribute `vario` to an object of class “cca” that describes the spatial partitioning of the `cca` object and performs an optional permutation test for the spatial independence of residuals. The function `plot.mso` creates a diagnostic plot of the spatial partitioning of the “cca” object.

Usage

```r
mso(object.cca, object.xy, grain = 1, round.up = FALSE, permutations = 0)
mso(x, alpha = 0.05, explained = FALSE, ylim = NULL, legend = "topleft", ...)
```

Arguments

- **object.cca**: An object of class `cca`, created by the `cca` or `rda` function.
- **object.xy**: A vector, matrix or data frame with the spatial coordinates of the data represented by `object.cca`. Must have the same number of rows as `object.ccaCAXbar` (see `cca.object`).
- **grain**: Interval size for distance classes.
- **round.up**: Determines the choice of breaks. If false, distances are rounded to the nearest multiple of grain. If true, distances are rounded to the upper multiple of grain.
- **permutations**: A list of control values for the permutations as returned by the function `how`, or the number of permutations required, or a permutation matrix where each row gives the permuted indices.
- **x**: A result object of `mso`.
- **alpha**: Significance level for the two-sided permutation test of the Mantel statistic for spatial independence of residual inertia and for the point-wise envelope of the variogram of the total variance. A Bonferroni-type correction can be achieved by dividing the overall significance value (e.g. 0.05) by the number of distance classes.
- **explained**: If false, suppresses the plotting of the variogram of explained variance.
- **ylim**: Limits for y-axis.
- **legend**: The x and y co-ordinates to be used to position the legend. They can be specified by keyword or in any way which is accepted by `legend`.
- **...**: Other arguments passed to functions.
Details

The Mantel test is an adaptation of the function `mantel` of the `vegan` package to the parallel testing of several distance classes. It compares the mean inertia in each distance class to the pooled mean inertia of all other distance classes.

If there are explanatory variables (RDA, CCA, pRDA, pCCA) and a significance test for residual autocorrelation was performed when running the function `mso`, the function `plot.mso` will print an estimate of how much the autocorrelation (based on significant distance classes) causes the global error variance of the regression analysis to be underestimated.

Value

The function `mso` returns an amended `cca` or `rda` object with the additional attributes `grain`, `H`, `H.test` and `vario`.

- `grain` - The grain attribute defines the interval size of the distance classes.
- `H` - `H` is an object of class ‘dist’ and contains the geographic distances between observations.
- `H.test` - `H.test` contains a set of dummy variables that describe which pairs of observations (rows = elements of object$H) fall in which distance class (columns).
- `vario` - The vario attribute is a data frame that contains some or all of the following components for the rda case (cca case in brackets):
 - `H` Distance class as multiples of grain.
 - `Dist` Average distance of pairs of observations in distance class H.
 - `n` Number of unique pairs of observations in distance class H.
 - `All` Empirical (chi-square) variogram of total variance (inertia).
 - `Sum` Sum of empirical (chi-square) variograms of explained and residual variance (inertia).
 - `CA` Empirical (chi-square) variogram of residual variance (inertia).
 - `CCA` Empirical (chi-square) variogram of explained variance (inertia).
 - `pCCA` Empirical (chi-square) variogram of conditioned variance (inertia).
 - `se` Standard error of the empirical (chi-square) variogram of total variance (inertia).
 - `CA.signif` P-value of permutation test for spatial independence of residual variance (inertia).

Note

The function is based on the code published in the Ecological Archives E085-006 (http://www.esapubs.org/archive/ecol/E085/006/default.htm).

Author(s)

The responsible author was Helene Wagner.
References

See Also

Function `cca` and `rda, cca.object`.

Examples

```r
## Reconstruct worked example of Wagner (submitted):
X <- matrix(c(1, 2, 3, 2, 1, 0), 3, 2)
Y <- c(3, -1, -2)
tmat <- c(1:3)
## Canonical correspondence analysis (cca):
Example.cca <- cca(X, Y)
Example.cca <- mso(Example.cca, tmat)
msoplot(Example.cca)
Example.cca$vario

## Correspondence analysis (ca):
Example.ca <- mso(cca(X), tmat)
msoplot(Example.ca)

## Unconstrained ordination with test for autocorrelation
## using oribatid mite data set as in Wagner (2004)
data(mite)
data(mite.env)
data(mite.xy)

mite.cca <- cca(log(mite + 1))
mite.cca <- mso(mite.cca, mite.xy, grain = 1, permutations = 99)
msoplot(mite.cca)
mite.cca

## Constrained ordination with test for residual autocorrelation
## and scale-invariance of species-environment relationships
mite.cca <- cca(log(mite + 1) ~ SubsDens + WatrCont + Substrate + Shrub + Topo, mite.env)
mite.cca <- mso(mite.cca, mite.xy, permutations = 99)
msoplot(mite.cca)
mite.cca
```

Multiplicative Diversity Partitioning

Description

In multiplicative diversity partitioning, mean values of alpha diversity at lower levels of a sampling hierarchy are compared to the total diversity in the entire data set or the pooled samples (gamma diversity).
Usage

multipart(...)

Default S3 method:
multipart(y, x, index=c("renyi", "tsallis"), scales = 1,
 global = FALSE, relative = FALSE, nsimul=99, ...)

S3 method for class 'formula'
multipart(formula, data, index=c("renyi", "tsallis"), scales = 1,
 global = FALSE, relative = FALSE, nsimul=99, ...)

Arguments

y A community matrix.

x A matrix with same number of rows as in y, columns coding the levels of sampling hierarchy. The number of groups within the hierarchy must decrease from left to right. If x is missing, two levels are assumed: each row is a group in the first level, and all rows are in the same group in the second level.

formula A two sided model formula in the form y ~ x, where y is the community data matrix with samples as rows and species as column. Right hand side (x) must be grouping variables referring to levels of sampling hierarchy, terms from right to left will be treated as nested (first column is the lowest, last is the highest level, at least two levels specified). Interaction terms are not allowed.

data A data frame where to look for variables defined in the right hand side of formula. If missing, variables are looked in the global environment.

index Character, the entropy index to be calculated (see Details).

relative Logical, if TRUE then beta diversity is standardized by its maximum (see Details).

scales Numeric, of length 1, the order of the generalized diversity index to be used.

global Logical, indicates the calculation of beta diversity values, see Details.

nsimul Number of permutation to use if matr is not of class 'permat'. If nsimul = 0, only the FUN argument is evaluated. It is thus possible to reuse the statistic values without using a null model.

... Other arguments passed to oecosimu, i.e. method, thin or burnin.

Details

Multiplicative diversity partitioning is based on Whittaker’s (1972) ideas, that has recently been generalised to one parametric diversity families (i.e. Rényi and Tsallis) by Jost (2006, 2007). Jost recommends to use the numbers equivalents (Hill numbers), instead of pure diversities, and proofs, that this satisfies the multiplicative partitioning requirements.

The current implementation of multipart calculates Hill numbers based on the functions renyi and tsallis (provided as index argument). If values for more than one scales are desired, it should be done in separate runs, because it adds extra dimensionality to the implementation, which has not been resolved efficiently.
Alpha diversities are then the averages of these Hill numbers for each hierarchy levels, the global gamma diversity is the alpha value calculated for the highest hierarchy level. When global = TRUE, beta is calculated relative to the global gamma value:

\[\beta_i = \frac{\gamma}{\alpha_i} \]

when global = FALSE, beta is calculated relative to local gamma values (local gamma means the diversity calculated for a particular cluster based on the pooled abundance vector):

\[\beta_{ij} = \frac{\alpha_{(i+1)j}}{\text{mean}(\alpha_{ij})} \]

where \(j \) is a particular cluster at hierarchy level \(i \). Then beta diversity value for level \(i \) is the mean of the beta values of the clusters at that level, \(\beta_i = \text{mean}(\beta_{ij}) \).

If relative = TRUE, the respective beta diversity values are standardized by their maximum possible values (\(\text{mean}(\beta_{ij})/\beta_{\text{max},ij} \)) given as \(\beta_{\text{max},ij} = n_j \) (the number of lower level units in a given cluster \(j \)).

The expected diversity components are calculated \(\text{n.simul} \) times by individual based randomisation of the community data matrix. This is done by the "r2table" method in \text{oecosimu} by default.

Value

An object of class 'multipart' with same structure as 'oecosimu' objects.

Author(s)

Péter Sólymos, <solymos@ualberta.ca>

References

See Also

See \text{adipart} for additive diversity partitioning, \text{hiersimu} for hierarchical null model testing and \text{oecosimu} for permutation settings and calculating \(p \)-values.

Examples

```r
## NOTE: 'n.simul' argument usually needs to be >= 99
## here much lower value is used for demonstration

data(mite)
data(mite.xy)
data(mite.env)
## Function to get equal area partitions of the mite data
cutter <- function (x, cut = seq(0, 10, by = 2.5)) {
  out <- rep(1, length(x))
}
for (i in 2:(length(cut) - 1))
  out[which(x > cut[i] & x <= cut[(i + 1)])] <- i
return(out))

## The hierarchy of sample aggregation
levsm <- with(mite.xy, data.frame(
  l1=1:nrow(mite),
  l2=cutter(y, cut = seq(0, 10, by = 2.5)),
  l3=cutter(y, cut = seq(0, 10, by = 5)),
  l4=cutter(y, cut = seq(0, 10, by = 10)))

## Multiplicative diversity partitioning
multipart(mite, levsm, index="renyi", scales=1, nsimul=19)
multipart(mite ~ ., levsm, index="renyi", scales=1, nsimul=19)
multipart(mite ~ ., levsm, index="renyi", scales=1, nsimul=19, relative=TRUE)
multipart(mite ~ ., levsm, index="renyi", scales=1, nsimul=19, global=TRUE)

---

**Nestedness Indices for Communities of Islands or Patches**

**Description**

Patches or local communities are regarded as nested if they all could be subsets of the same community. In general, species poor communities should be subsets of species rich communities, and rare species should only occur in species rich communities.

**Usage**

nestedchecker(comm)
nestedn0(comm)
nesteddisc(comm, niter = 200)
nestedtemp(comm, ...)
nestednodf(comm, order = TRUE, weighted = FALSE, wbinary = FALSE)
nestedbetasor(comm)
nestedbetajac(comm)

## S3 method for class 'nestedtemp'
plot(x, kind = c("temperature", "incidence"),
  col=rev(heat.colors(100)), names = FALSE, ...)

## S3 method for class 'nestednodf'
plot(x, col = "red", names = FALSE, ...)

**Arguments**

- **comm** Community data.
- **niter** Number of iterations to reorder tied columns.
- **x** Result object for a plot.
- **col** Colour scheme for matrix temperatures.
- **kind** The kind of plot produced.
names  Label columns and rows in the plot using names in comm. If it is a logical vector of length 2, row and column labels are returned accordingly.

order  Order rows and columns by frequencies.

weighted  Use species abundances as weights of interactions.

wbinary  Modify original method so that binary data give the same result in weighted and unweighted analysis.

...  Other arguments to functions.

Details

The nestedness functions evaluate alternative indices of nestedness. The functions are intended to be used together with Null model communities and used as an argument in oecosimu to analyse the non-randomness of results.

Function nestedchecker gives the number of checkerboard units, or 2x2 submatrices where both species occur once but on different sites (Stone & Roberts 1990).

Function nestednP implements nestedness measure N0 which is the number of absences from the sites which are richer than the most pauperate site species occurs (Patterson & Atmar 1986).

Function nesteddisc implements discrepancy index which is the number of ones that should be shifted to fill a row with ones in a table arranged by species frequencies (Brualdi & Sanderson 1999). The original definition arranges species (columns) by their frequencies, but did not have any method of handling tied frequencies. The nesteddisc function tries to order tied columns to minimize the discrepancy statistic but this is rather slow, and with a large number of tied columns there is no guarantee that the best ordering was found (argument niter gives the maximum number of tried orders). In that case a warning of tied columns will be issued.

Function nestedtemp finds the matrix temperature which is defined as the sum of “surprises” in arranged matrix. In arranged unsurprising matrix all species within proportion given by matrix fill are in the upper left corner of the matrix, and the surprise of the absence or presences is the diagonal distance from the fill line (Atmar & Patterson 1993). Function tries to pack species and sites to a low temperature (Rodríguez-Gironés & Santamaria 2006), but this is an iterative procedure, and the temperatures usually vary among runs. Function nestedtemp also has a plot method which can display either incidences or temperatures of the surprises. Matrix temperature was rather vaguely described (Atmar & Patterson 1993), but Rodríguez-Gironés & Santamaria (2006) are more explicit and their description is used here. However, the results probably differ from other implementations, and users should be cautious in interpreting the results. The details of calculations are explained in the vignette Design decisions and implementation that you can read using functions vignette or vegandocs. Function nestedness in the bipartite package is a direct port of the BINMATNEST programme of Rodríguez-Gironés & Santamaria (2006).

Function nestednodf implements a nestedness metric based on overlap and decreasing fill (Almeida-Neto et al., 2008). Two basic properties are required for a matrix to have the maximum degree of nestedness according to this metric: (1) complete overlap of 1’s from right to left columns and from down to up rows, and (2) decreasing marginal totals between all pairs of columns and all pairs of rows. The nestedness statistic is evaluated separately for columns (N columns) for rows (N rows) and combined for the whole matrix (NDF). If you set order = FALSE, the statistic is evaluated with the current matrix ordering allowing tests of other meaningful hypothesis of matrix structure than default ordering by row and column totals (breaking ties by total abundances when weighted = TRUE) (see Almeida-Neto et al. 2008). With weighted = TRUE, the function finds the
weighted version of the index (Almeida-Neto & Ulrich, 2011). However, this requires quantitative null models for adequate testing. Almeida-Neto & Ulrich (2011) say that you have positive nestedness if values in the first row/column are higher than in the second. With this condition, weighted analysis of binary data will always give zero nestedness. With argument \texttt{wbinary = TRUE}, equality of rows/columns also indicates nestedness, and binary data will give identical results in weighted and unweighted analysis. However, this can also influence the results of weighted analysis so that the results may differ from Almeida-Neto & Ulrich (2011).

Functions \texttt{nestedbetasor} and \texttt{nestedbetajac} find multiple-site dissimilarities and decompose these into components of turnover and nestedness following Baselga (2010). This can be seen as a decomposition of beta diversity (see \texttt{betadiver}). Function \texttt{nestedbetasor} uses Sørensen dissimilarity and the turnover component is Simpson dissimilarity (Baselga 2010), and \texttt{nestedbetajac} uses analogous methods with the Jaccard index. The functions return a vector of three items: turnover, nestedness and their sum which is the multiple Sørensen or Jaccard dissimilarity. The last one is the total beta diversity (Baselga 2010). The functions will treat data as presence/absence (binary) and they can be used with binary \texttt{nullmodel}. The overall dissimilarity is constant in all \texttt{nullmodels} that fix species (column) frequencies ("c0"), and all components are constant if row columns are also fixed (e.g., model "quasiswap"), and the functions are not meaningful with these null models.

Value

The result returned by a nestedness function contains an item called \texttt{statistic}, but the other components differ among functions. The functions are constructed so that they can be handled by \texttt{oecosimu}.

Author(s)

Jari Oksanen and Gustavo Carvalho (\texttt{nestednodf}).

References


nobs.adonis


**See Also**

In general, the functions should be used with oecosimu which generates Null model communities to assess the non-randomness of nestedness patterns.

**Examples**

```r
data(sipoo)
Matrix temperature
out <- nestedtemp(sipoo)
out
plot(out)
plot(out, kind="incid")
Use oecosimu to assess the non-randomness of checker board units
nestedchecker(sipoo)
oecosimu(sipoo, nestedchecker, "quasiswap")
Another Null model and standardized checkerboard score
oecosimu(sipoo, nestedchecker, "r00", statistic = "C.score")
```

---

**nobs.adonis** *Extract the Number of Observations from a vegan Fit.*

**Description**

Extract the number of ‘observations’ from a vegan model fit.

**Usage**

```r
S3 method for class 'adonis'
nobs(object, ...)
```

**Arguments**

- `object` A fitted model object.
  - `...` Further arguments to be passed to methods.

**Details**

Function `nobs` is generic in R, and vegan provides methods for objects from `adonis`, `betadisper`, `cca` and other related methods, `CCorA`, `decorana`, `isomap`, `metaMDS`, `pcnm`, `procrustes`, `radfit`, `varpart` and `wcmdscale`. 
Value

A single number, normally an integer, giving the number of observations.

Author(s)

Jari Oksanen

nullmodel

Null Model and Simulation

Description

The nullmodel function creates an object, which can serve as a basis for Null Model simulation via the simulate method. The update method updates the nullmodel object without sampling (effective for sequential algorithms).

Usage

nullmodel(x, method)
## S3 method for class 'nullmodel'
print(x, 
## S3 method for class 'nullmodel'
simulate(object, nsim = 1, 
seed = NULL, burnin = 0, thin = 1, 
## S3 method for class 'nullmodel'
update(object, nsim = 1, 
seed = NULL, 
## S3 method for class 'simmat'
print(x, 

Arguments

x

A community matrix. For the print method, it is an object to be printed.

method

Character, specifying one of the null model algorithms listed on the help page of commsim. It can be a user supplied object of class commsim.

object

An object of class nullmodel returned by the function nullmodel.

nsim

Positive integer, the number of simulated matrices to return. For the update method, it is the number of burnin steps made for sequential algorithms to update the status of the input model object.

seed

An object specifying if and how the random number generator should be initialized ("seeded"). Either NULL or an integer that will be used in a call to set.seed before simulating the matrices. If set, the value is saved as the "seed" attribute of the returned value. The default, NULL will not change the random generator state, and return .Random.seed as the "seed" attribute, see Value.
nullmodel

burnin  Nonnegative integer, specifying the number of steps discarded before starting simulation. Active only for sequential null model algorithms. Ignored for non-sequential null model algorithms.

thin    Positive integer, number of simulation steps made between each returned matrix. Active only for sequential null model algorithms. Ignored for non-sequential null model algorithms.

...  Additional arguments supplied to algorithms.

Details

The purpose of the nullmodel function is to create an object, where all necessary statistics of the input matrix are calculated only once. This information is reused, but not recalculated in each step of the simulation process done by the simulate method.

The simulate method carries out the simulation, the simulated matrices are stored in an array. For sequential algorithms, the method updates the state of the input nullmodel object. Therefore, it is possible to do diagnostic tests on the returned simmat object, and make further simulations, or use increased thinning value if desired.

The update method makes burnin steps in case of sequential algorithms to update the status of the input model without any attempt to return matrices. For non-sequential algorithms the method does nothing.

update is the preferred way of making burnin iterations without sampling. Alternatively, burnin can be done via the simulate method. For convergence diagnostics, it is recommended to use the simulate method without burnin. The input nullmodel object is updated, so further samples can be simulated if desired without having to start the process all over again. See Examples.

Value

The function nullmodel returns an object of class nullmodel. It is a set of objects sharing the same environment:

- data: original matrix in integer mode.
- nrow: number of rows.
- ncol: number of columns.
- rowSums: row sums.
- colSums: column sums.
- rowFreq: row frequencies (number of nonzero cells).
- colFreq: column frequencies (number of nonzero cells).
- totalSum: total sum.
- fill: number of nonzero cells in the matrix.
- commsim: the commsim object as a result of the method argument.
- state: current state of the permutations, a matrix similar to the original. It is NULL for non-sequential algorithms.
- iter: current number of iterations for sequential algorithms. It is NULL for non-sequential algorithms.
The simulate method returns an object of class `simmat`. It is an array of simulated matrices (third dimension corresponding to `nsim` argument).

The update method returns the current state (last updated matrix) invisibly, and update the input object for sequential algorithms. For non sequential algorithms, it returns NULL.

**Author(s)**

Jari Oksanen and Peter Solymos

**See Also**

`commsim`, `make.commsim`, `permatfull`, `permatswap`

**Examples**

```r
x <- matrix(rbinom(12*10, 1, 0.5)*rpois(12*10, 3), 12, 10)

non-sequential nullmodel
(nm <- nullmodel(x, "r00")
(sm <- simulate(nm, nsim=10))

sequential nullmodel
(nm <- nullmodel(x, "swap")
(sm1 <- simulate(nm, nsim=10, thin=5))
(sm2 <- simulate(nm, nsim=10, thin=5))

sequential nullmodel with burnin and extra updating
(nm <- nullmodel(x, "swap")
(sm1 <- simulate(nm, burnin=10, nsim=10, thin=5))
(sm2 <- simulate(nm, nsim=10, thin=5))

sequential nullmodel with separate initial burnin
(nm <- nullmodel(x, "swap")
nm <- update(nm, nsim=10)
(sm2 <- simulate(nm, nsim=10, thin=5))
```

**Description**

Function evaluates a statistic or a vector of statistics in community and evaluates its significance in a series of simulated random communities. The approach has been used traditionally for the analysis of nestedness, but the function is more general and can be used with any statistics evaluated with simulated communities. Function `oecosimu` collects and evaluates the statistics. The Null model communities are described in `make.commsim` and `permatfull/permatswap`, the definition of Null models in `nullmodel`, and nestedness statistics in `nestednodf` (which describes several alternative statistics, including nestedness temperature, N0, checker board units, nestedness discrepancy and NODF).
Usage

```r
oecosimu(comm, nestfun, method, nsimul = 99, burnin = 0, thin = 1,
 statistic = "statistic", alternative = c("two.sided", "less", "greater"),
 batchsize = NA, parallel =getOption("mc.cores"), ...)
```
# S3 method for class 'oecosimu'
as.ts(x, ...)
# S3 method for class 'oecosimu'
as.mcmc(x)

Arguments

- **comm**: Community data, or a Null model object generated by `nullmodel` or an object of class `simmat` (array of permuted matrices from `simulate.nullmodel`). If `comm` is a community data, null model simulation method must be specified. If `comm` is a `nullmodel`, the simulation method is ignored, and if `comm` is a `simmat` object, all other arguments are ignored except `nestfun`, `statistic` and `alternative`.

- **nestfun**: Function analysed. Some nestedness functions are provided in `vegan` (see `nestedtemp`), but any function can be used if it accepts the community as the first argument, and returns either a plain number or a vector or the result in list item with the name defined in argument `statistic`. See Examples for defining your own functions.

- **method**: Null model method: either a name (character string) of a method defined in `make.commsim` or a `commsim` function. This argument is ignored if `comm` is a `nullmodel` or a `simmat` object. See Details and Examples.

- **nsimul**: Number of simulated null communities (ignored if `comm` is a `simmat` object).

- **burnin**: Number of null communities discarded before proper analysis in sequential methods (such as `tswap`) (ignored with non-sequential methods or when `comm` is a `simmat` object).

- **thin**: Number of discarded null communities between two evaluations of nestedness statistic in sequential methods (ignored with non-sequential methods or when `comm` is a `simmat` object).

- **statistic**: The name of the statistic returned by `nestfun`.

- **alternative**: a character string specifying the alternative hypothesis, must be one of "two.sided" (default), "greater" or "less". Please note that the p-value of two-sided test is approximately two times higher than in the corresponding one-sided test ("greater" or "less" depending on the sign of the difference).

- **batchsize**: Size in Megabytes of largest simulation object. If a larger structure would be produced, the analysis is broken internally into batches. With default NA the analysis is not broken into batches. See Details.

- **parallel**: Number of parallel processes or a predefined socket cluster. With parallel = 1 uses ordinary, non-parallel processing. The parallel processing is done with `parallel` package. If you define a `nestfun` in Windows that needs other R packages than `vegan` or `permute`, you must set up a socket cluster before the call. See `vegandocs` decision-vegan for details.

- **x**: An `oecosimu` result object.

- **...**: Other arguments to functions.
Details

Function oecosimu is a wrapper that evaluates a statistic using function given by nestfun, and then simulates a series of null models based on nullmodel, and evaluates the statistic on these null models. The vegan packages contains some nestedness functions that are described separately (nestedchecker, nesteddisc, nestedn0, nestedtemp, nestednodof), but many other functions can be used as long as they are meaningful with simulated communities. An applicable function must return either the statistic as a plain number or a vector, or as a list element "statistic" (like chisq.test), or in an item whose name is given in the argument statistic. The statistic can be a single number (like typical for a nestedness index), or it can be a vector. The vector indices can be used to analyse site (row) or species (column) properties, see treedive for an example. Raup-Crick index (raupcrick) gives an example of using a dissimilarities.

The Null model type can be given as a name (quoted character string) that is used to define a Null model in make.commsim. These include all binary models described by Wright et al. (1998), Jonsson (2001), Gotelli & Entsminger (2003), Miklós & Podani (2004), and some others. There are several quantitative Null models, such those discussed by Hardy (2008), and several that are unpublished (see make.commsim, permatfull, permatswap for discussion). The user can also define her own commsim function (see Examples).

Function works by first defining a nullmodel with given commsim, and then generating a series of simulated communities with simulate.nullmodel. A shortcut can be used for any of these stages and the input can be

1. Community data (comm), Null model function (nestfun) and the number of simulations (nsimul).
2. A nullmodel object and the number of simulations, and argument method is ignored.
3. A three-dimensional array of simulated communities generated with simulate.nullmodel, and arguments method and nsimul are ignored.

The last case allows analysing several statistics with the same simulations.

The function first generates simulations with given nullmodel and then analyses these using the nestfun. With large data sets and/or large number of simulations, the generated objects can be very large, and if the memory is exhausted, the analysis can become very slow and the system can become unresponsive. The simulation will be broken into several smaller batches if the simulated nullmodel objective will be above the set batchsize to avoid memory problems (see object.size for estimating the size of the current data set). The parallel processing still increases the memory needs. The parallel processing is only used for evaluating nestfun. The main load may be in simulation of the nullmodel, and parallel argument does not help there.

Function as.ts transforms the simulated results of sequential methods into a time series or a ts object. This allows using analytic tools for time series in studying the sequences (see examples). Function as.mcmc transforms the simulated results of sequential methods into an mcmc object of the coda package. The coda package provides functions for the analysis of stationarity, adequacy of sample size, autocorrelation, need of burn-in and much more for sequential methods, and summary of the results. Please consult the documentation of the coda package.

Function permustats provides support to the standard density, densityplot, qqnorm and qqmath functions for the simulated values.
**Value**

Function `oecosimu` returns an object of class "oecosimu". The result object has items `statistic` and `oecosimu`. The statistic contains the complete object returned by `nestfun` for the original data. The `oecosimu` component contains the following items:

- **statistic**: Observed values of the statistic.
- **simulated**: Simulated values of the statistic.
- **means**: Mean values of the statistic from simulations.
- **z**: $z$-values or the standardized effect sizes of the observed statistic based on simulations.
- **pval**: The $P$-values of the statistic based on simulations.
- **alternative**: The type of testing as given in argument `alternative`.
- **method**: The method used in `nullmodel`.
- **isSeq**: TRUE if method was sequential.

**Note**

If you wonder about the name of `oecosimu`, look at journal names in the References (and more in `nestedtemp`).

The internal structure of the function was radically changed in `vegan 2.2-0` with introduction of `commsim` and `nullmodel` and deprecation of `commsimulator`. However, the results and the basic user interface remain the same (except that `method = "r0_old"` must be used to reproduce the old results of "method = r0").

**Author(s)**

Jari Oksanen and Peter Solymos

**References**


See Also

Function `oecosimu` currently defines null models with `commsim` and generates the simulated null model communities with `nullmodel` and `simulate.nullmodel`. For other applications of `oecosimu`, see `treedive` and `raupcrick`.

Function `rndtaxa` (labdsv package) randomizes a community table. See also `nestedtemp` (that also discusses other nestedness functions) and `treedive` for another application.

Examples

```r
Use the first eigenvalue of correspondence analysis as an index
of structure: a model for making your own functions.
data(sipoo)
Traditional nestedness statistics (number of checkerboard units)
oecosimu(sipoo, nestedchecker, "r0")
sequential model, one-sided test, a vector statistic
out <- oecosimu(sipoo, decorana, "swap", burnin=100, thin=10,
 statistic="evals", alt = "greater")
out
Inspect the swap sequence as a time series object
plot(as.ts(out))
lag.plot(as.ts(out))
acf(as.ts(out))
Density plot
densityplot(permustats(out), as.table = TRUE, layout = c(1,4))
Use quantitative null models to compare
mean Bray-Curtis dissimilarities
data(dune)
meandist <- function(x) mean(vegdist(x, "bray"))
mbc1 <- oecosimu(dune, meandist, "r2dtable")
mbc1

Define your own null model as a 'commsim' function: shuffle cells
in each row
foo <- function(x, n, nr, nc, ...) {
 out <- array(0, c(nr, nc, n))
 for (k in seq_len(n))
 out[,,k] <- apply(x, 2, function(z) sample(z, length(z)))
 out
}
cf <- commsim("myshuffle", foo, isSeq = FALSE, binary = FALSE,
 mode = "double")
oecosimu(dune, meandist, cf)
```

ordiarrows

**Add Arrows and Line Segments to Ordination Diagrams**

**Description**

Functions to add arrows, line segments, regular grids of points. The ordination diagrams can be produced by vegan `plot.cca, plot.decorana` or `ordiplot`. 
Usage

ordiarrows(ord, groups, levels, replicates, order.by, display = "sites", show.groups, startmark, label = FALSE, ...)
ordisegments(ord, groups, levels, replicates, order.by, display = "sites", show.groups, label = FALSE, ...)
ordigrid(ord, levels, replicates, display = "sites", lty = c(1,1), col = c(1,1), lwd = c(1,1), ...)  

Arguments

ord An ordination object or an ordiplot object.
groups Factor giving the groups for which the graphical item is drawn.
levels, replicates Alternatively, regular groups can be defined with arguments levels and replicates, where levels gives the number of groups, and replicates the number of successive items at the same group.
order.by Order points by increasing order of this variable within groups. Reverse sign of the variable for decreasing ordering.
display Item to displayed.
show.groups Show only given groups. This can be a vector, or TRUE if you want to show items for which condition is TRUE. This argument makes it possible to use different colours and line types for groups. The default is to show all groups.
label Label the groups by their names. In ordiellipse, ordihull and ordispider the the group name is in the centroid of the object, in ordiarrows in the start of the arrow, and in ordisegments at both ends. ordiellipse and ordihull use standard text, and others use ordilabel.
startmark plotting character used to mark the first item. The default is to use no mark, and for instance, startmark = 1 will draw a circle. For other plotting characters, see pch in points.
col Colour of lines in ordigrid. This argument is also passed to other functions to change the colour of lines.
lty, lwd Line type, line width used for levels and replicates in ordigrid.
... Parameters passed to graphical functions such as lines, segments, arrows, or to scores to select axes and scaling etc.

details
Function ordiarrows draws arrows and ordisegments draws line segments between successive items in the groups. Function ordigrid draws line segments both within the groups and for the corresponding items among the groups.

Note
These functions add graphical items to ordination graph: You must draw a graph first.
Display Groups or Factor Levels in Ordination Diagrams

Description

Functions to add convex hulls, 'spider' graphs, ellipses or cluster dendrogram to ordination diagrams. The ordination diagrams can be produced by vegan plot.cca, plot.decorana or ordiplot.

Usage

ordihull(ord, groups, display = "sites", draw = c("lines", "polygon", "none"),
          col = NULL, alpha = 127, show.groups, label = FALSE, ...)
ordiellipse(ord, groups, display = "sites", kind = c("sd", "se"), conf,
            draw = c("lines", "polygon", "none"), w = weights(ord, display),
            col = NULL, alpha = 127, show.groups, label = FALSE, ...)
ordispider(ord, groups, display = "sites", w = weights(ord, display),
           spiders = c("centroid", "median"), show.groups,
           label = FALSE, ...)
ordicluster(ord, cluster, prune = 0, display = "sites",
            w = weights(ord, display), ...)

## S3 method for class 'ordihull'
summary(object, ...)
## S3 method for class 'ordiellipse'
summary(object, ...)
ordiareatest(ord, groups, area = c("hull", "ellipse"), permutations = 999,
            parallel = getOption("mc.cores"), ...)

Author(s)

Jari Oksanen

See Also

The functions pass parameters to basic graphical functions, and you may wish to change the default values in arrows, lines and segments. You can pass parameters to scores as well.

Examples

eexample(pyrifos)
mod <- rda(pyrifos)
plot(mod, type = "n")
## Annual succession by ditches
ordiarrows(mod, ditch, label = TRUE)
## Show only control and highest Pyrifos treatment
plot(mod, type = "n")
ordiarrows(mod, ditch, label = TRUE,
          show.groups = c("2", "3", "5", "11"))
ordiarrows(mod, ditch, label = TRUE, show = c("6", "9"),
          col = 2)
legend("topleft", c("Control", "Pyrifos 44"), lty = 1, col = c(1, 2))

---

ordihull
# Arguments

**ord**  
An ordination object or an `ordiplot` object.

**groups**  
Factor giving the groups for which the graphical item is drawn.

**display**  
Item to displayed.

**draw**  
Use either `lines` or `polygon` to draw the lines. Graphical parameters are passed to both. The main difference is that polygons may be filled and non-transparent. With `none` nothing is drawn, but the function returns the `invisible` plotting data.

**col**  
Colour of hull or ellipse lines (if `draw = "lines"`) or their fills (if `draw = "polygon"`) in `ordihull` and `ordiellipse`. When `draw = "polygon"`, the colour of bordering lines can be set with argument border of the `polygon` function. For other functions the effect depends on the underlining functions this argument is passed to.

**alpha**  
Transparency of the fill colour with `draw = "polygon"` in `ordihull` and `ordiellipse`. The argument takes precedence over possible transparency definitions of the colour. The value must be in range 0...255, and low values are more transparent. Transparency is not available in all graphics devices or file formats.

**show.groups**  
Show only given groups. This can be a vector, or `TRUE` if you want to show items for which condition is `TRUE`. This argument makes it possible to use different colours and line types for groups. The default is to show all groups.

**label**  
Label the groups by their names in the centroid of the object. `ordiellipse` and `ordihull` use standard `text`, and others use `ordilabel`.

**w**  
Weights used to find the average within group. Weights are used automatically for `cca` and `decorana` results, unless undone by the user. `w=NULL` sets equal weights to all points.

**kind**  
Whether standard deviations of points (sd) or standard deviations of their (weighted) averages (se) are used.

**conf**  
Confidence limit for ellipses, e.g. 0.95. If given, the corresponding sd or se is multiplied with the corresponding value found from the Chi-squared distribution with 2df.

**spiders**  
Are centres or spider bodies calculated either as centroids (averages) or spatial medians.

**cluster**  
Result of hierarchic cluster analysis, such as `hclust` or `agnes`.

**prune**  
Number of upper level hierarchies removed from the dendrogram. If `prune > 0`, dendrogram will be disconnected.

**object**  
A result object from `ordihull` or `ordiellipse`. The result is `invisible`, but it can be saved, and used for summaries (areas etc. of hulls and ellipses).

**area**  
Evaluate the area of convex hulls of `ordihull`, or of ellipses of `ordiellipse`.

**permutations**  
a list of control values for the permutations as returned by the function `how`, or the number of permutations required, or a permutation matrix where each row gives the permuted indices.
parallel

Number of parallel processes or a predefined socket cluster. With parallel = 1 uses ordinary, non-parallel processing. The parallel processing is done with parallel package.

... Parameters passed to graphical functions or to scores to select axes and scaling etc.

Details

Function ordihull draws lines or polygons for the convex hulls found by function chull encircling the items in the groups.

Function ordiellipose draws lines or polygons for dispersion ellipses using either standard deviation of point scores or standard error of the (weighted) average of scores, and the (weighted) correlation defines the direction of the principal axis of the ellipse. An ellipsoid hull can be drawn with function ellipsoidhull of package cluster.

Function ordihull and ordiellipose return invisibly an object that has a summary method that returns the coordinates of centroids and areas of the hulls or ellipses. Function ordiareatest studies the one-sided hypothesis that these areas are smaller than with randomized groups.

Function ordispider draws a 'spider' diagram where each point is connected to the group centroid with segments. Weighted centroids are used in the correspondence analysis methods cca and decorana or if the user gives the weights in the call. If ordispider is called with cca or rda result without groups argument, the function connects each ‘WA’ scores to the corresponding ‘LC’ score. If the argument is a (invisible) ordihull object, the function will connect the points of the hull to their centroid.

Function ordicluster overlays a cluster dendrogram onto ordination. It needs the result from a hierarchic clustering such as hclust or agnes, or other with a similar structure. Function ordicluster connects cluster centroids to each other with line segments. Function uses centroids of all points in the clusters, and is therefore similar to average linkage methods.

Value

Functions ordihull, ordiellipose and ordispider return the invisible plotting structure.

Function ordispider return the coordinates to which each point is connected (centroids or ‘LC’ scores).

Function ordihull returns a list of coordinates of the hulls (which can be extracted with scores), and ordiellipose returns a list of covariance matrices and scales used in drawing the ellipses.

Note

These functions add graphical items to ordination graph: You must draw a graph first. To draw line segments, grids or arrows, see ordisegments, ordigrid and ordiarrows.

Author(s)

Jari Oksanen
Add Text on Non-transparent Label to an Ordination Plot.

Description

Function `ordilabel` is similar to `text`, but the text is on an opaque label. This can help in crowded ordination plots: you still cannot see all text labels, but at least the uppermost are readable. Argument `priority` helps to make the most important labels visible.

Usage

```
ordilabel(x, display, labels, choices = c(1, 2), priority, select,
 cex = 0.8, fill = "white", border = NULL, col = NULL, xpd = TRUE, ...)
```
Arguments

- **x**: An ordination object or any object known to `scores`.
- **display**: Kind of scores displayed (passed to `scores`).
- **labels**: Optional text used in plots. If this is not given, the text is found from the ordination object.
- **choices**: Axes shown (passed to `scores`).
- **priority**: Vector of the same length as the number of labels. The items with high priority will be plotted uppermost.
- **select**: Items to be displayed. This can either be a logical vector which is TRUE for displayed items or a vector of indices of displayed items.
- **cex**: Character expansion for the text (passed to `text`).
- **fill**: Background colour of the labels (the `col` argument of `polygon`).
- **border**: The colour and visibility of the border of the label as defined in `polygon`.
- **col**: Text colour. Default NULL will give the value of border or par("fg") if border is NULL.
- **xpd**: Draw labels also outside the plot region (see `par`).
- **...**: Other arguments (passed to `text`).

Details

The function may be useful with crowded ordination plots, in particular together with argument `priority`. You will not see all text labels, but at least some are readable. Other alternatives to crowded plots are `identify.ordiplot`, `orditorp` and `orditkplot`.

Author(s)

Jari Oksanen

See Also

- `scores`, `polygon`, `text`. The function is modelled after `s.label` in ade4 package.

Examples

```r
data(dune)
ord <- cca(dune)
plot(ord, type = "n")
ordilabel(ord, dis="sites", cex=1.2, font=3, fill="hotpink", col="blue")
You may prefer separate plots, but here species as well
ordilabel(ord, dis="sp", font=2, priority=colSums(dune))
```
ordiplot  

Alternative plot and identify Functions for Ordination

Description

Ordination plot function especially for congested plots. Function ordiplot always plots only unlabelled points, but identify.ordiplot can be used to add labels to selected site, species or constraint points. Function identify.ordiplot can be used to identify points from plot.cca, plot.decorana, plot.procrustes and plot.rad as well.

Usage

ordiplot(ord, choices = c(1, 2), type="points", display, xlim, ylim, cex = 0.7, ...)  
## S3 method for class 'ordiplot'
identify(x, what, labels, ...)  
## S3 method for class 'ordiplot'
points(x, what, select, ...)  
## S3 method for class 'ordiplot'
text(x, what, labels, select, ...)

Arguments

ord  
A result from an ordination.

choices  
Axes shown.

type  
The type of graph which may be "points", "text" or "none" for any ordination method.

display  
Display only "sites" or "species". The default for most methods is to display both, but for cca, rda and capscale it is the same as in plot.cca.

xlim, ylim  
the x and y limits (min,max) of the plot.

cex  
Character expansion factor for points and text.

...  
Other graphical parameters.

x  
A result object from ordiplot.

what  
Items identified in the ordination plot. The types depend on the kind of plot used. Most methods know sites and species, functions cca and rda know in addition constraints (for ‘LC’ scores), centroids and biplot, and plot.procrustes ordination plot has heads and points.

labels  
Optional text used for labels. Row names will be used if this is missing.

select  
Items to be displayed. This can either be a logical vector which is TRUE for displayed items or a vector of indices of displayed items.
Details

Function ordiplot draws an ordination diagram using black circles for sites and red crosses for species. It returns invisibly an object of class ordiplot which can be used by identify.ordiplot to label selected sites or species, or constraints in cca and rda.

The function can handle output from several alternative ordination methods. For cca, rda and decorana it uses their plot method with option type = "points". In addition, the plot functions of these methods return invisibly an ordiplot object which can be used by identify.ordiplot to label points. For other ordinations it relies on scores to extract the scores.

For full user control of plots, it is best to call ordiplot with type = "none" and save the result, and then add sites and species using points.ordiplot or text.ordiplot which both pass all their arguments to the corresponding default graphical functions.

Value

Function ordiplot returns invisibly an object of class ordiplot with items sites, species and constraints (if these are available in the ordination object). Function identify.ordiplot uses this object to label the point.

Note

The purpose of these functions is to provide similar functionality as the plot, plotid and specid methods in library labdsv. The functions are somewhat limited in parametrization, but you can call directly the standard identify and plot functions for a better user control.

Author(s)

Jari Oksanen

See Also

identify for basic operations, plot.cca, plot.decorana, plot.procrustes which also produce objects for identify.ordiplot and scores for extracting scores from non-vegan ordinations.

Examples

# Draw a plot for a non-vegan ordination (cmdscale).
data(dune)
dune.dis <- vegdist(wisconsin(dune))
dune.mds <- cmdscale(dune.dis, eig = TRUE)
dune.mds$species <- wascores(dune.mds$points, dune, expand = TRUE)
fig <- ordiplot(dune.mds, type = "none")
points(fig, "sites", pch=21, col="red", bg="yellow")
text(fig, "species", col="blue", cex=0.9)
# Default plot of the previous using identify to label selected points
## Not run:
fig <- ordiplot(dune.mds)
identify(fig, "spec")
## End(Not run)
ordipointlabel

Ordination Plots with Points and Optimized Locations for Text

Description

The function ordipointlabel produces ordination plots with points and text label to the points. The points are in the exact location given by the ordination, but the function tries to optimize the location of the text labels to minimize overplotting text. The function may be useful with moderately crowded ordination plots.

Usage

ordipointlabel(x, display = c("sites", "species"), choices = c(1, 2),
               col = c(1, 2), pch = c("o", "+"), font = c(1, 1),
               cex = c(0.8, 0.8), add = FALSE, select, ...)

## S3 method for class 'ordipointlabel'
plot(x, ...)

Arguments

x
   For ordipointlabel() a result object from an ordination function. For plot.ordipointlabel
   an object resulting from a call to ordipointlabel().
display
   Scores displayed in the plot.
choices
   Axes shown.
col, pch, font, cex
   Colours, point types, font style and character expansion for each kind of scores
   displayed in the plot. These should be vectors of the same length as the number
   of items in display.
add
   Add to an existing plot.
select
   Items to be displayed. This can either be a logical vector which is TRUE for
   displayed items or a vector of indices of displayed items. select is only used if
   a single set of scores is being plotted (i.e. length(display) == 1), otherwise
   it is ignored and a warning issued. If a logical vector is used, it must have the
   same length as the scores plotted.
...
   Other arguments passed to points and text.

Details

The function uses simulated annealing (optim, method = "SANN") to optimize the location of the text labels to the points. There are eight possible locations: up, down, sides and corners. There is a weak preference to text right above the point, and a weak avoidance of corner positions. The exact locations and the goodness of solution varies between runs, and there is no guarantee of finding the global optimum. The optimization can take a long time in difficult cases with a high number of potential overlaps. Several sets of scores can be displayed in one plot.

The function is modelled after pointLabel in maptools package (which has chained dependencies of 54 packages).
Value

The function returns invisibly an object of class ordipointlabel with items xy for coordinates of points, labels for coordinates of labels, items pch, cex and font for graphical parameters of each point or label. In addition, it returns the result of \texttt{optim} as an attribute \texttt{optim}. The unit of overlap is the area of character "$m$", and with variable \texttt{cex} it is the smallest alternative.

There is a \texttt{plot} method based on orditkplot but which does not alter nor reset the graphical parameters via \texttt{par}.

The result object from \texttt{ordipointlabel} inherits from \texttt{orditkplot}, and can also be replotted with its \texttt{plot} method. It may be possible to further edit the result object with \texttt{orditkplot}, but for good results it is necessary that the points span the whole horizontal axis without empty margins.

Note

The function is designed for ordination graphics, and the optimization works properly with plots of isometric aspect ratio.

Author(s)

Jari Oksanen

References

See \texttt{pointlabel} for references.

See Also

\texttt{pointlabel} for the model implementation, and \texttt{optim} for the optimization.

Examples

data(dune)
ord <- cca(dune)
plt <- ordipointlabel(ord)

## set scaling - should be no warnings!
ordipointlabel(ord, scaling = 1)

## plot then add
plot(ord, scaling = 3, type = "n")
ordipointlabel(ord, display = "species", scaling = 3, add = TRUE)
ordipointlabel(ord, display = "sites", scaling = 3, add = TRUE)

## redraw plot without rerunning SANN optimisation
plot(plt)
ordiresids  

Plots of Residuals and Fitted Values for Constrained Ordination

Description

The function provides plot.lm style diagnostic plots for the results of constrained ordination from cca, rda and capscale. Normally you do not need these plots, because ordination is descriptive and does not make assumptions on the distribution of the residuals. However, if you permute residuals in significance tests (anova.cca), you may be interested in inspecting that the residuals really are exchangeable and independent of fitted values.

Usage

ordiresids(x, kind = c("residuals", "scale", "qqmath"),
          residuals = "working", type = c("p", "smooth", "g"),
          formula, ...)

Arguments

x 
Ordination result from cca, rda or capscale.

kind 
The type of plot: "residuals" plot residuals against fitted values, "scale" the square root of absolute residuals against fitted values, and "qqmath" the residuals against expected distribution (defaults qnorm), unless defined differently in the formula argument).

residuals 
The kind of residuals and fitted values. The argument is passed on to fitted.cca with alternatives "working" and "response".

type 
The type of plot. The argument is passed on to lattice functions.

formula 
Formula to override the default plot. The formula can contain items Fitted, Residuals, Species and Sites (provided that names of species and sites are available in the ordination result).

... 
Other arguments passed to lattice functions.

Details

The default plots are similar as in plot.lm, but they use Lattice functions xyplot and qqmath. The alternatives have default formulae but these can be replaced by the user. The elements available in formula or in the groups argument are Fitted, Residuals, Species and Sites.

Value

The function return a Lattice object that can displayed as plot.

Author(s)

Jari Oksanen
ordistep

Choose a Model by Permutation Tests in Constrained Ordination

Description

Automatic stepwise model building for constrained ordination methods (cca, rda, capscale). The function ordistep is modelled after step and can do forward, backward and stepwise model selection using permutation tests. Function ordiR2step performs forward model choice solely on adjusted \( R^2 \) and P-value, for ordination objects created by rda or capscale.

Usage

ordistep(object, scope, direction = c("both", "backward", "forward"),
     Pin = 0.05, Pout = 0.1, permutations = how(nperm = 199), steps = 50,
     trace = TRUE, ...)
ordiR2step(object, scope, direction = c("both", "forward"),
     Pin = 0.05, R2scope = TRUE, permutations = how(nperm = 499),
     trace = TRUE, ...)

Arguments

- **object**: In ordistep, an ordination object inheriting from cca or rda. In ordiR2step, the object must inherit from rda, that is, it must have been computed using rda or capscale.
- **scope**: Defines the range of models examined in the stepwise search. This should be either a single formula, or a list containing components upper and lower, both formulae. See step for details. In ordiR2step, this defines the upper scope; it can also be an ordination object from with the model is extracted.
- **direction**: The mode of stepwise search, can be one of "both", "backward", or "forward", with a default of "both". If the scope argument is missing, the default for direction is "backward".
- **Pin, Pout**: Limits of permutation P-values for adding (Pin) a term to the model, or dropping (Pout) from the model. Term is added if \( P \leq \text{Pin} \), and removed if \( P > \text{Pout} \).
- **R2scope**: Use adjusted \( R^2 \) as the stopping criterion: only models with lower adjusted \( R^2 \) than scope are accepted.

See Also

plot.lm, Lattice, xyplot, qqmath.

Examples

data(varespec)
data(varechem)
mod <- cca(varespec ~ Al + P + K, varechem)
ordiresids(mod)
ordistep

permutations a list of control values for the permutations as returned by the function how, or the number of permutations required, or a permutation matrix where each row gives the permuted indices. This is passed to anova.cca: see there for details.

steps Maximum number of iteration steps of dropping and adding terms.

trace If positive, information is printed during the model building. Larger values may give more information.

... Any additional arguments to add1.cca and drop1.cca.

Details

The basic functions for model choice in constrained ordination are add1.cca and drop1.cca. With these functions, ordination models can be chosen with standard R function step which bases the term choice on AIC. AIC-like statistics for ordination are provided by functions deviance.cca and extractAIC.cca (with similar functions for rda). Actually, constrained ordination methods do not have AIC, and therefore the step may not be trusted. This function provides an alternative using permutation P-values.

Function ordistep defines the model, scope of models considered, and direction of the procedure similarly as step. The function alternates with drop and add steps and stops when the model was not changed during one step. The - and + signs in the summary table indicate which stage is performed. The number of permutations is selected adaptively with respect to the defined decision limit. It is often sensible to have Pout > Pin in stepwise models to avoid cyclic adds and drops of single terms.

Function ordiR2step builds model so that it maximizes adjusted $R^2$ (function RsquareAdj) at every step, and stopping when the adjusted $R^2$ starts to decrease, or the adjusted $R^2$ of the scope is exceeded, or the selected permutation P-value is exceeded (Blanchet et al. 2008). The second criterion is ignored with option R2step = FALSE, and the third criterion can be ignored setting Pin = 1 (or higher). The direction has choices "forward" and "both", but it is very exceptional that a term is dropped with the adjusted $R^2$ criterion. Function uses adjusted $R^2$ as the criterion, and it cannot be used if the criterion cannot be calculated. Therefore it is unavailable for cca. Adjusted $R^2$ cannot be calculated if the number of predictors is higher than the number of observations, but such models can be analysed with R2scope = FALSE.

Functions ordistep (based on P values) and ordiR2step (based on adjusted $R^2$ and hence on eigenvalues) can select variables in different order.

Value

Functions return the selected model with one additional component, anova, which contains brief information of steps taken. You can suppress voluminous output during model building by setting trace = FALSE, and find the summary of model history in the anova item.

Author(s)

Jari Oksanen

References

See Also

The function handles constrained ordination methods \texttt{cca}, \texttt{rda} and \texttt{capscale}. The underlying functions are \texttt{add1.cca} and \texttt{drop1.cca}, and the function is modelled after standard \texttt{step} (which also can be used directly but uses AIC for model choice, see \texttt{extractAIC.cca}). Function \texttt{ordirR2step} builds upon \texttt{RsquareAdj}.

Examples

```r
See add1.cca for another example

Dune data
data(dune)
data(dune.env)
mod0 <- rda(dune - 1, dune.env) # Model with intercept only
mod1 <- rda(dune ~ ., dune.env) # Model with all explanatory variables

With scope present, the default direction is "both"
ordistep(mod0, scope = formula(mod1), perm.max = 200)

Example without scope. Default direction is "backward"
ordistep(mod1, perm.max = 200)

Example of ordistep, forward
Not run:
ordistep(mod0, scope = formula(mod1), direction="forward", perm.max = 200)

End(Not run)

Mite data
data(mite)
data(mite.env)
mite.hel = decostand(mite, "hel")
mod0 <- rda(mite.hel ~ 1, mite.env) # Model with intercept only
mod1 <- rda(mite.hel ~ ., mite.env) # Model with all explanatory variables

Example of ordirR2step with default direction = "both"
(This never goes "backward" but evaluates included terms.)
step.res <- ordirR2step(mod0, mod1, perm.max = 200)
step.res$anova # Summary table

Example of ordirR2step with direction = "forward"
Not run:
step.res <- ordirR2step(mod0, scope = formula(mod1), direction="forward")
step.res$anova # Summary table

End(Not run)
```

\texttt{ordisurf} \hspace{1cm} \textit{Fit and Plot Smooth Surfaces of Variables on Ordination.}
**Description**

Function `ordisurf` fits a smooth surface for given variable and plots the result on ordination diagram.

**Usage**

```r
Default S3 method:
ordisurf(x, y, choices = c(1, 2), knots = 10,
 family = "gaussian", col = "red", isotropic = TRUE,
 thinplate = TRUE, bs = "tp", fx = FALSE, add = FALSE,
 display = "sites", w = weights(x), main, nlevels = 10,
 levels, npoints = 31, labcex = 0.6, bubble = FALSE,
 cex = 1, select = TRUE, method = "REML", gamma = 1,
 plot = TRUE, lwd.cl = par("lwd"), ...)
S3 method for class 'formula'
ordisurf(formula, data, ...)
S3 method for class 'ordisurf'
calibrate(object, newdata, ...)
S3 method for class 'ordisurf'
plot(x, what = c("contour","persp","gam"),
 add = FALSE, bubble = FALSE, col = "red", cex = 1,
 nlevels = 10, levels, labcex = 0.6, lwd.cl = par("lwd"), ...)
```

**Arguments**

- `x`: For `ordisurf` an ordination configuration, either a matrix or a result known by `scores`. For `plot.ordisurf` an object of class "ordisurf" as returned by `ordisurf`.
- `y`: Variable to be plotted / modelled as a function of the ordination scores.
- `choices`: Ordination axes.
- `knots`: Number of initial knots in `gam` (one more than degrees of freedom). If knots = 0 or knots = 1 the function will fit a linear trend surface, and if knots = 2 the function will fit a quadratic trend surface instead of a smooth surface. A vector of length 2 is allowed when isotropic = FALSE, with the first and second elements of knots referring to the first and second of ordination dimensions (as indicated by choices) respectively.
- `family`: Error distribution in `gam`.
- `col`: Colour of contours.
- `isotropic`, `thinplate`: Fit an isotropic smooth surface (i.e. same smoothness in both ordination dimensions) via `gam`. Use of thinplate is deprecated and will be removed in a future version of the package.
- `bs`: a two letter character string indicating the smoothing basis to use. (eg "tp" for thin plate regression spline, "cr" for cubic regression spline). One of c("tp", "ts", "cr", "cs", ...).
See smooth.terms for an overview of what these refer to. The default is to use thin plate splines: bs = "tp".

*fx* indicates whether the smoothers are fixed degree of freedom regression splines (fx = FALSE) or penalised regression splines (fx = TRUE). Can be a vector of length 2 for anisotropic surfaces (isotropic = FALSE). It doesn’t make sense to use fx = TRUE and select = TRUE and it is an error to do so. A warning is issued if you specify fx = TRUE and forget to use select = FALSE though fitting continues using select = FALSE.

*add* Add contours to an existing diagram or draw a new plot?

*display* Type of scores known by scores: typically "sites" for ordinary site scores or "lc" for linear combination scores.

*w* Prior weights on the data. Concerns mainly cca and decorana results which have nonconstant weights.

*main* The main title for the plot, or as default the name of plotted variable in a new plot.

*nlevels, levels* Either a vector of levels for which contours are drawn, or suggested number of contours in nlevels if levels are not supplied.

*npoints* numeric; the number of locations at which to evaluate the fitted surface. This represents the number of locations in each dimension.

*labcex* Label size in contours. Setting this zero will suppress labels.

*bubble* Use a “bubble plot” for points, or vary the point diameter by the value of the plotted variable. If bubble is numeric, its value is used for the maximum symbol size (as in cex), or if bubble = TRUE, the value of cex gives the maximum. The minimum size will always be cex = 0.4. The option only has an effect if add = FALSE.

*cex* Character expansion of plotting symbols.

*select* Logical; specify gam argument "select". If this is TRUE then gam can add an extra penalty to each term so that it can be penalized to zero. This means that the smoothing parameter estimation that is part of fitting can completely remove terms from the model. If the corresponding smoothing parameter is estimated as zero then the extra penalty has no effect.

*method* character; the smoothing parameter estimation method. Options allowed are:

- "GCV.Cp" uses GCV for models with unknown scale parameter and Mallows’ Cp/UBRE/AIC for models with known scale; "GACV.Cp" as for "GCV.Cp" but uses GACV (Generalised Approximate CV) instead of GCV; "REML" and "ML" use restricted maximum likelihood or maximum likelihood estimation for both known and unknown scale; and "P-REML" and "P-ML" use REML or ML estimation but use a Pearson estimate of the scale.

*gamma* Multiplier to inflate model degrees of freedom in GCV or UBRE/AIC score by. This effectively places an extra penalty on complex models. An oft-used value is gamma = 1.4.

*plot* logical; should any plotting be done by ordisurf? Useful if all you want is the fitted response surface model.
ordisurf

lwd.cl numeric; the lwd (line width) parameter to use when drawing the contour lines.

formula, data Alternative definition of the fitted model as x ~ y, where left-hand side is the ordination x and right-hand side the single fitted continuous variable y. The variable y must be in the working environment or in the data frame or environment given by data. All other arguments of are passed to the default method.

object An ordisurf result object.

newdata Coordinates in two-dimensional ordination for new points.

what character; what type of plot to produce. "contour" produces a contour plot of the response surface, see contour for details. "persp" produces a perspective plot of the same, see persp for details. "gam" plots the fitted GAM model, an object that inherits from class "gam" returned by ordisurf, see plot.gam.

... Other parameters passed to scores, or to the graphical functions. See Note below for exceptions.

Details

Function ordisurf fits a smooth surface using penalised splines (Wood 2003) in gam, and uses predict.gam to find fitted values in a regular grid. The smooth surface can be fitted with an extra penalty that allows the entire smoother to be penalized back to 0 degrees of freedom, effectively removing the term from the model (see Marra & Wood, 2011). The addition of this extra penalty is invoked by setting argument select to TRUE. An alternative is to use a spline basis that includes shrinkage (bs = "ts" or bs = "cs").

ordisurf() exposes a large number of options from gam for specifying the basis functions used for the surface. If you stray from the defaults, do read the Notes section below and relevant documentation in s and smooth.terms.

The function plots the fitted contours with convex hull of data points either over an existing ordination diagram or draws a new plot. If select = TRUE and the smooth is effectively penalised out of the model, no contours will be plotted.

gam determines the degree of smoothness for the fitted response surface during model fitting, unless fx = TRUE. Argument method controls how gam performs this smoothness selection. See gam for details of the available options. Using "REML" or "ML" yields p-values for smooths with the best coverage properties if such things matter to you.

The function uses scores to extract ordination scores, and x can be any result object known by that function.

The user can supply a vector of prior weights w. If the ordination object has weights, these will be used. In practise this means that the row totals are used as weights with cca or decorana results. If you do not like this, but want to give equal weights to all sites, you should set w = NULL. The behaviour is consistent with envfit. For complete accordance with constrained cca, you should set display = "lc" (and possibly scaling = 2).

Function calibrate returns the fitted values of the response variable. The newdata must be coordinates of points for which the fitted values are desired. The function is based on predict.gam and will pass extra arguments to that function.
Value

`ordisurf` is usually called for its side effect of drawing the contour plot. The function returns a result object of class "ordisurf" that inherits from `gam` used internally to fit the surface, but adds an item `grid` that contains the data for the grid surface. The item `grid` has elements `x` and `y` which are vectors of axis coordinates, and element `z` that is a matrix of fitted values for `contour`. The values outside the convex hull of observed points are indicated as `NA` in `z`. The `gam` component of the result can be used for further analysis like predicting new values (see `predict.gam`).

Warning

The fitted GAM is a regression model and has the usual assumptions of such models. Of particular note is the assumption of independence of residuals. If the observations are not independent (e.g. they are repeat measures on a set of objects, or from an experimental design, *inter alia*) do not trust the $p$-values from the GAM output.

If you need further control (i.e. to add additional fixed effects to the model, or use more complex smoothers), extract the ordination scores using the `scores` function and then generate your own `gam` call.

Note

The default is to use an isotropic smoother via `s` employing thin plate regression splines (`bs = "tp"`). These make sense in ordination as they have equal smoothing in all directions and are rotation invariant. However, if different degrees of smoothness along dimensions are required, an anisotropic smooth surface may be more applicable. This can be achieved through the use of `isotropic = FALSE`, wherein the surface is fitted via a tensor product smoother via `te` (unless `bs = "ad"`, in which case separate splines for each dimension are fitted using `s`).

Cubic regression splines and P splines can only be used with `isotropic = FALSE`.

Adaptive smooths (`bs = "ad"`), especially in two dimensions, require a large number of observations; without many hundreds of observations, the default complexities for the smoother will exceed the number of observations and fitting will fail.

To get the old behaviour of `ordisurf` use `select = FALSE`, `method = "GCV.Cp"`, `fx = FALSE`, and `bs = "tp"`. The latter two options are the current defaults.

Graphical arguments supplied to `plot.ordisurf` are passed on to the underlying plotting functions, `contour`, `persp`, and `plot.gam`. The exception to this is that arguments `col` and `cex` cannot currently be passed to `plot.gam` because of a bug in the way that function evaluates arguments when arranging the plot.

A work-around is to call `plot.gam` directly on the result of a call to `ordisurf`. See the Examples for an illustration of this.

Author(s)

Dave Roberts, Jari Oksanen and Gavin L. Simpson

References


**See Also**

For basic routines `gam`, and `scores`. Function `envfit` provides a more traditional and compact alternative.

**Examples**

```r
data(varespec)
data(varechem)
vare.dist <- vegdist(varespec)
vare.mds <- monoMDS(vare.dist)
ordisurf(vare.mds ~ Baresoil, varechem, bubble = 5)

as above but without the extra penalties on smooth terms,
and using GCV smoothness selection (old behaviour of `ordisurf()`):
ordisurf(vare.mds ~ Baresoil, varechem, col = "blue", add = TRUE,
 select = FALSE, method = "GCV.Cp")

Cover of Cladina arbuscula
fit <- ordisurf(vare.mds ~ Cladarbu, varespec, family=quasipoisson)
Get fitted values
calibrate(fit)

Variable selection via additional shrinkage penalties
This allows non-significant smooths to be selected out
of the model not just to a linear surface. There are 2
options available:
- option 1: `select = TRUE` --- the *default*
 ordisurf(vare.mds ~ Baresoil, varechem, method = "REML", select = TRUE)
- option 2: use a basis with shrinkage
 ordisurf(vare.mds ~ Baresoil, varechem, method = "REML", bs = "ts")
or bs = "cs" with `isotropic = FALSE`

Plot method
plot(fit, what = "contour")

Plotting the "gam" object
plot(fit, what = "gam") ## `col' and `cex' not passed on
or via plot.gam directly
library(mgcv)
plot.gam(fit, cex = 2, pch = 1, col = "blue")
`col' effects all objects drawn...

controlling the basis functions used
Use Duchon splines
ordisurf(vare.mds ~ Baresoil, varechem, bs = "ds")

A fixed degrees of freedom smooth, must use 'select = FALSE'
ordisurf(vare.mds ~ Baresoil, varechem, knots = 4,
 fx = TRUE, select = FALSE)
```
orditkplot

Ordination Plot with Movable Labels

Description

Function orditkplot produces an editable ordination plot with points and labels. The labels can be moved with mouse, and the edited plot can be saved as an encapsulated postscript file or exported via \texttt{R} plot function to other graphical formats, or saved in the \texttt{R} session for further processing.

Usage

orditkplot(x, display = "species", choices = 1:2, width, xlim, ylim, tcex = 0.8, tcol, pch = 1, pcol, pbg, pce = 0.7, labels, ...)

## S3 method for class 'orditkplot'
plot(x, ...)
## S3 method for class 'orditkplot'
points(x, ...)
## S3 method for class 'orditkplot'
text(x, ...)
## S3 method for class 'orditkplot'
scores(x, display, ...)

Arguments

\textbf{x} \hspace{1cm} An ordination result or any other object that \texttt{scores} can handle, or for the plot function the object dumped from the interactive orditkplot session.

\textbf{display} \hspace{1cm} Type of \texttt{scores} displayed. For ordination scores this typically is either "species" or "sites", and for orditkplot result it is either "points" or "labels".

\textbf{choices} \hspace{1cm} Axes displayed.

\textbf{width} \hspace{1cm} Width of the plot in inches; defaults to the current width of the graphical device.

\textbf{xlim, ylim} \hspace{1cm} x and y limits for plots: points outside these limits will be completely removed.

\textbf{tcex} \hspace{1cm} Character expansion for text labels.

\textbf{tcol} \hspace{1cm} Colour of text labels.

\textbf{pch, pcol, pbg} \hspace{1cm} Point type and outline and fill colours. Defaults \texttt{pch="black"} and \texttt{pbg="transparent"}. Argument \texttt{pbg} has an effect only in filled plotting characters \texttt{pch = 21 to 25}.
orditkplot

pce
Expansion factor for point size.

labels
Labels used instead of row names.

... Other arguments passed to the function. These can be graphical parameters (see par) used in the plot, or extra arguments to scores. These arguments are ignored in plot, but honoured in text and points.

Details

Function orditkplot uses tcltk package to draw Tcl/Tk based ordination graphics with points and labels. The function opens an editable canvas with fixed points, but the labels can be dragged with mouse to better positions or edited. In addition, it is possible to zoom to a part of the graph.

The function knows the following mouse operations:

- **Left mouse button** can be used to move labels to better positions. A line will connect a label to the corresponding point.

- **Double clicking left mouse button** opens a window where the label can be edited. After editing the label, hit the Return key.

- **Right mouse button** (or alternatively, Shift-Mouse button with one-button mouse) can be used for zooming to a part of the graph. Keeping the mouse button down and dragging will draw a box of the zoomed area, and after releasing the button, a new plot window will be created (this is still preliminary: all arguments are not passed to the new plot).

In addition there are buttons for the following tasks: Copy to EPS copies the current plot to an encapsulated postscript (eps) file using standard Tcl/Tk utilities. The faithfulness of this copy is system dependent. Button Export plot uses plot.orditkplot function to redraw the plot into graphical file formats. Depending on the system, the following graphical formats may be available: eps, pdf, png, jpeg or bmp. The file type is deduced from the file suffix or the selection of the file type in the dialogue box. Alternatively, the same dialogue can be used to save the plot to an editable xfig file. Button Dump to R writes the edited coordinates of labels and points to the R session for further processing, and the plot.orditkplot function can be used to display the results. For faithful replication of the plot, the graph must have similar dimensions as the orditkplot canvas had originally. The plot function cannot be configured, but it uses the same settings as the original Tcl/Tk plot. However, points and text functions are fully configurable, and unaware of the original Tcl/Tk plot settings (probably you must set cex at least to get a decent plot). Finally, button Dismiss closes the window.

The produced plot will have equal aspect ratio. The width of the horizontal axis is fixed, but vertical axes will be scaled to needed height, and you can use scrollbar to move vertically if the whole canvas does not fit the window. If you use dumped labels in ordinary R plots, your plot must have the same dimensions as the orditkplot canvas to have identical location of the labels.

The function only displays one set of scores. However, you can use ordipointlabel to produce a result object that has different points and text types for several sets of scores and this can further edited with orditkplot. For a good starting solution you need to scale the ordipointlabel result so that the points span over the whole horizontal axis.

The plot is a Tcl/Tk canvas, but the function tries to replicate standard graphical device of the platform, and it honours several graphical parameters (see par). Many of the graphical parameters can be given on the command line, and they will be passed to the function without influencing other graphical devices in R. At the moment, the following graphical parameters are honoured: pch bg,
cex, cex.axis, cex.lab, col (for labels), col.axis, col.lab, family (for font faces), fg, font, font.axis, font.lab, lheight, lwd (for the box), mar, mex, mgp, ps, tcl. These can be set with `par`, and they also will influence other plots similarly.

The `tkcanvas` text cannot be rotated, and therefore vertical axis is not labelled, and las parameter will not be honoured in the Tcl/Tk plot, but it will be honoured in the exported R plots and in `plot.orditkplot`.

**Value**

Function returns nothing useful directly, but you can save the edited graph to a file or dump the edited positions to an R session for further processing and plotting.

**Note**

You need `tcltk` package and R must have been configured with `capabilities` for `tcltk` when building the binary. Depending on your OS, you may need to start X11 and set the display before loading `tcltk` and starting the function (for instance, with `Sys.setenv("DISPLAY":"@0")`). See `tcltk-package`.

**Author(s)**

Jari Oksanen

**See Also**

Function `ordipointlabel` is an automatic procedure with similar goals of avoiding overplotting. See `ordiplot, plot.cca, ordirgl` and `ordinor` for alternative ordination plots, and `scores` for extracting ordination scores.

**Examples**

```R
The example needs user interaction and is not executed directly.
It should work when pasted to the window.
Not run:
data(varespec)
ord <- cca(varespec)
Do something with the graph and end by clicking "Dismiss"
orditkplot(ord, mar = c(4,4,1,1)+1, font=3)
Use ordipointlabel to produce a plot that has both species and site
scores in different colors and plotting symbols
pl <- ordipointlabel(ord)
orditkplot(pl)
End(Not run)
```
Add Text or Points to Ordination Plots

Description

The function adds text or points to ordination plots. Text will be used if this can be done without overwriting other text labels, and points will be used otherwise. The function can help in reducing clutter in ordination graphics, but manual editing may still be necessary.

Usage

```r
orditorp(x, display, labels, choices = c(1, 2), priority,
 select, cex = 0.7, pcex, col = par("col"), pcol,
 pch = par("pch"), air = 1, ...)
```

Arguments

- **x**: A result object from ordination or an `ordiplot` result.
- **display**: Items to be displayed in the plot. Only one alternative is allowed. Typically this is "sites" or "species".
- **labels**: Optional text used for labels. Row names will be used if this is missing.
- **choices**: Axes shown.
- **priority**: Text will be used for items with higher priority if labels overlap. This should be a vector of the same length as the number of items plotted.
- **select**: Items to be displayed. This can either be a logical vector which is TRUE for displayed items or a vector of indices of displayed items. If a logical vector is used, it must have the same length as the scores plotted.
- **cex, pcex**: Text and point sizes, see `plot.default`.
- **col, pcol**: Text and point colours, see `plot.default`.
- **pch**: Plotting character, see `points`.
- **air**: Amount of empty space between text labels. Values <1 allow overlapping text.
- **...**: Other arguments to `scores` (and its various methods), `text` and `points`.

Details

Function `orditorp` will add either text or points to an existing plot. The items with high priority will be added first and text will be used if this can be done without overwriting previous labels, and points will be used otherwise. If priority is missing, labels will be added from the outskirts to the centre. Function `orditorp` can be used with most ordination results, or plotting results from `ordiplot` or ordination plot functions (`plot.cca`, `plot.decorana`, `plot.metaMDS`).

Arguments can be passed to the relevant `scores` method for the ordination object (x) being drawn. See the relevant `scores` help page for arguments that can be used.
Value

The function returns invisibly a logical vector where TRUE means that item was labelled with text and FALSE means that it was marked with a point. The returned vector can be used as the select argument in ordination text and points functions.

Author(s)

Jari Oksanen

Examples

```r
A cluttered ordination plot:
data(BCI)
mod <- cca(BCI)
plot(mod, dis="sp", type="t")
Now with orditorp and abbreviated species names
cnam <- make.cepnames(names(BCI))
plot(mod, dis="sp", type="n")
stems <- colSums(BCI)
orditorp(mod, "sp", label = cnam, priority=stems, pch="+", pcol="grey")

show select in action
set.seed(1)
take <- sample(ncol(BCI), 50)
plot(mod, dis="sp", type="n")
stems <- colSums(BCI)
orditorp(mod, "sp", label = cnam, priority=stems, select = take,
 pch="+", pcol="grey")
```

ordixyplot

Trellis (Lattice) Plots for Ordination

Description

Functions ordicloud, ordisplom and ordixyplot provide an interface to plot ordination results using Trellis functions `cloud`, `splom` and `xyplot` in package `lattice`.

Usage

```r
ordixyplot(x, data = NULL, formula, display = "sites", choices = 1:3,
 panel = "panel.ordi", aspect = "iso", envfit,
 type = c("p", "biplot"), ...)
ordisplom(x, data=NULL, formula = NULL, display = "sites", choices = 1:3,
 panel = "panel.ordi", type = "p", ...)
ordicloud(x, data = NULL, formula, display = "sites", choices = 1:3,
 panel = "panel.ordi3d", prepanel = "prepanel.ordi3d", ...)
```
**Arguments**

- **x**
  An ordination result that `scores` knows: any ordination result in `vegan` and many others.

- **data**
  Optional data to amend ordination results. The ordination results are found from `x`, but you may give here data for other variables needed in plots. Typically these are environmental data.

- **formula**
  Formula to define the plots. A default formula will be used if this is omitted. The ordination axes must be called by the same names as in the ordination results (and these names vary among methods). In `ordisplom`, special character `. refers to the ordination result.

- **display**
  The kind of scores: an argument passed to `scores`.

- **choices**
  The axes selected: an argument passed to `scores`.

- **panel, prepanel**
  The names of the panel and prepanel functions.

- **aspect**
  The aspect of the plot (passed to the `lattice` function).

- **envfit**
  Result of `envfit` function displayed in `ordixyplot`. Please note that this needs same choices as `ordixyplot`.

- **type**
  The type of plot. This knows the same alternatives as `panel.xyplot`. In addition `ordixyplot` has alternatives "biplot" and "arrows". The first displays fitted vectors and factor centroids of `envfit`, or in constrained ordination, the biplot arrows and factor centroids if `envfit` is not given. The second (type = "arrows") is a trellis variant of `ordiarrows` and draws arrows by groups. The line parameters are controlled by `trellis.par.set` for `superpose.line`, and the user can set `length`, `angle` and `ends` parameters of `panel.arrows`.

- **...**
  Arguments passed to `scores` methods or `lattice` functions.

**Details**

The functions provide an interface to the corresponding `lattice` functions. All graphical parameters are passed to the `lattice` function so that these graphs are extremely configurable. See `Lattice` and `xyplot`, `splom` and `cloud` for details, usage and possibilities.

The argument `x` must always be an ordination result. The scores are extracted with `vegan` function `scores` so that these functions work with all `vegan` ordinations and many others.

The `formula` is used to define the models. All functions have simple default formulae which are used if `formula` is missing. If `formula` is omitted in `ordisplom` it produces a pairs plot of ordination axes and variables in data. If `formula` is given, ordination results must be referred to as . and other variables by their names. In other functions, the formula must use the names of ordination scores and names of data.

The ordination scores are found from `x`, and `data` is optional. The data should contain other variables than ordination scores to be used in plots. Typically, they are environmental variables (typically factors) to define panels or plot symbols.

The proper work is done by the panel function. The layout can be changed by defining own panel functions. See `panel.xyplot`, `panel.splom` and `panel.cloud` for details and survey of possibilities.
Ordination graphics should always be isometric: same scale should be used in all axes. This is controlled (and can be changed) with argument aspect in ordixyplot. In ordicloud the isometric scaling is defined in panel and prep panel functions. You must replace these functions if you want to have non-isometric scaling of graphs. You cannot select isometric scaling in ordisplom.

Value

The function return **Lattice** objects of class "trellis".

Author(s)

Jari Oksanen

See Also

*Lattice*, *xyplot*, *splom*, *cloud*, *panel.splom*, *panel.cloud*

Examples

```r
data(dune)
data(dune.env)
ord <- cca(dune)
Pairs plots
donetrashplot(ord)
donetrashplot(ord, data=dune.env, choices=1:2)
donetrashplot(ord, data=dune.env, form ~ . | Management, groups=Manure)
Scatter plot
donetrashplot(ord, data=dune.env, form = CA1 ~ CA2 | Management,
groups=Manure)
Choose a different scaling
donetrashplot(ord, scaling = 3)
... Slices of third axis
donetrashplot(ord, form = CA1 ~ CA2 | equal.count(CA3, 4), type = c("g","p"))
Display environmental variables
donetrashplot(ord, envfit = envfit(ord ~ Management + A1, dune.env, choices=1:3))
3D Scatter plots
donetrashplot(ord, form = CA2 ~ CA3*CA1, groups = Manure, data = dune.env)
donetrashplot(ord, form = CA2 ~ CA3*CA1 | Management, groups = Manure,
data = dune.env, auto.key = TRUE, type = c("p","h"))
```

---

**pcnm**

Principal Coordinates of Neighbourhood Matrix

Description

This function computed classical PCNM by the principal coordinate analysis of a truncated distance matrix. These are commonly used to transform (spatial) distances to rectangular data that suitable for constrained ordination or regression.
Usage

pcnm(dis, threshold, w, dist.ret = FALSE)

Arguments

dis       A distance matrix.
threshold  A threshold value or truncation distance. If missing, minimum distance giving
           connected network will be used. This is found as the longest distance in the
           minimum spanning tree of dis.
w         Prior weights for rows.
dist.ret  Return the distances used to calculate the PCNMs.

Details

Principal Coordinates of Neighbourhood Matrix (PCNM) map distances between rows onto rectangular matrix on rows using a truncation threshold for long distances (Borcard & Legendre 2002). If original distances were Euclidean distances in two dimensions (like normal spatial distances), they could be mapped onto two dimensions if there is no truncation of distances. Because of truncation, there will be a higher number of principal coordinates. The selection of truncation distance has a huge influence on the PCNM vectors. The default is to use the longest distance to keep data connected. The distances above truncation threshold are given an arbitrary value of 4 times threshold. For regular data, the first PCNM vectors show a wide scale variation and later PCNM vectors show smaller scale variation (Borcard & Legendre 2002), but for irregular data the interpretation is not as clear.

The PCNM functions are used to express distances in rectangular form that is similar to normal explanatory variables used in, e.g., constrained ordination (rda, cca and capscale) or univariate regression (lm) together with environmental variables (row weights should be supplied with cca; see Examples). This is regarded as a more powerful method than forcing rectangular environmental data into distances and using them in partial mantel analysis (mantel.partial) together with geographic distances (Legendre et al. 2008, but see Tuomisto & Ruokolainen 2008).

The function is based on pcnm function in Dray’s unreleased spacemakerR package. The differences are that the current function uses spantree as an internal support function. The current function also can use prior weights for rows by using weighted metric scaling of wcmdscale. The use of row weights allows finding orthonormal PCNMs also for correspondence analysis (e.g., cca).

Value

A list of the following elements:

values  Eigenvalues obtained by the principal coordinates analysis.

vectors Eigenvectors obtained by the principal coordinates analysis. They are scaled to
         unit norm. The vectors can be extracted with scores function. The default is to
         return all PCNM vectors, but argument choices selects the given vectors.

threshold Truncation distance.

dist      The distance matrix where values above threshold are replaced with arbitrary
           value of four times the threshold. String "pcnm" is added to the method attribute,
           and new attribute threshold is added to the distances. This is returned only
           when dist.ret = TRUE.
Author(s)

Jari Oksanen, based on the code of Stephane Dray.

References


See Also

*spantree*.

Examples

```r
Example from Borcard & Legendre (2002)
data(mite.xy)
pcllm1 <- pcnm(dist(mite.xy))
op <- par(mfrow=c(1,3))
Map of PCNM in the sample plot
ordisurf(mite.xy, scores(pcllm1, choi=1), bubble = 4, main = "PCNM 1")
ordisurf(mite.xy, scores(pcllm1, choi=2), bubble = 4, main = "PCNM 2")
ordisurf(mite.xy, scores(pcllm1, choi=3), bubble = 4, main = "PCNM 3")
par(op)
Plot first PCNM against each other
ordisplom(pcllm1, choices=1:4)
Weighted PCNM for CCA
data(mite)
rs <- rowSums(mite)/sum(mite)
pcllmw <- pcnm(dist(mite.xy), w = rs)
ord <- cca(mite ~ scores(pcllmw))
Multiscale ordination: residual variance should have no distance
trend
msoplot(mso(ord, mite.xy))
```

Description

Individual (for count data) or incidence (for presence-absence data) based null models can be generated for community level simulations. Options for preserving characteristics of the original matrix (rows/columns sums, matrix fill) and restricted permutations (based on strata) are discussed in the Details section.
Usage

permatswap(m, method = "quasiswap", fixedmar = "both", shuffle = "both", strata = NULL,
            mtype = "count", times = 99, burnin = 0, thin = 1, ...)

Arguments

m An community data matrix with plots (samples) as rows and species (taxa) as columns.
fixedmar character, stating which of the row/column sums should be preserved ("none", "rows", "columns", "both").
strata Numeric vector or factor with length same as nrow(m) for grouping rows within strata for restricted permutations. Unique values or levels are used.
mtype Matrix data type, either "count" for count data, or "prab" for presence-absence type incidence data.
times Number of permuted matrices.
method Character for method used for the swap algorithm ("swap", "tswap", "quasiswap", "backtrack") as described for function make.commsim. If mtype = "count" the "quasiswap", "swap", "swsh" and "abuswap" methods are available (see details).
shuffle Character, indicating whether individuals ("ind"), samples ("samp") or both ("both") should be shuffled, see details.
burnin Number of null communities discarded before proper analysis in sequential ("swap", "tswap") methods.
thin Number of discarded permuted matrices between two evaluations in sequential ("swap", "tswap") methods.
x, object Object of class "permat"
digits Number of digits used for rounding.
yields, xlab, col, lty

   graphical parameters for the plot method.

   type
   Character, type of plot to be displayed: "bray" for Bray-Curtis dissimilarities, "chisq" for Chi-squared values.

   lowess, plot, text
   Logical arguments for the plot method, whether a locally weighted regression curve should be drawn, the plot should be drawn, and statistic values should be printed on the plot.

   ... Other arguments passed to simulate.nullmodel or methods.

Details

The function permatfull is useful when matrix fill is allowed to vary, and matrix type is count. The fixedmar argument is used to set constraints for permutation. If none of the margins are fixed, cells are randomised within the matrix. If rows or columns are fixed, cells within rows or columns are randomised, respectively. If both margins are fixed, the r2dtable function is used that is based on Patefield's (1981) algorithm. For presence absence data, matrix fill should be necessarily fixed, and permatfull is a wrapper for the function make.commsim. The r00, r0, c0, quasiswap algorithms of make.commsim are used for "none", "rows", "columns", "both" values of the fixedmar argument, respectively.

The shuffle argument only have effect if the mtype = "count" and permatfull function is used with "none", "rows", "columns" values of fixedmar. All other cases for count data are individual based randomisations. The "samp" and "both" options result fixed matrix fill. The "both" option means that individuals are shuffled among non zero cells ensuring that there are no cell with zeros as a result, then cell (zero and new valued cells) are shuffled.

The function permatswap is useful when with matrix fill (i.e. the proportion of empty cells) and row/columns sums should be kept constant. permatswap uses different kinds of swap algorithms, and row and columns sums are fixed in all cases. For presence-absence data, the swap and tswap methods of make.commsim can be used. For count data, a special swap algorithm ('swapcount') is implemented that results in permuted matrices with fixed marginals and matrix fill at the same time.

The 'quasiswapcount' algorithm (method="quasiswap" and mtype="count") uses the same trick as Carsten Dormann’s swap.web function in the package bipartite. First, a random matrix is generated by the r2dtable function retaining row and column sums. Then the original matrix fill is reconstructed by sequential steps to increase or decrease matrix fill in the random matrix. These steps are based on swapping 2x2 submatrices (see 'swapcount' algorithm for details) to maintain row and column totals. This algorithm generates independent matrices in each step, so burnin and thin arguments are not considered. This is the default method, because this is not sequential (as swapcount is) so independence of subsequent matrices does not have to be checked.

The swapcount algorithm (method="swap" and mtype="count") tries to find 2x2 submatrices (identified by 2 random row and 2 random column indices), that can be swapped in order to leave column and row totals and fill unchanged. First, the algorithm finds the largest value in the submatrix that can be swapped (d) and whether in diagonal or antidiagonal way. Submatrices that contain values larger than zero in either diagonal or antidiagonal position can be swapped. Swap means that the values in diagonal or antidiagonal positions are decreased by d, while remaining cells are increased by d. A swap is made only if fill doesn’t change. This algorithm is sequential, subsequent matrices are not independent, because swaps modify little if the matrix is large. In these cases many burnin steps and thinning is needed to get independent random matrices. Although this algorithm
is implemented in C, large burnin and thin values can slow it down considerably. WARNING: according to simulations, this algorithm seems to be biased and non random, thus its use should be avoided!

The algorithm "swsh" in the function permatswap is a hybrid algorithm. First, it makes binary quasiswaps to keep row and column incidences constant, then non-zero values are modified according to the shuffle argument (only "samp" and "both" are available in this case, because it is applied only on non-zero values). It also recognizes the fixedmar argument which cannot be "both" (vegan versions <= 2.0 had this algorithm with fixedmar = "none").

The algorithm "abuswap" produces two kinds of null models (based on fixedmar="columns" or fixedmar="rows") as described in Hardy (2008; randomization scheme 2x and 3x, respectively). These preserve column and row occurrences, and column or row sums at the same time. (Note that similar constraints can be achieved by the non sequential "swsh" algorithm with fixedmar argument set to "columns" or "rows", respectively.)

Constraints on row/column sums, matrix fill, total sum and sums within strata can be checked by the summary method. plot method is for visually testing the randomness of the permuted matrices, especially for the sequential swap algorithms. If there are any tendency in the graph, higher burnin and thin values can help for sequential methods. New lines can be added to existing plot with the lines method.

Unrestricted and restricted permutations: if strata is NULL, functions perform unrestricted permutations. Otherwise, it is used for restricted permutations. Each strata should contain at least 2 rows in order to perform randomization (in case of low row numbers, swap algorithms can be rather slow). If the design is not well balanced (i.e. same number of observations within each stratum), permuted matrices may be biased because same constraints are forced on submatrices of different dimensions. This often means, that the number of potential permutations will decrease with their dimensions. So the more constraints we put, the less randomness can be expected.

The plot method is useful for graphically testing for trend and independence of permuted matrices. This is especially important when using sequential algorithms ("swap", "tswap", "abuswap").

The as.ts method can be used to extract Bray-Curtis dissimilarities or Chi-squared values as time series. This can further used in testing independence (see Examples). The method as.mcmc is useful for accessing diagnostic tools available in the coda package.

Value

Functions permatfull and permatswap return an object of class "permat" containing the the function call (call), the original data matrix used for permutations (orig) and a list of permuted matrices with length times (perm).

The summary method returns various statistics as a list (including mean Bray-Curtis dissimilarities calculated pairwise among original and permuted matrices, Chi-square statistics, and check results of the constraints; see Examples). Note that when strata is used in the original call, summary calculation may take longer.

The plot creates a plot as a side effect.

The as.ts method returns an object of class "ts".

Author(s)

Péter Sólymos, <solymos@ualberta.ca> and Jari Oksanen
References

Original references for presence-absence algorithms are given on help page of `make.commsim`.


See Also

For other functions to permute matrices: `make.commsim`, `r2dtable`, `sample`, `swap.web`.

For the use of these permutation algorithms: `oecosimu`, `adipart`, `hiersimu`.

For time-series diagnostics: `Box.test`, `lag.plot`, `tsdiag`, `ar`, `arima`.

For underlying ‘low level’ implementation: `commsim` and `nullmodel`.

Examples

```r
A simple artificial community data matrix.
m <- matrix(c(1,3,2,0,3,1,
 0,2,1,0,2,1,
 0,0,1,2,0,3,
 0,0,0,1,4,3
), 4, 6, byrow=TRUE)
Using the quasiswap algorithm to create a
list of permuted matrices, where
row/columns sums and matrix fill are preserved:
x1 <- permatswap(m, "quasiswap")
summary(x1)
Unrestricted permutation retaining
row/columns sums but not matrix fill:
x2 <- permatfull(m)
summary(x2)
Unrestricted permutation of presence-absence type
not retaining row/columns sums:
x3 <- permatfull(m, "none", mtype="prab")
x3$orig ## note: original matrix is binarized!
summary(x3)
Restricted permutation,
check sums within strata:
x4 <- permatfull(m, strata=c(1,1,2,2))
summary(x4)

NOTE: 'times' argument usually needs to be >= 99
here much lower value is used for demonstration

Not sequential algorithm
data(BCI)
a <- permatswap(BCI, "quasiswap", times=19)
```
## Sequential algorithm

```r
b <- permatswap(BCI, "abuswap", fixedmar="col",
 burnin=0, thin=100, times=19)
opar <- par(mfrow=c(2,2))
plot(a, main="Not sequential")
plot(b, main="Sequential")
plot(a, "chisq")
plot(b, "chisq")
par(opar)
```

## Extract Bray-Curtis dissimilarities

```r
bc <- as.ts(b)
```

## Lag plot

```r
lag.plot(bc)
```

## First order autoregressive model

```r
mar <- arima(bc, c(1,0,0))
mar
```

## Ljung-Box test of residuals

```r
Box.test(residuals(mar))
```

## Graphical diagnostics

```r
tsdig(mar)
```

---

**permustats**

*Extract, Analyse and Display Permutation Results*

## Description

The `permustats` function extracts permutation results of `vegan` functions. Its support functions can find quantiles and standardized effect sizes, plot densities and Q-Q plots.

## Usage

```r
permustats(x, ...)
summary(object, interval = 0.95, ...)
```

## Arguments

- `object, x, y`: The object to be handled.
- `interval`: numeric; the coverage interval reported.
Arguments of `densityplot` and `qqmath` functions.

Add observed statistic among permutations.

Ignored.

Other arguments passed to the function. In `density` these are passed to `density.default`.

The `permustats` function extracts permutation results and observed statistics from several `vegan` functions that perform permutations or simulations.

The `summary` method of `permustats` estimates the $z$ values, also known as standardized effect sizes (SES) as the difference of observed statistic and mean of permutations divided by the standard deviation of permutations. It also prints the the mean, median, and limits which contain interval percent of permuted values. With the default (interval = 0.95), for two-sided test these are (2.5%, 97.5%) and for one-sided tests either 5% or 95% quantile depending on the test direction. The mean, quantiles and $z$ values are evaluated from permuted values without observed statistic.

The density and `densityplot` methods display the kernel density estimates of permuted values. When observed value of the statistic is included in the permuted values, the `densityplot` method marks the observed statistic as a vertical line. However the density method uses its standard plot method and cannot mark the observed value.

The `qqnorm` and `qqmath` display Q-Q plots of permutations, optionally together with the observed value (default) which is shown as horizontal line in plots. `qqnorm` plots permutation values against standard Normal variate. `qqmath` defaults to the standard Normal as well, but can accept other alternatives (see standard `qqmath`).

Functions `density` and `qqnorm` are based on standard R methods and accept their arguments. They only handle one statistic, and cannot be used when several test statistic were evaluated. The `densityplot` and `qqmath` are `lattice` graphics, and can be used both for one and several statistics. All these functions pass arguments to their underlying functions; see their documentation.

The `permustats` can extract permutation statistics from the results of `adonis`, `anosim`, `mantel`, `mantel.partial`, `mrpp`, `oecosimu`, `ordiareatest`, `permutest.cca`, `protest`, and `permutest.betadisper`. NB, there is no `permustats` method for `anova.cca`, but only for `permutest.cca`.

The `permustats` function returns an object of class "permustats". This is a list of items "statistic" for observed statistics, permutations which contains permuted values, and alternative which contains text defining the character of the test ("two.sided", "less" or "greater"). The `qqnorm` and `density` methods return their standard result objects.

Jari Oksanen with contributions from Gavin L. Simpson (`permustats.permutest.betadisper` method and related modifications to `summary.permustats` and the print method.

`density`, `densityplot`, `qqnorm`, `qqmath`. 
**permutations**

**Examples**

```r
data(dune)
data(dune.env)
mod <- adonis(dune ~ Management + A1, data = dune.env)
use permustats
perm <- permustats(mod)
summary(perm)
densityplot(perm)
qqmath(perm)

example of multiple types of statistic
mod <- with(dune.env, betadisper(vegdist(dune), Management))
pmod <- permutest(mod, nperm = 99, pairwise = TRUE)
perm <- permustats(pmod)
summary(perm, interval = 0.90)
```

---

**Description**

From version 2.2-0, **vegan** has significantly improved access to restricted permutations which brings it into line with those offered by Canoco. The permutation designs are modelled after the permutation schemes of Canoco 3.1 (ter Braak, 1990).

**vegan** currently provides for the following features within permutation tests:

1. Free permutation of *DATA*, also known as randomisation,
2. Free permutation of *DATA* within the levels of a grouping variable,
3. Restricted permutations for line transects or time series,
4. Permutation of groups of samples whilst retaining the within-group ordering,
5. Restricted permutations for spatial grids,
6. Blocking, samples are never permuted *between* blocks, and
7. Split-plot designs, with permutation of whole plots, split plots, or both.

Above, we use *DATA* to mean either the observed data themselves or some function of the data, for example the residuals of an ordination model in the presence of covariables.

These capabilities are provided by functions from the **permu**te package. The user can request a particular type of permutation by supplying the *permutations* argument of a function with an object returned by **how**, which defines how samples should be permuted. Alternatively, the user can simply specify the required number of permutations and a simple randomisation procedure will be performed. Finally, the user can supply a matrix of permutations (with number of rows equal to the number of permutations and number of columns equal to the number of observations in the data) and **vegan** will use these permutations instead of generating new permutations.

The majority of functions in **vegan** allow for the full range of possibilities outlined above. Exceptions include **kendall.post** and **kendall.global**.
The Null hypothesis for the first two types of permutation test listed above assumes free exchangeability of DATA (within the levels of the grouping variable, if specified). Dependence between observations, such as that which arises due to spatial or temporal autocorrelation, or more-complicated experimental designs, such as split-plot designs, violates this fundamental assumption of the test and requires more complex restricted permutation test designs. It is these designs that are available via the permute package and to which vegan provides access from version 2.2-0 onwards.

Unless otherwise stated in the help pages for specific functions, permutation tests in vegan all follow the same format/structure:

1. An appropriate test statistic is chosen. Which statistic is chosen should be described on the help pages for individual functions.

2. The value of the test statistic is evaluate for the observed data and analysis/model and recorded. Denote this value $x_0$.

3. The DATA are randomly permuted according to one of the above schemes, and the value of the test statistic for this permutation is evaluated and recorded.

4. Step 3 is repeated a total of $n$ times, where $n$ is the number of permutations requested. Denote these values as $x_i$, where $i = 1, \ldots, n$.

5. Count the number of values of the test statistic, $x_i$, in the Null distribution that are as extreme as test statistic for the observed data $x_0$. Denote this count as $N$.
   We use the phrase as extreme to include cases where a two-sided test is performed and large negative values of the test statistic should be considered.

6. The permutation p-value is computed as

$$p = \frac{N + 1}{n + 1}$$

The above description illustrates why the default number of permutations specified in vegan functions takes values of 199 or 999 for example. Pretty p values are achieved because the +1 in the denominator results in division by 200 or 1000, for the 199 or 999 random permutations used in the test.

The simple intuition behind the presence of +1 in the numerator and denominator is that these represent the inclusion of the observed value of the statistic in the Null distribution (e.g. Manly 2006). Phipson & Smyth (2010) present a more compelling explanation for the inclusion of +1 in the numerator and denominator of the p value calculation.

Fisher (1935) had in mind that a permutation test would involve enumeration of all possible permutations of the data yielding an exact test. However, doing this complete enumeration may not be feasible in practice owing to the potentially vast number of arrangements of the data, even in modestly-sized data sets with free permutation of samples. As a result we evaluate the $p$ value as the tail probability of the Null distribution of the test statistic directly from the random sample of possible permutations. Phipson & Smyth (2010) show that the naive calculation of the permutation $p$ value is

$$p = \frac{N}{n}$$

which leads to an invalid test with incorrect type I error rate. They go on to show that by replacing the unknown tail probability (the $p$ value) of the Null distribution with the biased estimator
that the positive bias induced is of just the right size to account for the uncertainty in the estimation of the tail probability from the set of randomly sampled permutations to yield a test with the correct type I error rate.

The estimator described above is correct for the situation where permutations of the data are samples randomly without replacement. This is not strictly what happens in vegan because permutations are drawn pseudo-randomly independent of one another. Note that the actual chance of this happening is practice is small but the functions in permute do not guarantee to generate a unique set of permutations unless complete enumeration of permutations is requested. This is not feasible for all but the smallest of data sets or restrictive of permutation designs, but in such cases the chance of drawing a set of permutations with repeats is lessened as the sample size, and hence the size of set of all possible permutations, increases.

Under the situation of sampling permutations with replacement then, the tail probability \( p \) calculated from the biased estimator described above is somewhat conservative, being too large by an amount that depends on the number of possible values that the test statistic can take under permutation of the data (Phipson & Smyth, 2010). This represents a slight loss of statistical power for the conservative \( p \) value calculation used here. However, unless samples sizes are small and the the permutation design such that the set of values that the test statistic can take is also small, this loss of power is unlikely to be critical.

The minimum achievable \( p \)-value is

\[
p_{\text{min}} = \frac{1}{n+1}
\]

and hence depends on the number of permutations evaluated. However, one cannot simply increase the number of permutations \( n \) to achieve a potentially lower \( p \)-value unless the number of observations available permits such a number of permutations. This is unlikely to be a problem for all but the smallest data sets when free permutation (randomisation) is valid, but in restricted permutation designs with a low number of observations, there may not be as many unique permutations of the data as you might desire to reach the required level of significance.

It is currently the responsibility of the user to determine the total number of possible permutations for their DATA. The number of possible permutations allowed under the specified design can be calculated using \texttt{numPerms} from the \texttt{permute} package. Heuristics employed within the \texttt{shuffleSet} function used by vegan can be triggered to generate the entire set of permutations instead of a random set. The settings controlling the triggering of the complete enumeration step are contained within a permutation design created using \texttt{link[permute][how]} and can be set by the user. See \texttt{how} for details.

Limits on the total number of permutations of DATA are more severe in temporally or spatially ordered data or experimental designs with low replication. For example, a time series of \( n = 100 \) observations has just 100 possible permutations including the observed ordering.

In situations where only a low number of permutations is possible due to the nature of DATA or the experimental design, enumeration of all permutations becomes important and achievable computationally.
Above, we have provided only a brief overview of the capabilities of vegan and permute. To get the best out of the new functionality and for details on how to set up permutation designs using how, consult the vignette Restricted permutations; using the permute package supplied with permute and accessible via vignette("permutations", package = "permute").

Author(s)
Gavin L. Simpson

References
Phipson, B., & Smyth, G. K. (2010). Permutation P-values should never be zero: calculating exact P-values when permutations are randomly drawn. Statistical Applications in Genetics and Molecular Biology, 9, Article 39. DOI: 10.2202/1544-6115.1585

See also:

See Also
permutest for the main interface in vegan. See also how for details on permutation design specification, shuffleSet for the code used to generate a set of permutations, numPerms for a function to return the size of the set of possible permutations under the current design.

permutest.betadisper  Permutation test of multivariate homogeneity of groups dispersions (variances)

Description
Implements a permutation-based test of multivariate homogeneity of group dispersions (variances) for the results of a call to betadisper.

Usage
```r
S3 method for class 'betadisper'
permutest(x, pairwise = FALSE,
 permutations = 999,
 parallel = getOption("mc.cores"),
 ...)
```
Arguments

- **x**: an object of class "betadisper", the result of a call to `betadisper`.
- **pairwise**: logical; perform pairwise comparisons of group means?
- **permutations**: a list of control values for the permutations as returned by the function `how`, or the number of permutations required, or a permutation matrix where each row gives the permuted indices.
- **parallel**: Number of parallel processes or a predefined socket cluster. With `parallel = 1` uses ordinary, non-parallel processing.
- **...**: Arguments passed to other methods.

Details

To test if one or more groups is more variable than the others, ANOVA of the distances to group centroids can be performed and parametric theory used to interpret the significance of F. An alternative is to use a permutation test. `permutest.betadisper` permutes model residuals to generate a permutation distribution of F under the Null hypothesis of no difference in dispersion between groups.

Pairwise comparisons of group mean dispersions can be performed by setting argument `pairwise` to `TRUE`. A classical t test is performed on the pairwise group dispersions. This is combined with a permutation test based on the t statistic calculated on pairwise group dispersions. An alternative to the classical comparison of group dispersions, is to calculate Tukey’s Honest Significant Differences between groups, via `TukeyHSD.betadisper`.

Value

`permutest.betadisper` returns a list of class "permutest.betadisper" with the following components:

- **tab**: the ANOVA table which is an object inheriting from class "data.frame".
- **pairwise**: a list with components observed and permuted containing the observed and permuted p-values for pairwise comparisons of group mean distances (dispersions or variances).
- **groups**: character; the levels of the grouping factor.
- **control**: a list, the result of a call to `how`.

Author(s)

Gavin L. Simpson

References


See Also

For the main fitting function see betadisper. For an alternative approach to determining which groups are more variable, see TukeyHSD.betadisper.

Examples

data(varespec)

## Bray-Curtis distances between samples
dis <- vegdist(varespec)

## First 16 sites grazed, remaining 8 sites ungrazed
groups <- factor(c(rep(1,16), rep(2,8)), labels = c("grazed","ungrazed"))

## Calculate multivariate dispersions
mod <- betadisper(dis, groups)
mod

## Perform test
anova(mod)

## Permutation test for F
pmod <- permutest(mod, permutations = 99, pairwise = TRUE)

## Tukey's Honest Significant Differences
(mod.HSD <- TukeyHSD(mod))
plot(mod.HSD)

## Has permutats() method
pstat <- permutats(pmod)
densityplot(pstat)
qqmath(pstat)

plot.cca

Plot or Extract Results of Constrained Correspondence Analysis or Redundancy Analysis

Description

Functions to plot or extract results of constrained correspondence analysis (cca), redundancy analysis (rda) or constrained analysis of principal coordinates (capscale).

Usage

## S3 method for class 'cca'
plot(x, choices = c(1, 2), display = c("sp", "wa", "cn"),
     scaling = 2, type, xlim, ylim, const, ...)

## S3 method for class 'cca'
text(x, display = "sites", labels, choices = c(1, 2), scaling = 2,
Arguments

x, object A cca result object.
choices Axes shown.
display Scores shown. These must include some of the alternatives species or sp for species scores, sites or wa for site scores, lc for linear constraints or “LC scores”, or bp for biplot arrows or cn for centroids of factor constraints instead of an arrow.
scaling Scaling for species and site scores. Either species (2) or site (1) scores are scaled by eigenvalues, and the other set of scores is left unscaled, or with 3 both are scaled symmetrically by square root of eigenvalues. Corresponding negative values can be used in cca to additionally multiply results with $\sqrt{1/(1 - \lambda)}$. This scaling is know as Hill scaling (although it has nothing to do with Hill’s rescaling of decorana). With corresponding negative values in rda, species scores are divided by standard deviation of each species and multiplied with an equalizing constant. Unscaled raw scores stored in the result can be accessed with scaling = 0.
type Type of plot: partial match to text for text labels, points for points, and none for setting frames only. If omitted, text is selected for smaller data sets, and points for larger.
xlim, ylim the x and y limits (min,max) of the plot.
labels Optional text to be used instead of row names.
arrow.mul Factor to expand arrows in the graph. Arrows will be scaled automatically to fit the graph if this is missing.
head.arrow Default length of arrow heads.
select Items to be displayed. This can either be a logical vector which is TRUE for displayed items or a vector of indices of displayed items.
const

General scaling constant to rda scores. The default is to use a constant that gives biplot scores, that is, scores that approximate original data (see vignette ‘decision-vegan.pdf’ with vegandocs for details and discussion). If const is a vector of two items, the first is used for species, and the second item for site scores.

axis.bp

Draw axis for biplot arrows.

axes

Number of axes in summaries.

digits

Number of digits in output.

n, head, tail

Number of rows printed from the head and tail of species and site scores. Default NA prints all.

... Parameters passed to other functions.

Details

Same plot function will be used for cca and rda. This produces a quick, standard plot with current scaling.

The plot function sets colours (col), plotting characters (pch) and character sizes (cex) to certain standard values. For a fuller control of produced plot, it is best to call plot with type="none" first, and then add each plotting item separately using text.cca or points.cca functions. These use the default settings of standard text and points functions and accept all their parameters, allowing a full user control of produced plots.

Environmental variables receive a special treatment. With display="bp", arrows will be drawn. These are labelled with text and unlabelled with points. The basic plot function uses a simple (but not very clever) heuristics for adjusting arrow lengths to plots, but the user can give the expansion factor in mul.arrow. With display="cn" the centroids of levels of factor variables are displayed (these are available only if there were factors and a formula interface was used in cca or rda). With this option continuous variables still are presented as arrows and ordered factors as arrows and centroids.

If you want to have still a better control of plots, it is better to produce them using primitive plot commands. Function scores helps in extracting the needed components with the selected scaling.

Function summary lists all scores and the output can be very long. You can suppress scores by setting axes = 0 or display = NA or display = NULL. You can display some first or last (or both) rows of scores by using head or tail or explicit print command for the summary.

Palmer (1993) suggested using linear constraints (“LC scores”) in ordination diagrams, because these gave better results in simulations and site scores (“WA scores”) are a step from constrained to unconstrained analysis. However, McCune (1997) showed that noisy environmental variables (and all environmental measurements are noisy) destroy “LC scores” whereas “WA scores” were little affected. Therefore the plot function uses site scores (“WA scores”) as the default. This is consistent with the usage in statistics and other functions in R (lda, cancor).

Value

The plot function returns invisibly a plotting structure which can be used by function identify.ordiplot to identify the points or other functions in the ordiplot family.
Note

Package ade4 has function cca which returns constrained correspondence analysis of the same class as the vegan function. If you have results of ade4 in your working environment, vegan functions may try to handle them and fail with cryptic error messages. However, there is a simple utility function ade2vegancca which tries to translate ade4 cca results to vegan cca results so that some vegan functions may work partially with ade4 objects (with a warning).

Author(s)

Jari Oksanen

See Also

cca, rda and capscale for getting something to plot, ordiplot for an alternative plotting routine and more support functions, and text, points and arrows for the basic routines.

Examples

data(dune)
data(dune.env)
mod <- cca(dune ~ A + Moisture + Management, dune.env)
plot(mod, type="n")
text(mod, dis="cn")
points(mod, pch=21, col="red", bg="yellow", cex=1.2)
text(mod, "species", col="blue", cex=0.8)
## Limited output of 'summary'
head(summary(mod), tail=2)
## Read description of scaling in RDA in vegan:
## Not run: vegandocs("decision")

Principal Response Curves for Treatments with Repeated Observations

Description

Principal Response Curves (PRC) are a special case of Redundancy Analysis (rda) for multivariate responses in repeated observation design. They were originally suggested for ecological communities. They should be easier to interpret than traditional constrained ordination. They can also be used to study how the effects of a factor A depend on the levels of a factor B, that is A + A:B, in a multivariate response experiment.

Usage

prc(response, treatment, time, ...)
## S3 method for class 'prc'
summary(object, axis = 1, scaling = 3, digits = 4, ...)
## S3 method for class 'prc'
plot(x, species = TRUE, select, scaling = 3, axis = 1, type = "l",
     xlab, ylab, ylim, lty = 1:5, col = 1:6, pch, legpos, cex = 0.8,
     ...)  

Arguments

response  Multivariate response data. Typically these are community (species) data. If the
data are counts, they probably should be log transformed prior to the analysis.
treatment A factor for treatments.
time An unordered factor defining the observations times in the repeated design.
object, x An prc result object.
axis     Axis shown (only one axis can be selected).
scaling Scaling of species scores, identical to the scaling in scores.rda.
digits Number of significant digits displayed.
species  Display species scores.
select Vector to select displayed species. This can be a vector of indices or a logical
         vector which is true for the selected species
type     Type of plot: "l" for lines, "p" for points or "b" for both.
xlab, ylab Text to replace default axis labels.
ylim     Limits for the vertical axis.
lty, col, pch Line type, colour and plotting characters (defaults supplied).
legpos   The position of the legend. A guess is made if this is not supplied, and NA will
         suppress legend.
cex       Character expansion for symbols and species labels.
... Other parameters passed to functions.

Details

PRC is a special case of rda with a single factor for treatment and a single factor for time points
in repeated observations. In vegan, the corresponding rda model is defined as rda(response ~
treatment * time + Condition(time)). Since the time appears twice in the model formula, its main
effects will be aliased, and only the main effect of treatment and interaction terms are available, and
will be used in PRC. Instead of usual multivariate ordination diagrams, PRC uses canonical (regression)
coefficients and species scores for a single axis. All that the current functions do is to provide a
special summary and plot methods that display the rda results in the PRC fashion. The current
version only works with default contrasts (contr.treatment) in which the coefficients are con-
trasts against the first level, and the levels must be arranged so that the first level is the control (or a
baseline). If necessary, you must change the baseline level with function relevel.

Function summary prints the species scores and the coefficients. Function plot plots coefficients
against time using matplot, and has similar defaults. The graph (and PRC) is meaningful only if
the first treatment level is the control, as the results are contrasts to the first level when unordered
factors are used. The plot also displays species scores on the right vertical axis using function
linestack. Typically the number of species is so high that not all can be displayed with the default
settings, but users can reduce character size or padding (air) in linestack, or select only a subset
of the species. A legend will be displayed unless suppressed with legpos = NA, and the functions
tries to guess where to put the legend if legpos is not supplied.
Value

The function is a special case of rda and returns its result object (see cca.object). However, a special summary and plot methods display returns differently than in rda.

Warning

The first level of treatment must be the control: use function relevel to guarantee the correct reference level. The current version will ignore user setting of contrasts and always use treatment contrasts (contr.treatment). The time must be an unordered factor.

Author(s)

Jari Oksanen and Cajo ter Braak

References


See Also

rda, anova.cca.

Examples

```r
Chlorpyrifos experiment and experimental design: Pesticide
treatment in ditches (replicated) and followed over from 4 weeks
before to 24 weeks after exposure
data(pyrifos)
week <- gl(11, 12, labels=c(-4, -1, 0.1, 1, 2, 4, 8, 12, 15, 19, 24))
dose <- factor(rep(c(0.1, 0, 0.9, 0, 44, 6, 0.1, 44, 0.9, 0, 6), 11))
ditch <- gl(12, 1, length=132)
PRC
mod <- prc(pyrifos, dose, week)
mod # RDA
summary(mod) # PRC
logabu <- colSums(pyrifos)
plot(mod, colSums(logabu > 100))
Ditches are randomized, we have a time series, and are only
interested in the first axis
ctrl <- how(plots = Plots(strata = ditch, type = "free"),
 within = Within(type = "series"), nperm = 99)
anova(mod, permutations = ctrl, first=TRUE)
```
Description

Function predict can be used to find site and species scores or estimates of the response data with new data sets. Function calibrate estimates values of constraints with new data set. Functions fitted and residuals return estimates of response data.

Usage

```r
S3 method for class 'cca'
fitted(object, model = c("CCA", "CA", "pCCA"),
 type = c("response", "working"), ...)
S3 method for class 'capscale'
fitted(object, model = c("CCA", "CA", "pCCA", "Imaginary"),
 type = c("response", "working"), ...)
S3 method for class 'cca'
residuals(object, ...)
S3 method for class 'cca'
predict(object, newdata, type = c("response", "wa", "sp", "lc", "working"),
 rank = "full", model = c("CCA", "CA"), scaling = FALSE, ...)
S3 method for class 'cca'
calibrate(object, newdata, rank = "full", ...)
S3 method for class 'cca'
coef(object, ...)
S3 method for class 'decorana'
predict(object, newdata, type = c("response", "sites", "species"),
 rank = 4, ...)
```

Arguments

- **object**: A result object from `cca`, `rda`, `capscale` or `decorana`.
- **model**: Show constrained ("CCA"), unconstrained ("CA") or conditioned "partial" ("pCCA") results. For fitted method of `capscale` this can also be "Imaginary" for imaginary components with negative eigenvalues.
- **newdata**: New data frame to be used in prediction or in calibration. Usually this a new community data frame, but with type = "lc" and for constrained component with type = "response" and type = "working" it must be a data frame of constraints. The newdata must have the same number of rows as the original community data for a `cca` result with type = "response" or type = "working". If the original model had row or column names, then new data must contain rows or columns with the same names (row names for species scores, column names for "wa" scores and constraint names of "lc" scores). In other cases the rows or columns must match directly.
type

The type of prediction, fitted values or residuals: "response" scales results so that the same ordination gives the same results, and "working" gives the values used internally, that is after Chi-square standardization in cca and scaling and centring in rda. In capscale the "response" gives the dissimilarities, and "working" the scaled scores that produce the dissimilarities as Euclidean distances. Alternative "wa" gives the site scores as weighted averages of the community data, "lc" the site scores as linear combinations of environmental data, and "sp" the species scores. In predict.decorana the alternatives are scores for "sites" or "species".

rank

The rank or the number of axes used in the approximation. The default is to use all axes (full rank) of the "model" or all available four axes in predict.decorana.

scaling

Scaling or predicted scores with the same meaning as in cca, rda and capscale.

... Other parameters to the functions.

Details

Function fitted gives the approximation of the original data matrix or dissimilarities from the ordination result either in the scale of the response or as scaled internally by the function. Function residuals gives the approximation of the original data from the unconstrained ordination. With argument type = "response" the fitted.cca and residuals.cca function both give the same marginal totals as the original data matrix, and fitted and residuals do not add up to the original data. Functions fitted.capscale and residuals.capscale give the dissimilarities with type = "response", but these are not additive, but the "working" scores are additive. All variants of fitted and residuals are defined so that for model mod <- cca(y ~ x).cca(fitted(mod)) is equal to constrained ordination, and cca(residuals(mod)) is equal to unconstrained part of the ordination.

Function predict can find the estimate of the original data matrix or dissimilarities (type = "response") with any rank. With rank = "full" it is identical to fitted. In addition, the function can find the species scores or site scores from the community data matrix for cca or rda. The function can be used with new data, and it can be used to add new species or site scores to existing ordinations. The function returns (weighted) orthonormal scores by default, and you must specify explicit scaling to add those scores to ordination diagrams. With type = "wa" the function finds the site scores from species scores. In that case, the new data can contain new sites, but species must match in the original and new data. With type="sp" the function finds species scores from site constraints (linear combination scores). In that case the new data can contain new species, but sites must match in the original and new data. With type = "lc" the function finds the linear combination scores for sites from environmental data. In that case the new data frame must contain all constraining and conditioning environmental variables of the model formula. With type = "response" or type = "working" the new data must contain environmental variables if constrained component is desired, and community data matrix if residual or unconstrained component is desired. With these types, the function uses newdata to find new "lc" (constrained) or "wa" scores (unconstrained) and then finds the response or working data from these new row scores and species scores. The original row and species (column) weights are used for type = "response" and type = "working" in correspondence analysis (cca) and therefore the number of rows must match in the original data and newdata.

If a completely new data frame is created, extreme care is needed defining variables similarly as in the original model, in particular with (ordered) factors. If ordination was performed with the
formula interface, the newdata can be a data frame or matrix, but extreme care is needed that the columns match in the original and newdata.

Function calibrate.cca finds estimates of constraints from community ordination or "wa" scores from `cca`, `rda` and `capscale`. This is often known as calibration, bioindication or environmental reconstruction. Basically, the method is similar to projecting site scores onto biplot arrows, but it uses regression coefficients. The function can be called with newdata so that cross-validation is possible. The newdata may contain new sites, but species must match in the original and new data. The function does not work with 'partial' models with Condition term, and it cannot be used with newdata for `capscale` results. The results may only be interpretable for continuous variables.

Function coef will give the regression coefficients from centred environmental variables (constraints and conditions) to linear combination scores. The coefficients are for unstandardized environmental variables. The coefficients will be `NA` for aliased effects.

Function predict.decorana is similar to predict.cca. However, `type = "species"` is not available in detrended correspondence analysis (DCA), because detrending destroys the mutual reciprocal averaging (except for the first axis when rescaling is not used). Detrended CA does not attempt to approximate the original data matrix, so `type = "response"` has no meaning in detrended analysis (except with `rank = 1`).

**Value**

The functions return matrices, vectors or dissimilarities as is appropriate.

**Author(s)**

Jari Oksanen.

**References**


**See Also**

`cca`, `rda`, `capscale`, `decorana`, `vif`, `goodness.cca`.

**Examples**

```r
data(dune)
data(dune.env)
mod <- cca(dune ~ A1 + Management + Condition(Moisture), data=dune.env)
Definition of the concepts 'fitted' and 'residuals'
mod
cca(fitted(mod))
cca(residuals(mod))
Remove rare species (freq==1) from 'cca' and find their scores
'passively'.
freq <- specnumber(dune, MARGIN=2)
freq
mod <- cca(dune[, freq>1] ~ A1 + Management + Condition(Moisture), dune.env)
predict(mod, type="sp", newdata=dune[, freq==1], scaling=2)
```
# New sites
predict(mod, type="1c", new=data.frame(A1 = 3, Management="NM", Moisture="2"), scal=2)
# Calibration and residual plot
mod <- cca(dune - A1 + Moisture, dune.env)
pred <- calibrate(mod)
pred
with(dune.env, plot(A1, pred[,"A1"] - A1, ylab="Prediction Error"))
aline(h=0)

---

**procrustes**

**Procrustes Rotation of Two Configurations and PROTEST**

**Description**

Function `procrustes` rotates a configuration to maximum similarity with another configuration. Function `protest` tests the non-randomness (‘significance’) between two configurations.

**Usage**

```r
procrustes(X, Y, scale = TRUE, symmetric = FALSE, scores = "sites", ...)
```

## S3 method for class 'procrustes'

- `summary(object, digits = getOption("digits"), ...)
- `plot(x, kind=1, choices=c(1,2), to.target = TRUE,
  type = "p", xlab, ylab, main, ar.col = "blue", len=0.05,
  cex = 0.7, ...)
- `points(x, display = c("target", "rotated"), ...)
- `text(x, display = c("target", "rotated"), labels, ...)
- `lines(x, type = c("segments", "arrows"), choices = c(1, 2), ...)
- `residuals(object, ...)
- `fitted(object, truemean = TRUE, ...)
- `predict(object, newdata, truemean = TRUE, ...)
- `protest(X, Y, scores = "sites", permutations = how(nperm = 999), ...)
```

Arguments

- **X** Target matrix
- **Y** Matrix to be rotated.
- **scale** Allow scaling of axes of Y.
- **symmetric** Use symmetric Procrustes statistic (the rotation will still be non-symmetric).
scores Kind of scores used. This is the display argument used with the corresponding scores function: see `scores, scores.cca` and `scores.cca` for alternatives.
x, object An object of class procrustes.
digits Number of digits in the output.
kind For plot function, the kind of plot produced: kind = 1 plots shifts in two configurations, kind = 0 draws a corresponding empty plot, and kind = 2 plots an impulse diagram of residuals.
choices Axes (dimensions) plotted.
xlab, ylab Axis labels, if defaults unacceptable.
main Plot title, if default unacceptable.
display Show only the "target" or "rotated" matrix as points.
to.target Draw arrows to point to target.
type The type of plot drawn. In plot, the type can be "points" or "text" to select the marker for the tail of the arrow, or "none" for drawing an empty plot. In lines the type selects either arrows or line segments to connect target and rotated configuration.
truemean Use the original range of target matrix instead of centring the fitted values. Function plot.procrustes needs truemean = FALSE.
newdata Matrix of coordinates to be rotated and translated to the target.
permutations a list of control values for the permutations as returned by the function how, or the number of permutations required, or a permutation matrix where each row gives the permuted indices.
ar.col Arrow colour.
len Width of the arrow head.
lables Character vector of text labels. Rownames of the result object are used as default.
cex Character expansion for points or text.
... Other parameters passed to functions. In procrustes and protest parameters are passed to scores, in graphical functions to underlying graphical functions.

Details

Procrustes rotation rotates a matrix to maximum similarity with a target matrix minimizing sum of squared differences. Procrustes rotation is typically used in comparison of ordination results. It is particularly useful in comparing alternative solutions in multidimensional scaling. If scale=FALSE, the function only rotates matrix Y. If scale=TRUE, it scales linearly configuration Y for maximum similarity. Since Y is scaled to fit X, the scaling is non-symmetric. However, with symmetric=TRUE, the configurations are scaled to equal dispersions and a symmetric version of the Procrustes statistic is computed.

Instead of matrix, X and Y can be results from an ordination from which scores can extract results. Function procrustes passes extra arguments to scores, scores.cca etc. so that you can specify arguments such as scaling.
Function `plot` plots a `procrustes` object and returns invisibly an `ordiplot` object so that function `identify.ordiplot` can be used for identifying points. The items in the `ordiplot` object are called heads and points with kind=1 (ordination diagram) and sites with kind=2 (residuals). In ordination diagrams, the arrow heads point to the target configuration if `to.target = TRUE`, and to rotated configuration if `to.target = FALSE`. Target and original rotated axes are shown as cross hairs in two-dimensional Procrustes analysis, and with a higher number of dimensions, the rotated axes are projected onto plot with their scaled and centred range. Function `plot` passes parameters to underlying plotting functions. For full control of plots, you can draw the axes using `plot` with `kind = 0`, and then add items with points or lines. These functions pass all parameters to the underlying functions so that you can select the plotting characters, their size, colours etc., or you can select the width, colour and type of line `segments` or arrows, or you can select the orientation and head width of `arrows`.

Function `residuals` returns the pointwise residuals, and `fitted` the fitted values, either centred to zero mean (if `trueMean=FALSE`) or with the original scale (these hardly make sense if `symmetric = TRUE`). In addition, there are summary and print methods.

If matrix X has a lower number of columns than matrix Y, then matrix X will be filled with zero columns to match dimensions. This means that the function can be used to rotate an ordination configuration to an environmental variable (most practically extracting the result with the `fitted` function). Function `predict` can be used to add new rotated coordinates to the target. The `predict` function will always translate coordinates to the original non-centred matrix. The function cannot be used with `newdata` for symmetric analysis.

Function `protest` performs symmetric Procrustes analysis repeatedly to estimate the ‘significance’ of the Procrustes statistic. Function `protest` uses a correlation-like statistic derived from the symmetric Procrustes sum of squares `ss` as \(r = \sqrt{1 - ss} \), and also prints the sum of squares of the symmetric analysis, sometimes called \(m^2_{12} \). Function `protest` has own print method, but otherwise uses `procrustes` methods. Thus `plot` with a `protest` object yields a “Procrustean superimposition plot.”

Value

Function `procrustes` returns an object of class `procrustes` with items. Function `protest` inherits from `procrustes`, but amends that with some new items:

- **Yrot** Rotated matrix Y.
- **X** Target matrix.
- **ss** Sum of squared differences between X and Yrot.
- **rotation** Orthogonal rotation matrix.
- **translation** Translation of the origin.
- **scale** Scaling factor.
- **xmean** The centroid of the target.
- **symmetric** Type of `ss` statistic.
- **call** Function call.
- **t0** This and the following items are only in class `protest`: Procrustes correlation from non-permuted solution.
- **t** Procrustes correlations from permutations. The distribution of these correlations can be inspected with `permustats` function.
signif ‘Significance’ of t
permutations Number of permutations.
control A list of control values for the permutations as returned by the function how.
control the list passed to argument control describing the permutation design.

Note
The function protest follows Peres-Neto & Jackson (2001), but the implementation is still after Mardia et al. (1979).

Author(s)
Jari Oksanen

References

See Also
monoMDS, for obtaining objects for procrustes, and mantel for an alternative to protest without need of dimension reduction. See how for details on specifying the type of permutation required.

Examples

data(varespec)
vare.dist <- vegdist(wisconsin(varespec))
mds.null <- monoMDS(vare.dist, y = cmdscale(vare.dist))
mds.alt <- monoMDS(vare.dist)
vare.proc <- procrustes(mds.alt, mds.null)
vare.proc
summary(vare.proc)
plot(vare.proc)
plot(vare.proc, kind=2)
residuals(vare.proc)

Description
The data are log transformed abundances of aquatic invertebrate in twelve ditches studied in eleven times before and after an insecticide treatment.
Usage

```r
data(pyrifos)
```

Format

A data frame with 132 observations on the log-transformed ($\log(10 + x)$) abundances of 178 species. There are only twelve sites (ditches, mesocosms), but these were studied repeatedly in eleven occasions. The treatment levels, treatment times, or ditch ID’s are not in the data frame, but the data are very regular, and the example below shows how to obtain these external variables.

Details

This data set was obtained from an experiment in outdoor experimental ditches. Twelve mesocosms were allocated at random to treatments; four served as controls, and the remaining eight were treated once with the insecticide chlorpyrifos, with nominal dose levels of 0.1, 0.9, 6, and 44 μg/L in two mesocosms each. The example data set invertebrates. Sampling was done 11 times, from week -4 pre-treatment through week 24 post-treatment, giving a total of 132 samples (12 mesocosms times 11 sampling dates), see van den Brink & ter Braak (1999) for details. The data set contains only the species data, but the example below shows how to obtain the treatment, time and ditch ID variables.

Source

CANOCO 4 example data, with the permission of Cajo J. F. ter Braak.

References

Examples

```r
data(pyrifos)
ditch <- gl(12, 1, length=132)
week <- gl(11, 12, labels=c(-4, -1, 0, 1, 2, 4, 8, 12, 15, 19, 24, 24))
dose <- factor(rep(c(0, 1, 0, 0.9, 0, 44, 6, 0.1, 44, 0.9, 0, 6), 11))
```

radfit

Rank – Abundance or Dominance / Diversity Models

Description

Functions construct rank – abundance or dominance / diversity or Whittaker plots and fit broken-stick, pre-emption, log-Normal, Zipf and Zipf-Mandelbrot models of species abundance.
Usage

Default S3 method:
radfit(x, ...)
rad.null(x, family=poisson, ...)
rad.preempt(x, family = poisson, ...)
rad.lognormal(x, family = poisson, ...)
rad.zipf(x, family = poisson, ...)
rad.zipfbrot(x, family = poisson, ...)
S3 method for class 'radline'
predict(object, newdata, total, ...)
S3 method for class 'radfit'
plot(x, BIC = FALSE, legend = TRUE, ...)
S3 method for class 'radfit.frame'
plot(x, order.by, BIC = FALSE, model, legend = TRUE,
as.table = TRUE, ...)
S3 method for class 'radline'
plot(x, xlab = "Rank", ylab = "Abundance", type = "b", ...)
radlattice(x, BIC = FALSE, ...)
S3 method for class 'radfit'
lines(x, ...)
S3 method for class 'radfit'
points(x, ...)
as.rad(x)
S3 method for class 'rad'
plot(x, xlab = "Rank", ylab = "Abundance", log = "y", ...)

Arguments

x Data frame, matrix or a vector giving species abundances, or an object to be plotted.
family Error distribution (passed to glm). All alternatives accepting link = "log" in family can be used, although not all make sense.
object A fitted result object.
newdata Ranks used for ordinations. All models can interpolate to non-integer “ranks” (although this may be approximate), but extrapolation may fail
total The new total used for predicting abundance. Observed total count is used if this is omitted.
order.by A vector used for ordering sites in plots.
BIC Use Bayesian Information Criterion, BIC, instead of Akaike’s AIC. The penalty in BIC is $k = \log(S)$ where S is the number of species, whereas AIC uses $k = 2$.
model Show only the specified model. If missing, AIC is used to select the model. The model names (which can be abbreviated) are Null, Preemption, Lognormal, Zipf, Mandelbrot.
legend Add legend of line colours.
as.table Arrange panels starting from upper left corner (passed to xyplot).
xlab, ylab Labels for x and y axes.

Type of the plot, "b" for plotting both observed points and fitted lines, "p" for only points, "l" for only fitted lines, and "n" for only setting the frame.

log Use logarithmic scale for given axis. The default log = "y" gives the traditional plot of community ecology where the pre-emption model is a straight line, and with log = "xy" Zipf model is a straight line. With log = "n" both axes are in the original arithmetic scale.

... Other parameters to functions.

Details

Rank–Abundance Dominance (RAD) or Dominance/Diversity plots (Whittaker 1965) display logarithmic species abundances against species rank order. These plots are supposed to be effective in analysing types of abundance distributions in communities. These functions fit some of the most popular models mainly following Wilson (1991).

Functions `rad.null`, `rad.preempt`, `rad.lognormal`, `rad.zipf` and `zipfbrot` fit the individual models (described below) for a single vector (row of data frame), and function `radfit` fits all models. The argument of the function `radfit` can be either a vector for a single community or a data frame where each row represents a distinct community.

Function `rad.null` fits a brokenstick model where the expected abundance of species at rank \(r \) is

\[
a_r = \frac{J}{S} \sum_{x=r}^{S} \frac{1}{x}
\]

(Pielou 1975), where \(J \) is the total number of individuals (site total) and \(S \) is the total number of species in the community. This gives a Null model where the individuals are randomly distributed among observed species, and there are no fitted parameters. Function `rad.preempt` fits the niche preemption model, a.k.a. geometric series or Motomura model, where the expected abundance \(a_r \) of species at rank \(r \) is

\[
a_r = J \alpha (1 - \alpha)^{r-1}
\]

The only estimated parameter is the preemption coefficient \(\alpha \) which gives the decay rate of abundance per rank. The niche preemption model is a straight line in a RAD plot. Function `rad.lognormal` fits a log-Normal model which assumes that the logarithmic abundances are distributed Normally, or

\[
a_r = \exp(\log \mu + \log \sigma N)
\]

where \(N \) is a Normal deviate. Function `rad.zipf` fits the Zipf model \(a_r = J p_1 r^{-\gamma} \) where \(p_1 \) is the fitted proportion of the most abundant species, and \(\gamma \) is a decay coefficient. The Zipf–Mandelbrot model (rad.zipfbrot) adds one parameter: \(a_r = Je(r + \beta)^{-\gamma} \) after which \(p_1 \) of the Zipf model changes into a meaningless scaling constant \(c \).

Log-Normal and Zipf models are generalized linear models (`glm`) with logarithmic link function. Zipf–Mandelbrot adds one nonlinear parameter to the Zipf model, and is fitted using `nlm` for the nonlinear parameter and estimating other parameters and log-Likelihood with `glm`. Preemption model is fitted as a purely nonlinear model. There are no estimated parameters in the Null model.

The default `family` is `poisson` which is appropriate only for genuine counts (integers), but other families that accept `link` = "log" can be used. Families `Gamma` or `gaussian` may be appropriate for abundance data, such as cover. The “best” model is selected by `AIC`. Therefore “quasi” families such as `quasipoisson` cannot be used: they do not have `AIC` nor log-Likelihood needed in nonlinear models.

All these functions have their own `plot` functions. When `radfit` was applied for a data frame, `plot` uses `Lattice` graphics, and other `plot` functions use ordinary graphics. The ordinary graphics functions return invisibly an `ordiplot` object for observed points, and function `identify.ordiplot` can be used to label selected species. Alternatively, `radlattice` uses `Lattice` graphics to display each `radfit` model of a single site in a separate panel together with their AIC or BIC values.
Function `as.rad` is a base function to construct ordered RAD data. Its plot is used by other RAD plot functions which pass extra arguments (such as `xlab` and `log`) to this function.

Value

Functions `rad.null`, `rad.preempt`, `rad.lognormal`, `zipf` and `zipfbrot` fit each a single RAD model to a single site. The result object has class "radline" and inherits from `glm`, and can be handled by some (but not all) `glm` methods.

Function `radfit` fits all models either to a single site or to all rows of a data frame or a matrix. When fitted to a single site, the function returns an object of class "radfit" with items `y` (observed values), `family`, and `models` which is a list of fitted "radline" models. When applied for a data frame or matrix, `radfit` function returns an object of class "radfit.frame" which is a list of "radfit" objects, each item names by the corresponding row name.

All result objects ("radline", "radfit", "radfit.frame") can be accessed with same method functions. The following methods are available: `AIC`, `coef`, `deviance`, `logLik`. In addition the fit results can be accessed with `fitted`, `predict` and `residuals` (inheriting from `residuals.glm`). The graphical functions were discussed above in Details.

Note

The RAD models are usually fitted for proportions instead of original abundances. However, nothing in these models seems to require division of abundances by site totals, and original observations are used in these functions. If you wish to use proportions, you must standardize your data by site totals, e.g. with `decostand` and use appropriate `family` such as `Gamma`.

The lognormal model is fitted in a standard way, but I do think this is not quite correct – at least it is not equivalent to fitting Normal density to log abundances like originally suggested (Preston 1948).

Some models may fail. In particular, estimation of the Zipf-Mandelbrot model is difficult. If the fitting fails, NA is returned.

Wilson (1991) defined preemption model as \(a_r = J p_1 (1 - \alpha)^{r-1} \), where \(p_1 \) is the fitted proportion of the first species. However, parameter \(p_1 \) is completely defined by \(\alpha \) since the fitted proportions must add to one, and therefore I handle preemption as a one-parameter model.

Veiled log-Normal model was included in earlier releases of this function, but it was removed because it was flawed: an implicit veil line also appears in the ordinary log-Normal. The latest release version with `rad.veil` was 1.6-10.

Author(s)

Jari Oksanen

References

See Also

fisherfit and *prestonfit*. An alternative approach is to use *qqnorm* or *qqplot* with any distribution. For controlling graphics: *Lattice, xyplot, lset*.

Examples

```r
data(BCI)
mod <- rad.lognormal(BCI[5,])
mod
plot(mod)
mod <- radfit(BCI[1,])
## Standard plot overlaid for all models
## Pre-emption model is a line
plot(mod)
## log for both axes: Zipf model is a line
plot(mod, log = "xy")
## Lattice graphics separately for each model
radlattice(mod)
# Take a subset of BCI to save time and nerves
mod <- radfit(BCI[3:5,])
mod
plot(mod, pch=".")
```

rankindex

Compares Dissimilarity Indices for Gradient Detection

Description

Rank correlations between dissimilarity indices and gradient separation.

Usage

```r
rankindex(grad, veg, indices = c("euc", "man", "gow", "bra", "kul"),
    stepacross = FALSE, method = "spearman",
    metric = c("euclidean", "mahalanobis", "manhattan", "gower"),
    ...)```

#### Arguments

- `grad` The gradient variable or matrix.
- `veg` The community data matrix.
- `indices` Dissimilarity indices compared, partial matches to alternatives in *vegdist*. Alternatively, it can be a (named) list of functions returning objects of class `dist`.
- `stepacross` Use *stepacross* to find a shorter path dissimilarity. The dissimilarities for site pairs with no shared species are set NA using *no.shared* so that indices with no fixed upper limit can also be analysed.
- `method` Correlation method used.
metric: Metric to evaluate the gradient separation. See Details.

... Other parameters to stepacross.

Details

A good dissimilarity index for multidimensional scaling should have a high rank-order similarity with gradient separation. The function compares most indices in vegdist against gradient separation using rank correlation coefficients in cor. The gradient separation between each point is assessed using given metric. The default is to use Euclidean distance of continuous variables scaled to unit variance, or to use Gower metric for mixed data using function daisy when grad has factors. The other alternatives are Mahalanabis distances which are based on grad matrix scaled so that columns are orthogonal (uncorrelated) and have unit variance, or Manhattan distances of grad variables scaled to unit range.

The indices argument can accept any dissimilarity indices besides the ones calculated by the vegdist function. For this, the argument value should be a (possibly named) list of functions. Each function must return a valid `dist` object with dissimilarities, similarities are not accepted and should be converted into dissimilarities beforehand.

Value

Returns a named vector of rank correlations.

Note

There are several problems in using rank correlation coefficients. Typically there are very many ties when \(n(n - 1)/2\) gradient separation values are derived from just \(n\) observations. Due to floating point arithmetics, many tied values differ by machine epsilon and are arbitrarily ranked differently by rank used in cor.test. Two indices which are identical with certain transformation or standardization may differ slightly (magnitude \(10^{-15}\)) and this may lead into third or fourth decimal instability in rank correlations. Small differences in rank correlations should not be taken too seriously. Probably this method should be replaced with a sounder method, but I do not yet know which... You may experiment with mantel, anosim or even protest.

Earlier version of this function used method = “kendall”, but that is far too slow in large data sets.

The functions returning dissimilarity objects should be self contained, because the ... argument passes additional parameters to stepacross and not to the functions supplied via the indices argument.

Author(s)

Jari Oksanen, with additions from Peter Solymos

References

raupcrick

See Also
devdist, stepacross, no.shared, monoMDS, cor, Machine, and for alternatives anosim, mantel
and protest.

Examples
data(varespec)
data(varechem)
## The variables are automatically scaled
rankindex(varechem, varespec)
rkindex(varechem, wisconsin(varespec))
## Using non vegdist indices as functions
funs <- list(Manhattan=function(x) dist(x, "manhattan"),
Gower=function(x) cluster:::daisy(x, "gower"),
Ochiai=function(x) designdist(x, "I-J/sqrt(A*B)"))
rkindex(scale(varechem), varespec, funs)

raupcrick

Raup-Crick Dissimilarity with Unequal Sampling Densities of Species

Description

Function finds the Raup-Crick dissimilarity which is a probability of number of co-occurring species
with species occurrence probabilities proportional to species frequencies.

Usage

raupcrick(comm, null = "r1", nsimul = 999, chase = FALSE, ...)

Arguments

comm Community data which will be treated as presence/absence data.
null Null model used as the method in oecosimu.
nsimul Number of null communities for assessing the dissimilarity index.
chase Use the Chase et al. (2011) method of tie handling (not recommended except
for comparing the results against the Chase script).
...

Details

Raup-Crick index is the probability that compared sampling units have non-identical species com-
position. This probability can be regarded as a dissimilarity, although it is not metric: identical
sampling units can have dissimilarity slightly above 0, the dissimilarity can be nearly zero over a
range of shared species, and sampling units with no shared species can have dissimilarity slightly
below 1. Moreover, communities sharing rare species appear as more similar (lower probability of
finding rare species together), than communities sharing the same number of common species.
The function will always treat the data as binary (presence/absence).

The probability is assessed using simulation with `oecosimu` where the test statistic is the observed number of shared species between sampling units evaluated against a community null model (see Examples). The default null model is "r1" where the probability of selecting species is proportional to the species frequencies.

The `vegdist` function implements a variant of the Raup-Crick index with equal sampling probabilities for species using exact analytic equations without simulation. This corresponds to null model "r0" which also can be used with the current function. All other null model methods of `oecosimu` can be used with the current function, but they are new unpublished methods.

Value

The function returns an object inheriting from `dist` which can be interpreted as a dissimilarity matrix.

Note

The test statistic is the number of shared species, and this is typically tied with a large number of simulation results. The tied values are handled differently in the current function and in the function published with Chase et al. (2011). In `vegan`, the index is the number of simulated values that are smaller or equal than the observed value, but smaller than observed value is used by Chase et al. (2011) with option `split = FALSE` in their script; this can be achieved with `chase = TRUE` in `vegan`. Chase et al. (2011) script with `split = TRUE` uses half of tied simulation values to calculate a distance measure, and that choice cannot be directly reproduced in vegan (it is the average of `vegan` `raupcrick` results with `chase = TRUE` and `chase = FALSE`).

Author(s)

The function was developed after Brian Inouye contacted us and informed us about the method in Chase et al. (2011), and the function takes its idea from the code that was published with their paper. The current function was written by Jari Oksanen.

References


See Also

The function is based on `oecosimu`. Function `vegdist` with method = "raup" implements a related index but with equal sampling densities of species, and `designdist` demonstrates its calculation.

Examples

```r
data set with variable species richness
data(sipoo)
default raupcrick
drl <- raupcrick(sipoo)
use null model "r0" of oecosimu
```
**read.cep**

**Reads a CEP (Canoco) data file**

**Description**

read.cep reads a file formatted by relaxed strict CEP format used by Canoco software, among others.

**Usage**

```r
callread.cep(file, maxdata=10000, positive=TRUE, trace=FALSE, force=FALSE)
```

**Arguments**

- **file**  File name (character variable).
- **maxdata**  Maximum number of non-zero entries.
- **positive**  Only positive entries, like in community data.
- **trace**  Work verbosely.
- **force**  Run function, even if R refuses first.

**Details**

Cornell Ecology Programs (CEP) introduced several data formats designed for punched cards. One of these was the ‘condensed strict’ format which was adopted by popular software DECORANA and TWINSPLAN. Later, Cajo ter Braak wrote Canoco based on DECORANA, where he adopted the format, but relaxed it somewhat (that’s why I call it a ‘relaxed strict’ format). Further, he introduced a more ordinary ‘free’ format, and allowed the use of classical Fortran style ‘open’ format with fixed field widths. This function should be able to deal with all these Canoco formats, whereas it cannot read many of the traditional CEP alternatives.

All variants of CEP formats have:

- Two or three title cards, most importantly specifying the format (or word FREE) and the number of items per record (number of species and sites for FREE format).
• Data in one of three accepted formats:

1. Condensed format: First number on the line is the site identifier, and it is followed by pairs ('couplets') of numbers identifying the species and its abundance (an integer and a floating point number).

2. Open Fortran format, where the first number on the line must be the site number, followed by abundance values in fields of fixed widths. Empty fields are interpreted as zeros.

3. ‘Free’ format, where the numbers are interpreted as abundance values. These numbers must be separated by blank space, and zeros must be written as zeros.

• Species and site names, given in Fortran format \(10A8\): Ten names per line, eight columns for each.

With option positive = TRUE the function removes all lines and columns with zero or negative marginal sums. In community data with only positive entries, this removes empty sites and species. If data entries can be negative, this ruins data, and such data sets should be read in with option positive = FALSE.

Value

Returns a data frame, where columns are species and rows are sites. Column and row names are taken from the CEP file, and changed into unique \(R\) names by `make.names` after stripping the blanks.

Note

The function relies on smooth linking of Fortran file IO in \(R\) session. This is not guaranteed to work, and therefore the function may not work in your system, but it can crash the \(R\) session. Therefore the default is that the function does not run. If you still want to try:

1. Save your session
2. Run `read.cep()` with switch `force=TRUE`

If you transfer files between operating systems or platforms, you should always check that your file is formatted to your current platform. For instance, if you transfer files from Windows to Linux, you should change the files to \(unix\) format, or your session may crash when Fortran program tries to read the invisible characters that Windows uses at the end of each line.

If you compiled vegan using `gfortran`, the input is probably corrupted. You either should compile vegan with other FORTRAN compilers or not to use `read.cep`. The problems still persist in `gfortran 4.01`.

Author(s)

Jari Oksanen

References

Examples

```r
Provided that you have the file `dune.spe'
Not run:
theclassic <- read.cep("dune.spe", force=T)
End(Not run)
```

Description

Function `renyi` finds Rényi diversities with any scale or the corresponding Hill number (Hill 1973). Function `renyiaccum` finds these statistics with accumulating sites.

Usage

```r
renyi(x, scales = c(0, 0.25, 0.5, 1, 2, 4, 8, 16, 32, 64, Inf),
 hill = FALSE)
S3 method for class 'renyi'
plot(x, ...)
renyiaccum(x, scales = c(0, 0.5, 1, 2, 4, Inf), permutations = 100,
 raw = FALSE, collector = FALSE, subset, ...)
S3 method for class 'renyiaccum'
plot(x, what = c("Collector", "mean", "Qnt 0.025", "Qnt 0.975"),
 type = "l",
 ...)
S3 method for class 'renyiaccum'
persp(x, theta = 220, col = heat.colors(100), zlim, ...)
```

Arguments

- `x` Community data matrix or plotting object.
- `scales` Scales of Rényi diversity.
- `hill` Calculate Hill numbers.
- `permutations` Usually an integer giving the number permutations, but can also be a list of control values for the permutations as returned by the function `how`, or a permutation matrix where each row gives the permuted indices.
- `raw` if FALSE then return summary statistics of permutations, and if TRUE then returns the individual permutations.
- `collector` Accumulate the diversities in the order the sites are in the data set, and the collector curve can be plotted against summary of permutations. The argument is ignored if `raw` = TRUE.
- `subset` logical expression indicating sites (rows) to keep: missing values are taken as FALSE.
- `what` Items to be plotted.
**Details**

Common diversity indices are special cases of Rényi diversity

\[ H_a = \frac{1}{1 - a} \log \sum p_i^a \]

where \( a \) is a scale parameter, and Hill (1975) suggested to use so-called “Hill numbers” defined as \( N_a = \exp(H_a) \). Some Hill numbers are the number of species with \( a = 0 \), \( \exp(H') \) or the exponent of Shannon diversity with \( a = 1 \), inverse Simpson with \( a = 2 \) and \( 1/\max(p_i) \) with \( a = \infty \). According to the theory of diversity ordering, one community can be regarded as more diverse than another only if its Rényi diversities are all higher (Tóthmérész 1995).

The plot method for renyi uses lattice graphics, and displays the diversity values against each scale in separate panel for each site together with minimum, maximum and median values in the complete data.

Function renyiaccum is similar to specaccum but finds Rényi or Hill diversities at given scales for random permutations of accumulated sites. Its plot function uses lattice function xyplot to display the accumulation curves for each value of scales in a separate panel. In addition, it has a persp method to plot the diversity surface against scale and number and sites. Similar dynamic graphics can be made with rgl.renyiaccum in vegan3d package.

**Value**

Function renyi returns a data frame of selected indices. Function renyiaccum with argument raw = FALSE returns a three-dimensional array, where the first dimension are the accumulated sites, second dimension are the diversity scales, and third dimension are the summary statistics mean, stdev, min, max, Qnt 0.025 and Qnt 0.975. With argument raw = TRUE the statistics on the third dimension are replaced with individual permutation results.

**Author(s)**

Roeland Kindt <r.kindt@cgiar.org> and Jari Oksanen

**References**


See Also

diversity for diversity indices, and specaccum for ordinary species accumulation curves, and xyplot, persp and rgl.reniaccum.

Examples

data(BCI)
i <- sample(nrow(BCI), 12)
mod <- renyi(BCI[i,])
plot(mod)
mod <- renyiaccum(BCI[i,])
plot(mod, as.table=TRUE, col = c(1, 2, 2))
persp(mod)

Description

Function takes a hierarchical clustering tree from hclust and a vector of values and reorders the clustering tree in the order of the supplied vector, maintaining the constraints on the tree. This is a method of generic function reorder and an alternative to reordering a "dendrogram" object with reorder.dendrogram

Usage

## S3 method for class 'hclust'
reorder(x, wts,
  agglo.FUN = c("mean", "min", "max", "sum", "uwmean"), ...)
## S3 method for class 'hclust'
rev(x)
## S3 method for class 'hclust'
scores(x, display = "internal", ...)

Arguments

x hierarchical clustering from hclust.
wts numeric vector for reordering.
agglo.FUN a function for weights agglomeration, see below.
display return "internal" nodes or "terminal" nodes (also called "leaves").
... additional arguments (ignored).
Details

Dendrograms can be ordered in many ways. The reorder function reorders an `hclust` tree and provides an alternative to `reorder.dendrogram` which can reorder a `dendrogram`. The current function will also work differently when the `agglo.FUN` is "mean": the `reorder.dendrogram` will always take the direct mean of member groups ignoring their sizes, but this function will use `weighted.mean` weighted by group sizes, so that the group mean is always the mean of member leaves (terminal nodes). If you want to ignore group sizes, you can use unweighted mean with "umean".

The function accepts only a limited list of `agglo.FUN` functions for assessing the value of `wts` for groups. The ordering is always ascending, but the order of leaves can be reversed with `rev`.

Function `scores` finds the coordinates of nodes as a two-column matrix. For terminal nodes (leaves) this the value at which the item is merged to the tree, and the labels can still hang below this level (see `plot.hclust`).

Value

Reordered `hclust` result object with added item `value` that gives the value of the statistic at each merge level.

Note

These functions should really be in base R.

Author(s)

Jari Oksanen

See Also

`hclust` for getting clustering trees, `as.hclust.spantree` to change a `vegan` minimum spanning tree to an `hclust` object, and `dendrogram` and `reorder.dendrogram` for an alternative implementation.

Examples

```r
reorder by water content of soil
data(mite, mite.env)
hc <- hclust(vegdist(wisconsin(sqrt(mite))))
ohc <- with(mite.env, reorder(hc, WatrCont))
plot(hc)
plot(ohc)

label leaves by the observed value, and each branching point
(internal node) by the cluster mean
with(mite.env, plot(ohc, labels=round(WatrCont), cex=0.7))
ordilabel(scores(ohc), label=round(ohc$value), cex=0.7)

Slightly different from reordered 'dendrogram' which ignores group
sizes in assessing means.
den <- as.dendrogram(hc)
```
RsquareAdj

```r
plot(den)
```

### Description

The functions finds the adjusted R-square.

### Usage

```r
Default S3 method:
RsquareAdj(x, n, m, ...)
S3 method for class 'rda'
RsquareAdj(x, ...)
```

### Arguments

- `x`: Unadjusted R-squared or an object from which the terms for evaluation or adjusted R-squared can be found.
- `n, m`: Number of observations and number of degrees of freedom in the fitted model.
- `...`: Other arguments (ignored).

### Details

The default method finds the adjusted R-squared from the unadjusted R-squared, number of observations, and number of degrees of freedom in the fitted model. The specific methods find this information from the fitted result object. There are specific methods for `rda`, `cca`, `lm` and `glm`. Adjusted, or even unadjusted, R-squared may not be available in some cases, and then the functions will return `NA`. There is no adjusted R-squared in `cca`, in partial `rda`, and R-squared values are available only for `gaussian` models in `glm`.

The raw $R^2$ of partial `rda` gives the proportion explained after removing the variation due to conditioning (partial) terms; Legendre et al. (2011) call this semi-partial $R^2$. The adjusted $R^2$ is found as the difference of adjusted $R^2$ values of joint effect of partial and constraining terms and partial term alone, and it is the same as the adjusted $R^2$ of component $[a] = X_1 | X_2$ in two-component variation partition in `varpart`.

### Value

The functions return a list of items `r.squared` and `adj.r.squared`.

### References


Function to access either species or site scores for specified axes in some ordination methods. The scores function is generic in vegan, and vegan ordination functions have their own scores functions that are documented separately with the method (see e.g. scores.cca, scores.metaMDS, scores.decorana). This help file documents the default scores method that is only used for non-vegan ordination objects.

Usage

## Default S3 method:
scores(x, choices, display=c("sites", "species"), ...)

Arguments

- **x**: An ordination result.
- **choices**: Ordination axes. If missing, default method returns all axes.
- **display**: Partial match to access scores for sites or species.
- **...**: Other parameters (unused).

Details

Function scores is a generic method in vegan. Several vegan functions have their own scores methods with their own defaults and with some new arguments. This help page describes only the default method. For other methods, see, e.g., scores.cca, scores.rda, scores.decorana.

All vegan ordination functions should have a scores method which should be used to extract the scores instead of directly accessing them. Scaling and transformation of scores should also happen in the scores function. If the scores function is available, the results can be plotted using ordiplot, ordixyplot etc., and the ordination results can be compared in procrustes analysis.
The scores.default function is used to extract scores from non-vegan ordination results. Many standard ordination methods of libraries do not have a specific class, and no specific method can be written for them. However, scores.default guesses where some commonly used functions keep their site scores and possible species scores.

If x is a matrix, scores.default returns the chosen columns of that matrix, ignoring whether species or sites were requested (do not regard this as a bug but as a feature, please). Currently the function seems to work at least for isoMDS, prcomp, princomp and some ade4 objects. It may work in other cases or fail mysteriously.

**Value**

The function returns a matrix of scores.

**Author(s)**

Jari Oksanen

**See Also**

Specific scores functions include (but are not limited to) `scores.cca`, `scores.rda`, `scores.decorana`, `scores.envfit`, `scores.metaMDS`, `scores.monoMDS` and `scores.pcm`. These have somewhat different interface – `scores.cca` in particular – but all work with keywords display="sites" and return a matrix. However, they may also return a list of matrices, and some other scores methods will have quite different arguments.

**Examples**

data(varespec)
vare.pca <- prcomp(varespec)
 scores(vare.pca, choices=c(1,2))

---

**Description**

Screeplot methods for plotting variances of ordination axes/components and overlaying broken stick distributions. Also, provides alternative screeplot methods for `princomp` and `prcomp`.

**Usage**

```r
S3 method for class 'cca'
screepplot(x, bstick = FALSE, type = c("barplot", "lines"),
 npcs = min(10, if (is.null(x$CCA) || x$CCA$rank == 0) x$CA$rank else x$CCA$rank),
 ptype = "o", bst.col = "red", bst.lty = "solid",
 xlab = "Component", ylab = "Inertia",
 main = deparse(substitute(x)), legend = bstick,
 ...
```
Arguments

x  an object from which the component variances can be determined.
bstick logical; should the broken stick distribution be drawn?
npcs  the number of components to be plotted.
type the type of plot.
ptype

if type == "lines" or bstick = TRUE, a character indicating the type of
plotting used for the lines; actually any of the types as in plot.default.

bst.col, bst.lty

the colour and line type used to draw the broken stick distribution.

xlab, ylab, main

graphics parameters.

legend

logical; draw a legend?

n

an object from which the variances can be extracted or the number of variances
(components) in the case of bstick.default.

tot.var

the total variance to be split.

... arguments passed to other methods.

Details

The functions provide screeplots for most ordination methods in vegan and enhanced versions with
broken stick for prcomp and princomp.

Function bstick gives the brokenstick values which are ordered random proportions, defined as
\[ p_i = \frac{\text{tot}}{n} \sum_{x=i}^{n} \left( \frac{1}{x} \right) \] (Legendre & Legendre 2012), where tot is the total and n is the number
of brokenstick components (cf. radfit). Broken stick has been recommended as a stopping rule in
principal component analysis (Jackson 1993): principal components should be retained as long as
observed eigenvalues are higher than corresponding random broken stick components.

The bstick function is generic. The default needs the number of components and the total, and
specific methods extract this information from ordination results. There also is a bstick method
for cca. However, the broken stick model is not strictly valid for correspondence analysis (CA),
because eigenvalues of CA are defined to be \( \leq 1 \), whereas brokenstick components have no such
restrictions. The brokenstick components are not available for decorana where the sum of eigen-
values (total inertia) is unknown, and the eigenvalues of single axes are not additive in detrended
analysis.

Value

Function screeplot draws a plot on the currently active device, and returns invisibly the \texttt{xy.coords}
of the points or bars for the eigenvalues.

Function bstick returns a numeric vector of broken stick components.

Author(s)

Gavin L. Simpson

References

and statistical approaches. Ecology 74, 2204–2214.

See Also

cca, decorana, princomp and prcomp for the ordination functions, and screeplot for the stock version.

Examples

data(varespec)
 vare.pca <- rda(varespec, scale = TRUE)
bstick(vare.pca)
   screeplot(vare.pca, bstick = TRUE, type = "lines")

---

simper  Similarity Percentages

Description

Discriminating species between two groups using Bray-Curtis dissimilarities

Usage

simper(comm, group, permutations = 0, trace = FALSE,
       parallel = getOption("mc.cores"), ...)

## S3 method for class 'simper'
simper(comm, group, permutations = 0, trace = FALSE,
       parallel = getOption("mc.cores"), ...)

summary(object, ordered = TRUE,
        digits = max(3,getOption("digits") - 3), ...)

Arguments

comm  Community data matrix.

group  Factor describing the group structure. Must have at least 2 levels.

permutations  a list of control values for the permutations as returned by the function how, or
               the number of permutations required, or a permutation matrix where each row
               gives the permuted indices.

trace  Trace permutations.

object  an object returned by simper.

ordered  Logical; Should the species be ordered by their average contribution?

digits  Number of digits in output.

parallel  Number of parallel processes or a predefined socket cluster. With parallel = 1
           uses ordinary, non-parallel processing. The parallel processing is done with
           parallel package. See vegandocs decision-vegan for details.

...  Parameters passed to other functions. In simper the extra parameters are passed to
       shuffleSet if permutations are used.
Details

Similarity percentage, `simper` (Clarke 1993) is based on the decomposition of Bray-Curtis dissimilarity index (see `vegdist`, `designdist`). The contribution of individual species \( i \) to the overall Bray-Curtis dissimilarity \( d_{jk} \) is given by

\[
d_{ijk} = \frac{|x_{ij} - x_{ik}|}{\sum_{i=1}^{S}(x_{ij} + x_{ik})}
\]

where \( x \) is the abundance of species \( i \) in sampling units \( j \) and \( k \). The overall index is the sum of the individual contributions over all \( S \) species \( d_{jk} = \sum_{i=1}^{S} d_{ijk} \).

The `simper` functions performs pairwise comparisons of groups of sampling units and finds the average contributions of each species to the average overall Bray-Curtis dissimilarity.

The function displays most important species for each pair of groups. These species contribute at least to 70 % of the differences between groups. The function returns much more extensive results which can be accessed directly from the result object (see section Value). Function `summary` transforms the result to a list of data frames. With argument `ordered = TRUE` the data frames also include the cumulative contributions and are ordered by species contribution.

The results of `simper` can be very difficult to interpret. The method very badly confounds the mean between group differences and within group variation, and seems to single out variable species instead of distinctive species (Warton et al. 2012). Even if you make groups that are copies of each other, the method will single out species with high contribution, but these are not contributions to non-existing between-group differences but to within-group variation in species abundance.

Value

A list of class "simper" with following items:

- **species**: The species names.
- **average**: Average contribution to overall dissimilarity.
- **overall**: The overall between-group dissimilarity.
- **sd**: Standard deviation of contribution.
- **ratio**: Average to sd ratio.
- **ava, avb**: Average abundances per group.
- **ord**: An index vector to order vectors by their contribution or order `cusum` back to the original data order.
- **cusum**: Ordered cumulative contribution.
- **p**: Permutation \( p \)-value. Probability of getting a larger or equal average contribution in random permutation of the group factor.

Author(s)

Eduard Szöcs <eduardszoebs@gmail.com>
References


Examples

data(dune)
data(dune.env)
(sim <- with(dune.env, simper(dune, Management)))
summary(sim)

simulate.rda  
*Simulate Responses with Gaussian Error or Permitted Residuals for Constrained Ordination*

Description

Function simulates a response data frame so that it adds Gaussian error to the fitted responses of Redundancy Analysis (*rda*), Constrained Correspondence Analysis (*cca*) or distance-based RDA (*capscale*). The function is a special case of generic *simulate*, and works similarly as *simulate.lm*.

Usage

```r
S3 method for class 'rda'
simulate(object, nsim = 1, seed = NULL, indx = NULL,
 rank = "full", correlated = FALSE, ...)
```

Arguments

- **object**
  - an object representing a fitted *rda*, *cca* or *capscale* model.

- **nsim**
  - number of response matrices to be simulated. Only one dissimilarity matrix is returned for *capscale*, and larger *nsim* is an error.

- **seed**
  - an object specifying if and how the random number generator should be initialized ("seeded"). See *simulate* for details.

- **indx**
  - Index of residuals added to the fitted values, such as produced by *shuffleSet* or *sample*. The index can have duplicate entries so that bootstrapping is allowed. If *nsim* > 1, the output should be compliant with *shuffleSet* with one line for each simulation. If *nsim* is missing, the number of rows of *indx* is used to define the number of simulations, but if *nsim* is given, it should match number of rows in *indx*. If null, parametric simulation is used and Gaussian error is added to the fitted values.

- **rank**
  - The rank of the constrained component: passed to *predict.rda* or *predict.cca*. 
correlated

Are species regarded as correlated in parametric simulation or when indx is not given? If correlated = TRUE, multivariate Gaussian random error is generated, and if FALSE, Gaussian random error is generated separately for each species. The argument has no effect in capscale which has no information on species.

... additional optional arguments (ignored).

Details

The implementation follows "lm" method of simulate, and adds Gaussian (Normal) error to the fitted values (fitted.rda) using function rnorm if correlated = FALSE or mvrnorm if correlated = TRUE. The standard deviations (rnorm) or covariance matrices for species (mvrnorm) are estimated from the residuals after fitting the constraints. Alternatively, the function can take a permutation index that is used to add permuted residuals (unconstrained component) to the fitted values. Raw data are used in rda. Internal Chi-square transformed data are used in cca within the function, but the returned matrix is similar to the original input data. The simulation is performed on internal metric scaling data in capscale, but the function returns the Euclidean distances calculated from the simulated data. The simulation uses only the real components, and the imaginary dimensions are ignored.

Value

If nsim = 1, returns a matrix or dissimilarities (in capscale) with similar additional arguments on random number seed as simulate. If nsim > 1, returns a similar array as returned by simulate.nullmodel with similar attributes.

Author(s)

Jari Oksanen

See Also

simulate for the generic case and for lm objects, and simulate.nullmodel for community null model simulation. Functions fitted.rda and fitted.cca return fitted values without the error component. See rnorm and mvrnorm (MASS package) for simulating Gaussian random error.

Examples

data(dune)
data(dune.env)
mod <- rda(dune ~ Moisture + Management, dune.env)
## One simulation
update(mod, simulate(mod) ~ .)
## An impression of confidence regions of site scores
plot(mod, display="sites")
for (i in 1:5) lines(procrustes(mod, update(mod, simulate(mod) ~ .)), col="blue")
## Simulate a set of null communities with permutation of residuals
simulate(mod, indx = shuffleSet(nrow(dune), 99))
Description

Land birds on islands covered by coniferous forest in the Sipoo archipelago, southern Finland (landbridge/oceanic distinction unclear from source).

Usage

data(sipoo)

Format

A data frame with 18 sites and 50 species (Simberloff & Martin, 1991, Appendix 3). The species are referred by 4+4 letter abbreviation of their Latin names (but using five letters in two species names to make these unique). The example gives the areas of the studies islands in hectares.

Source

http://www.aics-research.com/nested/

References


Examples

data(sipoo)

```r
Areas of the islands in hectares
sipoo.area <- c(1.1, 2.1, 2.2, 3.1, 3.5, 5.8, 6, 6.1, 6.5, 11.4, 13, 14.5, 16.1, 17.5, 28.7, 40.5, 104.5, 233)
```

Description

Function spantree finds a minimum spanning tree connecting all points, but disregarding dissimilarities that are at or above the threshold or NA.
spantree

Usage

spantree(d, toolong = 0)
## S3 method for class 'spantree'
as.hclust(x, ...)
## S3 method for class 'spantree'
cophenetic(x)
spandepth(x)
## S3 method for class 'spantree'
plot(x, ord, cex = 0.7, type = "p", labels, dlim,
    FUN = sammon, ...)
## S3 method for class 'spantree'
lines(x, ord, display="sites", ...)

Arguments

d
Dissimilarity data inheriting from class dist or an object, such as a matrix, that can be converted to a dissimilarity matrix. Functions vegdist and dist are some functions producing suitable dissimilarity data.

toolong
Shortest dissimilarity regarded as NA. The function uses a fuzz factor, so that dissimilarities close to the limit will be made NA, too. If toolong = 0 (or negative), no dissimilarity is regarded as too long.

x
A spantree result object.

ord
An ordination configuration, or an ordination result known by scores.

cex
Character expansion factor.

type
Observations are plotted as points with type="p" or type="b", or as text label with type="t". The tree (lines) will always be plotted.

labels
Text used with type="t" or node names if this is missing.

dlim
A ceiling value used to highest cophenetic dissimilarity.

FUN
Ordination function to find the configuration from cophenetic dissimilarities.

display
Type of scores used for ord.

Details

Function spantree finds a minimum spanning tree for dissimilarities (there may be several minimum spanning trees, but the function finds only one). Dissimilarities at or above the threshold toolong and NAs are disregarded, and the spanning tree is found through other dissimilarities. If the data are disconnected, the function will return a disconnected tree (or a forest), and the corresponding link is NA. Connected subtrees can be identified using distconnected.

Minimum spanning tree is closely related to single linkage clustering, a.k.a. nearest neighbour clustering, and in genetics as neighbour joining tree available in hclust and agnes functions. The most important practical difference is that minimum spanning tree has no concept of cluster membership, but always joins individual points to each other. Function as.hclust can change the spantree result into a corresponding hclust object.
Function cophenetic finds distances between all points along the tree segments. Function spandepth returns the depth of each node. The nodes of a tree are either leaves (with one link) or internal nodes (more than one link). The leaves are recursively removed from the tree, and the depth is the layer at with the leaf was removed. In disconnected spantree object (in a forest) each tree is analysed separately and disconnected nodes not in any tree have depth zero.

Function plot displays the tree over a supplied ordination configuration, and lines adds a spanning tree to an ordination graph. If configuration is not supplied for plot, the function ordinates the cophenetic dissimilarities of the spanning tree and overlays the tree on this result. The default ordination function is sammon (package MASS), because Sammon scaling emphasizes structure in the neighbourhood of nodes and may be able to beautifully represent the tree (you may need to set dlim, and sometimes the results will remain twisted). These ordination methods do not work with disconnected trees, but you must supply the ordination configuration. Function lines will overlay the tree in an existing plot.

Function spantree uses Prim’s method implemented as priority-first search for dense graphs (Sedgewick 1990). Function cophenetic uses function stepacross with option path = "extended". The spantree is very fast, but cophenetic is slow in very large data sets.

Value

Function spantree returns an object of class spantree which is a list with two vectors, each of length \( n - 1 \). The number of links in a tree is one less the number of observations, and the first item is omitted. The items are

- **kid**: The child node of the parent, starting from parent number two. If there is no link from the parent, value will be NA and tree is disconnected at the node.

- **dist**: Corresponding distance. If kid = NA, then dist = 0.

- **labels**: Names of nodes as found from the input dissimilarities.

- **call**: The function call.

Note

In principle, minimum spanning tree is equivalent to single linkage clustering that can be performed using hclust or agnes. However, these functions combine clusters to each other and the information of the actually connected points (the "single link") cannot be recovered from the result. The graphical output of a single linkage clustering plotted with ordicluster will look very different from an equivalent spanning tree plotted with lines.spantree.

Author(s)

Jari Oksanen

References


See Also

vegdist or dist for getting dissimilarities, and hclust or agnes for single linkage clustering.
Examples

```r
data(dune)
dis <- vegdist(dune)
tr <- spantree(dis)
Add tree to a metric scaling
plot(tr, cmdscale(dis), type = "t")
Find a configuration to display the tree neatly
plot(tr, type = "t")
Depths of nodes
depths <- spandepth(tr)
plot(tr, type = "t", label = depths)
Plot as a dendrogram
plot(as.hclust(tr))
```

Description

Function `specaccum` finds species accumulation curves or the number of species for a certain number of sampled sites or individuals.

Usage

```r
specaccum(comm, method = "exact", permutations = 100,
conditioned = TRUE, gamma = "jack1", w = NULL, subset, ...)
```

Arguments

- `comm` Community data set.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>method</strong></td>
<td>Species accumulation method (partial match). Method &quot;collector&quot; adds sites in the order they happen to be in the data, &quot;random&quot; adds sites in random order, &quot;exact&quot; finds the expected (mean) species richness, &quot;coleman&quot; finds the expected richness following Coleman et al. 1982, and &quot;rarefaction&quot; finds the mean when accumulating individuals instead of sites.</td>
</tr>
<tr>
<td><strong>permutations</strong></td>
<td>Number of permutations with method = &quot;random&quot;. Usually an integer giving the number permutations, but can also be a list of control values for the permutations as returned by the function <code>how</code>, or a permutation matrix where each row gives the permuted indices.</td>
</tr>
<tr>
<td><strong>conditioned</strong></td>
<td>Estimation of standard deviation is conditional on the empirical dataset for the exact SAC.</td>
</tr>
<tr>
<td><strong>gamma</strong></td>
<td>Method for estimating the total extrapolated number of species in the survey area by function <code>specpool</code>.</td>
</tr>
<tr>
<td><strong>w</strong></td>
<td>Weights giving the sampling effort.</td>
</tr>
<tr>
<td><strong>subset</strong></td>
<td>Logical expression indicating sites (rows) to keep: missing values are taken as FALSE.</td>
</tr>
<tr>
<td><strong>x</strong></td>
<td>A <code>specaccum</code> result object.</td>
</tr>
<tr>
<td><strong>add</strong></td>
<td>Add to an existing graph.</td>
</tr>
<tr>
<td><strong>random</strong></td>
<td>...</td>
</tr>
<tr>
<td><strong>ci</strong></td>
<td>Multiplier used to get confidence intervals from standard deviation (standard error of the estimate). Value <code>ci = 0</code> suppresses drawing confidence intervals.</td>
</tr>
<tr>
<td><strong>ci.type</strong></td>
<td>Type of confidence intervals in the graph: &quot;bar&quot; draws vertical bars, &quot;line&quot; draws lines, and &quot;polygon&quot; draws a shaded area.</td>
</tr>
<tr>
<td><strong>col</strong></td>
<td>Colour for drawing lines.</td>
</tr>
<tr>
<td><strong>ci.col</strong></td>
<td>Colour for drawing lines or filling the &quot;polygon&quot;.</td>
</tr>
<tr>
<td><strong>ci.lty</strong></td>
<td>Line type for confidence intervals or border of the &quot;polygon&quot;.</td>
</tr>
<tr>
<td><strong>xlab,ylab</strong></td>
<td>Labels for x (defaults <code>xvar</code>) and y axis.</td>
</tr>
<tr>
<td><strong>ylim</strong></td>
<td>The y limits of the plot.</td>
</tr>
<tr>
<td><strong>xvar</strong></td>
<td>Variable used for the horizontal axis: &quot;individuals&quot; can be used only with method = &quot;rarefaction&quot;.</td>
</tr>
<tr>
<td><strong>object</strong></td>
<td>Either a community data set or fitted <code>specaccum</code> model.</td>
</tr>
<tr>
<td><strong>model</strong></td>
<td>Nonlinear regression model (<code>nls</code>). See Details.</td>
</tr>
<tr>
<td><strong>lty</strong></td>
<td>Line type code (see <code>par</code>).</td>
</tr>
<tr>
<td><strong>newdata</strong></td>
<td>Optional data used in prediction interpreted as number of sampling units (sites). If missing, fitted values are returned.</td>
</tr>
<tr>
<td><strong>interpolation</strong></td>
<td>Interpolation method used with <code>newdata</code>.</td>
</tr>
<tr>
<td>...</td>
<td>Other parameters to functions.</td>
</tr>
</tbody>
</table>
Details

Species accumulation curves (SAC) are used to compare diversity properties of community data sets using different accumulator functions. The classic method is "random" which finds the mean SAC and its standard deviation from random permutations of the data, or subsampling without replacement (Gotelli & Colwell 2001). The "exact" method finds the expected SAC using the method that was independently developed by Ugland et al. (2003), Colwell et al. (2004) and Kindt et al. (2006). The unconditional standard deviation for the exact SAC represents a moment-based estimation that is not conditioned on the empirical data set (sd for all samples > 0), unlike the conditional standard deviation that was developed by Jari Oksanen (not published, sd=0 for all samples). The unconditional standard deviation is based on an estimation of the total extrapolated number of species in the survey area (a.k.a. gamma diversity), as estimated by function `specpool`. Method "coleman" finds the expected SAC and its standard deviation following Coleman et al. (1982). All these methods are based on sampling sites without replacement. In contrast, the method = "rarefaction" finds the expected species richness and its standard deviation by sampling individuals instead of sites. It achieves this by applying function `rarefy` with number of individuals corresponding to average number of individuals per site.

Methods "random" and "collector" can take weights (w) that give the sampling effort for each site. The weights w do not influence the order the sites are accumulated, but only the value of the sampling effort so that not all sites are equal. The summary results are expressed against sites even when the accumulation uses weights (methods "random", "collector"), or is based on individuals ("rarefaction"). The actual sampling effort is given as item Effort or Individuals in the printed result. For weighted "random" method the effort refers to the average effort per site, or sum of weights per number of sites. With weighted method = "random", the averaged species richness is found from linear interpolation of single random permutations. Therefore at least the first value (and often several first) have NA richness, because these values cannot be interpolated in all cases but should be extrapolated. The plot function defaults to display the results as scaled to sites, but this can be changed selecting xvar = "effort" (weighted methods) or xvar = "individuals" (with method = "rarefaction").

The summary and boxplot methods are available for method = "random".

Function predict can return the values corresponding to newdata using linear (approx) or spline (spline) interpolation. The function cannot extrapolate with linear interpolation, and with spline the type and sensibility of the extrapolation depends on argument method which is passed to spline. If newdata is not given, the function returns the values corresponding to the data.

Function fitspecaccum fits a nonlinear (nls) self-starting species accumulation model. The input object can be a result of specaccum or a community in data frame. In the latter case the function first fits a specaccum model and then proceeds with fitting the a nonlinear model. The function can apply a limited set of nonlinear regression models suggested for species-area relationship (Dengler 2009). All these are selfStart models. The permissible alternatives are "arrhenius" (SSarrenius), "gleason" (SSgleason), "gitay" (SSgitay), "lomolino" (SSLomolino) of vegan package. In addition the following standard R models are available: "asymp" (SSasymp), "gompertz" (SSgompertz), "michaelis-menten") (SSmimen), "logis" (SSlogis), "weibull" (SSweibull). See these functions for model specification and details.

When weights w were used the fit is based on accumulated effort and in model = "rarefaction" on accumulated number of individuals. The plot is still based on sites, unless other alternative is selected with xvar.

Function predict uses predict.nls, and you can pass all arguments to that function. In addition,
fitted, residuals and coef work on the result object.

Nonlinear regression may fail for any reason, and some of the fitspecaccum models are fragile and may not succeed.

**Value**

Function specaccum returns an object of class "specaccum", and fitspecaccum a model of class "fitspecaccum" that adds a few items to the "specaccum" (see the end of the list below):

- **call**: Function call.
- **method**: Accumulator method.
- **sites**: Number of sites. For method = "rarefaction" this is the number of sites corresponding to a certain number of individuals and generally not an integer, and the average number of individuals is also returned in item individuals.
- **effort**: Average sum of weights corresponding to the number of sites when model was fitted with argument w.
- **richness**: The number of species corresponding to number of sites. With method = "collector" this is the observed richness, for other methods the average or expected richness.
- **sd**: The standard deviation of SAC (or its standard error). This is NULL in method = "collector", and it is estimated from permutations in method = "random", and from analytic equations in other methods.
- **perm**: Permutation results with method = "random" and NULL in other cases. Each column in perm holds one permutation.
- **weights**: Matrix of accumulated weights corresponding to the columns of the perm matrix when model was fitted with argument w.
- **fitted, residuals, coefficients**: Only in fitspecaccum: fitted values, residuals and nonlinear model coefficients. For method = "random" these are matrices with a column for each random accumulation.
- **models**: Only in fitspecaccum: list of fitted nls models (see Examples on accessing these models).

**Note**

The SAC with method = "exact" was developed by Roeland Kindt, and its standard deviation by Jari Oksanen (both are unpublished). The method = "coleman" underestimates the SAC because it does not handle properly sampling without replacement. Further, its standard deviation does not take into account species correlations, and is generally too low.

**Author(s)**

Roeland Kindt <r.kindt@cgiar.org> and Jari Oksanen.
References


See Also

`rarefy` and `rrarefy` are related individual based models. Other accumulation models are `poolaccum` for extrapolated richness, and `renyiaccum` and `tsallisaccum` for diversity indices. Underlying graphical functions are `boxplot, matlines, segments` and `polygon`.

Examples

data(BCI)
sp1 <- specaccum(BCI)
sp2 <- specaccum(BCI, "random")
sp2
summary(sp1, ci.type="poly", col="blue", lwd=2, ci.lty=0, ci.col="lightblue")
boxplot(sp2, col="yellow", add=TRUE, pch="+")
## Fit Lomolino model to the exact accumulation
mod1 <- fitspecaccum(sp1, "lomolino")
coef(mod1)
fitted(mod1)
plot(sp1)
## Add Lomolino model using argument 'add'
plot(mod1, add = TRUE, col=2, lwd=2)
## Fit Arrhenius models to all random accumulations
mods <- fitspecaccum(sp2, "arrh")
plot(mods, col="hotpink")
boxplot(sp2, col = "yellow", border = "blue", lty=1, cex=0.3, add= TRUE)
## Use nls() methods to the list of models
sapply(mods$models, AIC)
Description

The functions estimate the extrapolated species richness in a species pool, or the number of un-observed species. Function `specpool` is based on incidences in sample sites, and gives a single estimate for a collection of sample sites (matrix). Function `estimateR` is based on abundances (counts) on single sample site.

Usage

```r
specpool(x, pool, smallsample = TRUE)
estimateR(x, ...)
specpool2vect(X, index = c("jack1", "jack2", "chao", "boot", "Species"))
poolaccum(x, permutations = 100, minsize = 3)
estaccumR(x, permutations = 100, parallel = getOption("mc.cores"))
S3 method for class 'poolaccum'
summary(object, display, alpha = 0.05, ...)
S3 method for class 'poolaccum'
plot(x, alpha = 0.05, type = c("l", "g"), ...)
```

Arguments

- **x**: Data frame or matrix with species data or the analysis result for `plot` function.
- **pool**: A vector giving a classification for pooling the sites in the species data. If missing, all sites are pooled together.
- **smallsample**: Use small sample correction \((N - 1)/N\), where \(N\) is the number of sites within the pool.
- **X, object**: A `specpool` result object.
- **index**: The selected index of extrapolated richness.
- **permutations**: Usually an integer giving the number permutations, but can also be a list of control values for the permutations as returned by the function `how`, or a permutation matrix where each row gives the permuted indices.
- **minsize**: Smallest number of sampling units reported.
- **parallel**: Number of parallel processes or a predefined socket cluster. With `parallel = 1` uses ordinary, non-parallel processing. The parallel processing is done with `parallel` package.
- **display**: Indices to be displayed.
- **alpha**: Level of quantiles shown. This proportion will be left outside symmetric limits.
- **type**: Type of graph produced in `xyplot`.
- **...**: Other parameters (not used).
Details

Many species will always remain unseen or undetected in a collection of sample plots. The function uses some popular ways of estimating the number of these unseen species and adding them to the observed species richness (Palmer 1990, Colwell & Coddington 1994).

The incidence-based estimates in `specpool` use the frequencies of species in a collection of sites. In the following, \( S_P \) is the extrapolated richness in a pool, \( S_0 \) is the observed number of species in the collection, \( a_1 \) and \( a_2 \) are the number of species occurring only in one or only in two sites in the collection, \( p_i \) is the frequency of species \( i \), and \( N \) is the number of sites in the collection. The variants of extrapolated richness in `specpool` are:

- **Chao**
  \[ S_P = S_0 + \frac{a_1^2}{2a_2} \frac{N-1}{N} \]

- **Chao bias-corrected**
  \[ S_P = S_0 + a_1 \left( \frac{a_1(a_1-1)}{2(a_2+1)} \right) \frac{N-1}{N} \]

- **First order jackknife**
  \[ S_P = S_0 + a_1 \frac{N-1}{N} \]

- **Second order jackknife**
  \[ S_P = S_0 + \frac{a_1^2}{N} - a_2 \frac{(N-2)^2}{N(N-1)} \]

- **Bootstrap**
  \[ S_P = S_0 + \sum_{i=1}^{S_0} S_i (1-p_i)^N \]

`specpool` normally uses basic Chao equation, but when there are no doubletons (\( a_2 = 0 \)) it switches to bias-corrected version. In that case the Chao equation simplifies to \( S_0 + \frac{1}{2} a_1 (a_1 - 1) \frac{N-1}{N} \).

The abundance-based estimates in `estimater` use counts (numbers of individuals) of species in a single site. If called for a matrix or data frame, the function will give separate estimates for each site. The two variants of extrapolated richness in `estimater` are bias-corrected Chao and ACE (O’Hara 2005, Chiu et al. 2014). The Chao estimate is similar as the bias corrected one above, but \( a_i \) refers to the number of species with abundance \( i \) instead of number of sites, and the small-sample correction is not used. The ACE estimate is defined as:

- **ACE**
  \[ S_P = S_{abund} + \frac{S_{rare}}{C_{ace}} + \frac{a_1}{C_{ace}} \gamma_{ace}^2 \]

  where
  \[ C_{ace} = 1 - \frac{a_1}{N_{rare}} \frac{S_{rare}}{i_{abund}} \sum_{i=1}^{S_{rare}} i(i-1)a_i \]

  \[ \gamma_{ace}^2 = \max \left( \frac{1}{C_{ace}N_{rare}(N_{rare} - 1)}, -1, 0 \right) \]

Here \( a_i \) refers to number of species with abundance \( i \) and \( S_{rare} \) is the number of rare species, \( S_{abund} \) is the number of abundant species, with an arbitrary threshold of abundance 10 for rare species, and \( N_{rare} \) is the number of individuals in rare species.

Functions estimate the standard errors of the estimates. These only concern the number of added species, and assume that there is no variance in the observed richness. The equations of standard errors are too complicated to be reproduced in this help page, but they can be studied in the R source code of the function and are discussed in the vignette “diversity-vegan” that can be read with the `vegandocs` command. The standard error are based on the following sources: Chiu et al. (2014) for the Chao estimates and Smith and van Belle (1984) for the first-order Jackknife and the bootstrap (second-order jackknife is still missing). For the variance estimator of \( S_{ace} \) see O’Hara (2005).

Functions `poolaccum` and `estaccumR` are similar to `specaccum`, but estimate extrapolated richness indices of `specpool` or `estimater` in addition to number of species for random ordering of sampling units. Function `specpool` uses presence data and `estaccumR` count data. The functions share `summary` and `plot` methods. The `summary` returns quantile envelopes of permutations corresponding the given level of alpha and standard deviation of permutations for each sample size. NB.,
these are not based on standard deviations estimated within `specpool` or `estimateR`, but they are based on permutations. The `plot` function shows the mean and envelope of permutations with given `alpha` for models. The selection of models can be restricted and order changes using the `display` argument in `summary` or `plot`. For configuration of `plot` command, see `xyplot`.

Value

Function `specpool` returns a data frame with entries for observed richness and each of the indices for each class in `pool` vector. The utility function `specpool2vect` maps the pooled values into a vector giving the value of selected index for each original site. Function `estimateR` returns the estimates and their standard errors for each site. Functions `poolaccum` and `estimateR` return matrices of permutation results for each richness estimator, the vector of sample sizes and a table of means of permutations for each estimator.

Note

The functions are based on assumption that there is a species pool: The community is closed so that there is a fixed pool size $S_P$. In general, the functions give only the lower limit of species richness: the real richness is $S \geq S_P$, and there is a consistent bias in the estimates. Even the bias-correction in Chao only reduces the bias, but does not remove it completely (Chiu et al. 2014). Optional small sample correction was added to `specpool` in `vegan` 2.2-0. It was not used in the older literature (Chao 1987), but it is recommended recently (Chiu et al. 2014).

See [http://viceroys.eeb.uconn.edu/Estimates](http://viceroys.eeb.uconn.edu/Estimates) for a more complete (and positive) discussion and alternative software for some platforms.

Author(s)

Bob O’Hara (`estimateR`) and Jari Oksanen.

References


See Also

`veiledspec`, `diversity`, `beals`, `specaccum`. 
SSarrhenius

Self-Starting nls Species-Area Models

Description

These functions provide self-starting species-area models for non-linear regression \((nls)\). They can also be used for fitting species accumulation models in \(\text{fitspecaccum}\). These models (and many more) are reviewed by Dengler (2009).

Usage

\[
\begin{align*}
\text{SSarrhenius}(\text{area, k, z}) \\
\text{SSgleason}(\text{area, k, slope}) \\
\text{SSgitay}(\text{area, k, slope}) \\
\text{SSLomolino}(\text{area, Asym, xmid, slope})
\end{align*}
\]

Arguments

\[
\begin{align*}
\text{area} & \quad \text{Area or size of the sample: the independent variable.} \\
k, z, \text{slope, Asym, xmid} & \quad \text{Estimated model parameters: see Details.}
\end{align*}
\]

Details

All these functions are assumed to be used for species richness (number of species) as the independent variable, and area or sample size as the independent variable. Basically, these define least squares models of untransformed data, and will differ from models for transformed species richness or models with non-Gaussian error.
The Arrhenius model (SSarrhenius) is the expression $k \cdot \text{area}^z$. This is the most classical model that can be found in any textbook of ecology (and also in Dengler 2009). Parameter $z$ is the steepness of the species-area curve, and $k$ is the expected number of species in a unit area.

The Gleason model (SSgleason) is a linear expression $k + \text{slope} \cdot \log(\text{area})$ (Dengler 200). This is a linear model, and starting values give the final estimates; it is provided to ease comparison with other models.

The Gitay model (SSgitay) is a quadratic logarithmic expression $(k + \text{slope} \cdot \log(\text{area}))^2$ (Gitay et al. 1991, Dengler 2009). Parameter slope is the steepness of the species-area curve, and $k$ is the square root of expected richness in a unit area.

The Lomolino model (SSlomolino) is $\text{Asym}/(1 + \text{slope} \cdot \log(\text{xmid}/\text{area}))$ (Lomolino 2000, Dengler 2009). Parameter Asym is the asymptotic maximum number of species, slope is the maximum slope of increase of richness, and xmid is the area where half of the maximum richness is achieved.

In addition to these models, several other models studied by Dengler (2009) are available in standard R self-starting models: Michaelis-Menten (SSmicmen), Gompertz (SSgompertz), logistic (SSlogis), Weibull (SSweibull), and some others that may be useful.

Value

Numeric vector of the same length as area. It is the value of the expression of each model. If all arguments are names of objects the gradient matrix with respect to these names is attached as an attribute named gradient.

Author(s)

Jari Oksanen.

References


See Also

nls, fitspecaccum.

Examples

```r
Get species area data: sipoo.area gives the areas of islands
eexample(sipoo)
S <- specnumber(sipoo)
plot(S ~ sipoo.area, xlab = "Island Area (ha)", ylab = "Number of Species",
ylim = c(1, max(S)))
```
```r
The Arrhenius model
marr <- nls(S ~ SSarrhenius(sipoo.area, k, z))
marr
confidence limits from profile likelihood
confint(marr)
draw a line
xtmp <- seq(min(sipoo.area), max(sipoo.area), len=51)
lines(xtmp, predict(marr, newdata=data.frame(sipoo.area = xtmp)), lwd=2)
The normal way is to use linear regression on log-log data,
but this will be different from the previous:
mloglog <- lm(log(S) ~ log(sipoo.area))
mloglog
lines(xtmp, exp(predict(mloglog, newdata=data.frame(sipoo.area=xtmp))), 1ty=2)
Gleason: log-linear
mgle <- nls(S ~ SSgleason(sipoo.area, k, slope))
lines(xtmp, predict(mgle, newdata=data.frame(sipoo.area=xtmp)), lwd=2, col=2)
Gitay: quadratic of log-linear
mgit <- nls(S ~ SSgitay(sipoo.area, k, slope))
lines(xtmp, predict(mgit, newdata=data.frame(sipoo.area=xtmp)), lwd=2, col = 3)
Lomolino: using original names of the parameters (Lomolino 2000):
mlom <- nls(S ~ SSlopolino(sipoo.area, Smax, A50, Hill))
mlom
lines(xtmp, predict(mlom, newdata=data.frame(sipoo.area=xtmp)), lwd=2, col = 4)
One canned model of standard R:
mmic <- nls(S ~ SSmicmen(sipoo.area, slope, Asym))
lines(xtmp, predict(mmic, newdata=data.frame(sipoo.area=xtmp)), lwd =2, col = 5)
legend("bottomright", c("Arrhenius", "log-log linear", "Gleason", "Gitay", "Lomolino", "Michaelis-Menten"), col=c(1,1,2,3,4,5), lwd=c(2,1,2,2,2,2), lty=c(1,2,1,1,1,1))
compare models (AIC)
allmods <- list(Arrhenius = marr, Gleason = mgle, Gitay = mgit,
 Lomolino = mlom, MicMen= mmic)
sapply(allmods, AIC)
```

---

**Description**

Function `stepacross` tries to replace dissimilarities with shortest paths stepping across intermediate sites while regarding dissimilarities above a threshold as missing data (NA). With `path = "shortest"` this is the flexible shortest path (Williamson 1978, Bradfield & Kenkel 1987), and with `path = "extended"` an approximation known as extended dissimilarities (De'ath 1999). The use of `stepacross` should improve the ordination with high beta diversity, when there are many sites with no species in common.
Usage

stepacross(dis, path = "shortest", toolong = 1, trace = TRUE, ...)

Arguments

dis
Dissimilarity data inheriting from class dist or a an object, such as a matrix, that can be converted to a dissimilarity matrix. Functions vegdist and dist are some functions producing suitable dissimilarity data.

path
The method of stepping across (partial match) Alternative "shortest" finds the shortest paths, and "extended" their approximation known as extended dissimilarities.

toolong
Shortest dissimilarity regarded as NA. The function uses a fuzz factor, so that dissimilarities close to the limit will be made NA, too.

trace
Trace the calculations.

... Other parameters (ignored).

Details

Williamson (1978) suggested using flexible shortest paths to estimate dissimilarities between sites which have nothing in common, or no shared species. With path = "shortest" function stepacross replaces dissimilarities that are toolong or longer with NA, and tries to find shortest paths between all sites using remaining dissimilarities. Several dissimilarity indices are semi-metric which means that they do not obey the triangle inequality $d_{ij} \leq d_{ik} + d_{kj}$, and shortest path algorithm can replace these dissimilarities as well, even when they are shorter than toolong.

De’ath (1999) suggested a simplified method known as extended dissimilarities, which are calculated with path = "extended". In this method, dissimilarities that are toolong or longer are first made NA, and then the function tries to replace these NA dissimilarities with a path through single stepping stone points. If not all NA could be replaced with one pass, the function will make new passes with updated dissimilarities as long as all NA are replaced with extended dissimilarities. This mean that in the second and further passes, the remaining NA dissimilarities are allowed to have more than one stepping stone site, but previously replaced dissimilarities are not updated. Further, the function does not consider dissimilarities shorter than toolong, although some of these could be replaced with a shorter path in semi-metric indices, and used as a part of other paths. In optimal cases, the extended dissimilarities are equal to shortest paths, but they may be longer.

As an alternative to defining too long dissimilarities with parameter toolong, the input dissimilarities can contain NAs. If toolong is zero or negative, the function does not make any dissimilarities into NA. If there are no NAs in the input and toolong = 0, path = "shortest" will find shorter paths for semi-metric indices, and path = "extended" will do nothing. Function noNshared can be used to set dissimilarities to NA.

If the data are disconnected or there is no path between all points, the result will contain NAs and a warning is issued. Several methods cannot handle NA dissimilarities, and this warning should be taken seriously. Function distconnected can be used to find connected groups and remove rare outlier observations or groups of observations.

Alternative path = "shortest" uses Dijkstra’s method for finding flexible shortest paths, implemented as priority-first search for dense graphs (Sedgewick 1990). Alternative path = "extended" follows De’ath (1999), but implementation is simpler than in his code.
Value

Function returns an object of class dist with extended dissimilarities (see functions vegdist and dist). The value of path is appended to the method attribute.

Note

The function changes the original dissimilarities, and not all like this. It may be best to use the function only when you really must: extremely high beta diversity where a large proportion of dissimilarities are at their upper limit (no species in common).

Semi-metric indices vary in their degree of violating the triangle inequality. Morisita and Horn–Morisita indices of vegdist may be very strongly semi-metric, and shortest paths can change these indices very much. Mountford index violates basic rules of dissimilarities: non-identical sites have zero dissimilarity if species composition of the poorer site is a subset of the richer. With Mountford index, you can find three sites $i, j, k$ so that $d_{ik} = 0$ and $d_{jk} = 0$, but $d_{ij} > 0$. The results of stepacross on Mountford index can be very weird. If stepacross is needed, it is best to try to use it with more metric indices only.

Author(s)

Jari Oksanen

References


See Also

Function distconnected can find connected groups in disconnected data, and function no.shared can be used to set dissimilarities as NA. See swan for an alternative approach. Function stepacross is an essential component in isomap and cophenetic.spantree.

Examples

# There are no data sets with high beta diversity in vegan, but this # should give an idea. data(dune) dis <- vegdist(dune) edis <- stepacross(dis) plot(edis, dis, xlab = "Shortest path", ylab = "Original") ## Manhattan distance have no fixed upper limit. dis <- vegdist(dune, "manhattan") is.na(dis) <- no.shared(dune) dis <- stepacross(dis, tooLong=0)
stressplot.wcmdscale  Display Ordination Distances Against Observed Distances in Eigenvector Ordinations

Description

Functions plot ordination distances in given number of dimensions against observed distances or distances in full space in eigenvector methods. The display is similar as the Shepard diagram (stressplot for non-metric multidimensional scaling with metaMDS or monoMDS), but shows the linear relationship of the eigenvector ordinations. The stressplot methods are available for wcmdscale, rda, cca, capscale, prcomp and princomp.

Usage

## S3 method for class 'wcmdscale'
stressplot(object, k = 2, pch, p.col = "blue", l.col = "red",
           lwd = 2, ...)

Arguments

- **object**: Result object from eigenvector ordination (wcmdscale, rda, cca, capscale)
- **k**: Number of dimensions for which the ordination distances are displayed.
- **pch, p.col, l.col, lwd**: Plotting character, point colour and line colour like in default stressplot
- **...**: Other parameters to functions, e.g. graphical parameters.

Details

The functions offer a similar display for eigenvector ordinations as the standard Shepard diagram (stressplot) in non-metric multidimensional scaling. The ordination distances in given number of dimensions are plotted against observed distances. With metric distances, the ordination distances in full space (with all ordination axes) are equal to observed distances, and the fit line shows this equality. In general, the fit line does not go through the points, but the points for observed distances approach the fit line from below. However, with non-metric distances (in wcmdscale or capscale) with negative eigenvalues the ordination distances can exceed the observed distances in real dimensions; the imaginary dimensions with negative eigenvalues will correct these excess distances. If you have used capscale with argument add = TRUE to avoid negative eigenvalues, the ordination distances will exceed the observed dissimilarities by the additive constant.

In partial ordination (cca, rda and capscale with Condition in the formula), the distances in the partial component are included both in the observed distances and in ordination distances. With k=0, the ordination distances refer to the partial ordination.

Value

Functions draw a graph and return invisibly the ordination distances.
Indices of Taxonomic Diversity and Distinctness

Description

Function finds indices of taxonomic diversity and distinctness, which are averaged taxonomic distances among species or individuals in the community (Clarke & Warwick 1998, 2001)

Usage

taxondive(comm, dis, match.force = FALSE)
taxa2dist(x, varstep = FALSE, check = TRUE, labels)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>comm</td>
<td>Community data.</td>
</tr>
<tr>
<td>dis</td>
<td>Taxonomic distances among taxa in comm. This should be a dist object or a symmetric square matrix.</td>
</tr>
<tr>
<td>match.force</td>
<td>Force matching of column names in comm and labels in dis. If FALSE, matching only happens when dimensions differ, and in that case the species must be in identical order in both.</td>
</tr>
<tr>
<td>x</td>
<td>Classification table with a row for each species or other basic taxon, and columns for identifiers of its classification at higher levels.</td>
</tr>
<tr>
<td>varstep</td>
<td>Vary step lengths between successive levels relative to proportional loss of the number of distinct classes.</td>
</tr>
<tr>
<td>check</td>
<td>If TRUE, remove all redundant levels which are different for all rows or constant for all rows and regard each row as a different basal taxon (species). If FALSE all levels are retained and basal taxa (species) also must be coded as variables (columns). You will get a warning if species are not coded, but you can ignore this if that was your intention.</td>
</tr>
<tr>
<td>labels</td>
<td>The labels attribute of taxonomic distances. Row names will be used if this is not given. Species will be matched by these labels in comm and dis in taxondive if these have different dimensions.</td>
</tr>
</tbody>
</table>
Clarke & Warwick (1998, 2001) suggested several alternative indices of taxonomic diversity or distinctness. Two basic indices are called taxonomic diversity (∆) and distinctness (Δ*):

\[ \Delta = \frac{\sum_{i<j} \omega_{ij} x_i x_j}{n(n-1)/2} \]
\[ \Delta^* = \frac{\sum_{i<j} \omega_{ij} x_i x_j}{\sum_{i<j} x_i x_j} \]

The equations give the index value for a single site, and summation goes over species \( i \) and \( j \). Here \( \omega \) are taxonomic distances among taxa, and \( x \) are species abundances, and \( n \) is the total abundance for a site. With presence/absence data both indices reduce to the same index \( \Delta^+ \), and for this index Clarke & Warwick (1998) also have an estimate of its standard deviation. Clarke & Warwick (2001) presented two new indices: \( s\Delta^+ \) is the product of species richness and \( \Delta^+ \), and index of variation in taxonomic distinctness (\( \Lambda^+ \)) defined as

\[ \Lambda^+ = \frac{\sum_{i<j} \omega_{ij}^2}{n(n-1)/2} - (\Delta^+)^2 \]

The \texttt{dis} argument must be species dissimilarities. These must be similar to dissimilarities produced by \texttt{dist}. It is customary to have integer steps of taxonomic hierarchies, but other kind of dissimilarities can be used, such as those from phylogenetic trees or genetic differences. Further, the \texttt{dis} need not be taxonomic, but other species classifications can be used.

Function \texttt{taxa2dist} can produce a suitable \texttt{dist} object from a classification table. Each species (or basic taxon) corresponds to a row of the classification table, and columns give the classification at different levels. With \texttt{varstep = FALSE} the successive levels will be separated by equal steps, and with \texttt{varstep = TRUE} the step length is relative to the proportional decrease in the number of classes (Clarke & Warwick 1999). With \texttt{check = TRUE}, the function removes classes which are distinct for all species or which combine all species into one class, and assumes that each row presents a distinct basic taxon. The function scales the distances so that longest path length between taxa is 100 (not necessarily when \texttt{check = FALSE}).

Function \texttt{plot.taxondive} plots \( \Delta^+ \) against Number of species, together with expectation and its approximate 2*sd limits. Function \texttt{summary.taxondive} finds the \( z \) values and their significances from Normal distribution for \( \Delta^+ \).

Function returns an object of class \texttt{taxondive} with following items:

- \texttt{Species} Number of species for each site.
- \texttt{D, Dstar, Dplus, SDplus, Lambda} \( \Delta, \Delta^*, \Delta^+, s\Delta^+ \) and \( \Lambda^+ \) for each site.
- \texttt{sd.Dplus} Standard deviation of \( \Delta^+ \).
- \texttt{ED, EDstar, EDplus} Expected values of corresponding statistics.

Function \texttt{taxa2dist} returns an object of class \texttt{"dist"}, with an attribute \texttt{"steps"} for the step lengths between successive levels.
Note

The function is still preliminary and may change. The scaling of taxonomic dissimilarities influences the results. If you multiply taxonomic distances (or step lengths) by a constant, the values of all Deltas will be multiplied with the same constant, and the value of $\Lambda^+$ by the square of the constant.

Author(s)

Jari Oksanen

References


See Also

diversity.

Examples

```r
Preliminary: needs better data and some support functions
data(dune)
data(dune.taxon)
Taxonomic distances from a classification table with variable step lengths.
taxdis <- taxa2dist(dune.taxon, varstep=TRUE)
plot(hclust(taxdis), hang = -1)
Indices
mod <- taxondive(dune, taxdis)
mod
summary(mod)
plot(mod)
```

tolerance Species tolerances and sample heterogeneities

Description

Species tolerances and sample heterogeneities.
tolerance

Usage

tolerance(x, ...)

## S3 method for class 'cca'
tolerance(x, choices = 1:2, which = c("species","sites"),
          scaling = 2, useN2 = FALSE, ...)

Arguments

x          object of class "cca".
choices     numeric; which ordination axes to compute tolerances and heterogeneities for.
            Defaults to axes 1 and 2.
which       character; one of "species" or "sites", indicating whether species tolerances
            or sample heterogeneities respectively are computed.
scaling     numeric; the ordination scaling to use.
useN2       logical; should the bias in the tolerances / heterogeneities be reduced via scaling
            by Hill's N2?
...         arguments passed to other methods.

Details

Function to compute species tolerances and site heterogeneity measures from unimodal ordinations

Value

Matrix of tolerances/heterogeneities with some additional attributes.

Author(s)

Gavin L. Simpson

Examples

data(dune)
data(dune.env)
mod <- cca(dune ~ ., data = dune.env)

## defaults to species tolerances
tolerance(mod)

## sample heterogeneities for CCA axes 1:6
tolerance(mod, which = "sites", choices = 1:6)
Description

Functional diversity is defined as the total branch length in a trait dendrogram connecting all species, but excluding the unnecessary root segments of the tree (Petchey and Gaston 2006). Tree distance is the increase in total branch length when combining two sites.

Usage

```r
treedive(comm, tree, match.force = TRUE, verbose = TRUE)
treeheight(tree)
treedist(x, tree, relative = TRUE, match.force = TRUE, ...)
```

Arguments

- `comm`, `x` Community data frame or matrix.
- `tree` A dendrogram which for `treedive` must be for species (columns).
- `match.force` Force matching of column names in data (`comm`, `x`) and labels in `tree`. If `FALSE`, matching only happens when dimensions differ (with a warning or message). The order of data must match to the order in `tree` if matching by names is not done.
- `verbose` Print diagnostic messages and warnings.
- `relative` Use distances relative to the height of combined tree.
- `...` Other arguments passed to functions (ignored).

Details

Function `treeheight` finds the sum of lengths of connecting segments in a dendrogram produced by `hclust`, or other dendrogram that can be coerced to a correct type using `as.hclust`. When applied to a clustering of species traits, this is a measure of functional diversity (Petchey and Gaston 2002, 2006), and when applied to phylogenetic trees this is phylogenetic diversity.

Function `treedive` finds the `treeheight` for each site (row) of a community matrix. The function uses a subset of dendrogram for those species that occur in each site, and excludes the tree root if that is not needed to connect the species (Petchey and Gaston 2006). The subset of the dendrogram is found by first calculating cophenetic distances from the input dendrogram, then reconstructing the dendrogram for the subset of the cophenetic distance matrix for species occurring in each site. Diversity is 0 for one species, and `NA` for empty communities.

Function `treedist` finds the dissimilarities among trees. Pairwise dissimilarity of two trees is found by combining species in a common tree and seeing how much of the tree height is shared and how much is unique. With `relative = FALSE` the dissimilarity is defined as $2(A \cup B) - A - B$, where $A$ and $B$ are heights of component trees and $A \cup B$ is the height of the combined tree. With `relative = TRUE` the dissimilarity is $(2(A \cup B) - A - B) / (A \cup B)$. Although the latter formula is similar to Jaccard dissimilarity (see `vegdist`, `designdist`), it is not in the range $0 \ldots 1$, but rather in $0 \ldots 2$. Where $A \cup B$, the height of the combined tree, is $2(A \cup B)$, and $A$ and $B$ are the heights of component trees.
since combined tree can add a new root. When two zero-height trees are combined into a tree of above zero height, the relative index attains its maximum value 2. The dissimilarity is zero from a combined zero-height tree.

The functions need a dendrogram of species traits or phylogenies as an input. If species traits contain `factor` or `ordered` factor variables, it is recommended to use Gower distances for mixed data (function `daisy` in package `cluster`), and usually the recommended clustering method is UPGMA (method = "average" in function `hclust`) (Podani and Schmera 2006). Phylogenetic trees can be changed into dendrograms using `as.hclust.phylo` (package `ape`).

It is possible to analyse the non-randomness of tree diversity using `oecosimu`. This needs specifying an adequate Null model, and the results will change with this choice.

**Value**

A vector of diversity values or a single tree height, or a dissimilarity structure that inherits from `dist` and can be used similarly.

**Author(s)**

Jari Oksanen

**References**


**See Also**

Function `treedive` is similar to the phylogenetic diversity function `pd` in `picante`, but excludes tree root if that is not needed to connect species. Function `treedist` is similar to the phylogenetic similarity `phylosor` in `picante`, but excludes unneeded tree root and returns distances instead of similarities.

`taxondive` is something very similar from another world.

**Examples**

```r
There is no data set on species properties yet, and we demonstrate
the methods using phylogenetic trees
data(dune)
data(dune.phylodis)
c1 <- hclust(dune.phylodis)
treedive(dune, c1)
```
## Description

Function `tsallis` finds Tsallis diversities with any scale or the corresponding evenness measures. Function `tsallisaccum` finds these statistics with accumulating sites.

## Usage

```r
tsallis(x, scales = seq(0, 2, 0.2), norm = FALSE, hill = FALSE)
tsallisaccum(x, scales = seq(0, 2, 0.2), permutations = 100,
 raw = FALSE, subset, ...)
```

## Arguments

- **x**: Community data matrix or plotting object.
- **scales**: Scales of Tsallis diversity.
- **norm**: Logical, if TRUE diversity values are normalized by their maximum (diversity value at equiprobability conditions).
- **hill**: Calculate Hill numbers.
- **permutations**: Usually an integer giving the number permutations, but can also be a list of control values for the permutations as returned by the function `how`, or a permutation matrix where each row gives the permuted indices.
- **raw**: If FALSE then return summary statistics of permutations, and if TRUE then returns the individual permutations.
- **subset**: Logical expression indicating sites (rows) to keep: missing values are taken as FALSE.
- **theta, phi**: angles defining the viewing direction. theta gives the azimuthal direction and phi the colatitude.
- **col**: Colours used for surface.
- **zlim**: Limits of vertical axis.
- **...**: Other arguments which are passed to `tsallis` and to graphical functions.
The Tsallis diversity (also equivalent to Patil and Taillie diversity) is a one-parametric generalised entropy function, defined as:

$$H_q = \frac{1}{q-1}(1 - \sum_{i=1}^{S} p_i^q)$$

where \( q \) is a scale parameter, \( S \) the number of species in the sample (Tsallis 1988, Tothmeresz 1995). This diversity is concave for all \( q > 0 \), but non-additive (Keylock 2005). For \( q = 0 \) it gives the number of species minus one, as \( q \) tends to 1 this gives Shannon diversity, for \( q = 2 \) this gives the Simpson index (see function diversity).

If \( \text{norm} = \text{TRUE} \), \text{tsallis} gives values normalized by the maximum:

$$H_q(\text{max}) = \frac{S^{1-q} - 1}{1 - q}$$

where \( S \) is the number of species. As \( q \) tends to 1, maximum is defined as \( \ln(S) \).

If \( \text{hill} = \text{TRUE} \), \text{tsallis} gives Hill numbers (numbers equivalents, see Jost 2007):

$$D_q = (1 - (q - 1)H)^{1/(1-q)}$$

Details on plotting methods and accumulating values can be found on the help pages of the functions renyi and renyiaccum.

Function \text{tsallis} returns a data frame of selected indices. Function \text{tsallisaccum} with argument \( \text{raw} = \text{FALSE} \) returns a three-dimensional array, where the first dimension are the accumulated sites, second dimension are the diversity scales, and third dimension are the summary statistics mean, stdev, min, max, Qnt 0.025 and Qnt 0.975. With argument \( \text{raw} = \text{TRUE} \) the statistics on the third dimension are replaced with individual permutation results.

Péter Sólymos, <solymos@ualberta.ca>, based on the code of Roeland Kindt and Jari Oksanen written for renyi

References

See Also

Plotting methods and accumulation routines are based on functions renyi and renyiaccum. An object of class 'tsallisaccum' can be used with function rgl.renyiaccum as well. See also settings for persp.

Examples

data(BCI)
i <- sample(nrow(BCI), 12)
x1 <- tsallis(BCI[i,])
x1
diversity(BCI[i,]"simpson") == x1["2"]) plot(x1)
x2 <- tsallis(BCI[i,], norm=TRUE)
x2 plot(x2)
mod1 <- tsallisaccum(BCI[i,]) plot(mod1, as.table=TRUE, col = c(1, 2, 2)) persp(mod1)
mod2 <- tsallisaccum(BCI[i,], norm=TRUE)
persp(mod2, theta=100, phi=30)

varespec

Vegetation and environment in lichen pastures

Description

The varespec data frame has 24 rows and 44 columns. Columns are estimated cover values of 44 species. The variable names are formed from the scientific names, and are self explanatory for anybody familiar with the vegetation type. The varechem data frame has 24 rows and 14 columns, giving the soil characteristics of the very same sites as in the varespec data frame. The chemical measurements have obvious names. Baresoil gives the estimated cover of bare soil, Humdepth the thickness of the humus layer.

Usage

data(varechem)
data(varespec)

References


Examples

data(varespec)
data(varechem)
Description

The function partitions the variation of response table Y with respect to two, three, or four explanatory tables, using adjusted $R^2$ in redundancy analysis ordination (RDA). If Y contains a single vector, partitioning is by partial regression. Collinear variables in the explanatory tables do NOT have to be removed prior to partitioning.

Usage

varpart(Y, X, ..., data, transfo, scale = FALSE)
showvarparts(parts, labels, ...)
## S3 method for class 'varpart234'
plot(x, cutoff = 0, digits = 1, ...)

Arguments

Y  Data frame or matrix containing the response data table. In community ecology, that table is often a site-by-species table.
X  Two to four explanatory models, variables or tables. These can be defined in three alternative ways: (1) one-sided model formulae beginning with ~ and then defining the model, (2) name of a single numeric variable, or (3) name of data frame or matrix with numeric variables. The model formulae can have factors, interaction terms and transformations of variables. The names of the variables in the model formula are found in data frame given in data argument, and if not found there, in the user environment. Single numeric variables, data frames or matrices are found in the user environment. All entries till the next argument (data or transfo) are interpreted as explanatory models, and the names of these arguments cannot be abbreviated nor omitted.
data The data frame with the variables used in the formulae in X.
transfo Transformation for Y (community data) using decostand. All alternatives in decostand can be used, and those preserving Euclidean metric include "hellinger", "chi.square", "total", "norm".
scale Should the columns of Y be standardized to unit variance
parts Number of explanatory tables (circles) displayed.
labels Labels used for displayed fractions. Default is to use the same letters as in the printed output.
x  The varpart result.
cutoff The values below cutoff will not be displayed.
digits The number of significant digits; the number of decimal places is at least one higher.
... Other parameters passed to functions.
Details

The functions partition the variation in $Y$ into components accounted for by two to four explanatory tables and their combined effects. If $Y$ is a multicolunn data frame or matrix, the partitioning is based on redundancy analysis (RDA, see \texttt{rda}), and if $Y$ is a single variable, the partitioning is based on linear regression.

The function primarily uses adjusted $R^2$ to assess the partitions explained by the explanatory tables and their combinations, because this is the only unbiased method (Peres-Neto et al., 2006). The raw $R^2$ for basic fractions are also displayed, but these are biased estimates of variation explained by the explanatory table.

The identifiable fractions are designated by lower case alphabets. The meaning of the symbols can be found in the separate document "partitioning.pdf" (which can be read using \texttt{vegandocs}), or can be displayed graphically using function \texttt{showvarparts}.

A fraction is testable if it can be directly expressed as an RDA model. In these cases the printed output also displays the corresponding RDA model using notation where explanatory tables after | are conditions (partialled out; see \texttt{rda} for details). Although single fractions can be testable, this does not mean that all fractions simultaneously can be tested, since there number of testable fractions is higher than the number of estimated models.

An abridged explanation of the alphabetic symbols for the individual fractions follows, but computational details should be checked in "partitioning.pdf" (readable with \texttt{vegandocs}) or in the source code.

With two explanatory tables, the fractions explained uniquely by each of the two tables are \{a\} and \{c\}, and their joint effect is \{b\} following Borcard et al. (1992).

With three explanatory tables, the fractions explained uniquely by each of the three tables are \{a\} to \{c\}, joint fractions between two tables are \{d\} to \{f\}, and the joint fraction between all three tables is \{g\}.

With four explanatory tables, the fractions explained uniquely by each of the four tables are \{a\} to \{d\}, joint fractions between two tables are \{e\} to \{j\}, joint fractions between three variables are \{k\} to \{n\}, and the joint fraction between all four tables is \{o\}.

There is a \texttt{plot} function that displays the Venn diagram and labels each intersection (individual fraction) with the adjusted R squared if this is higher than \texttt{cutoff}. A helper function \texttt{showvarpart} displays the fraction labels.

Value

Function \texttt{varpart} returns an object of class "\texttt{varpart}" with items \texttt{scale} and \texttt{transfo} (can be missing) which hold information on standardizations, tables which contains names of explanatory tables, and \texttt{call} with the function \texttt{call}. The function \texttt{varpart} calls function \texttt{varpart2}, \texttt{varpart3} or \texttt{varpart4} which return an object of class "\texttt{varpart234}" and saves its result in the item \texttt{part}.

The items in this object are:

- \texttt{SS.Y}: Sum of squares of matrix $Y$.
- \texttt{n}: Number of observations (rows).
- \texttt{nsets}: Number of explanatory tables.
- \texttt{bigwarning}: Warnings on collinearity.
- \texttt{fract}: Basic fractions from all estimated constrained models.
Individual fractions or all possible subsections in the Venn diagram (see `showvarparts`).

Fractions that can be found after conditioning on single explanatory table in models with three or four explanatory tables.

Fractions that can be found after conditioning on two explanatory tables in models with four explanatory tables.

**Fraction Data Frames**

Items `fract`, `indfract`, `contr1` and `contr2` are all data frames with items:

- `Df` Degrees of freedom of numerator of the $F$-statistic for the fraction.
- `R.squareRaw` $R^2$. This is calculated only for `fract` and this is `NA` in other items.
- `Adj.R.square` Adjusted $R^2$.
- `Testable` If the fraction can be expressed as a (partial) RDA model, it is directly testable, and this field is `TRUE`. In that case the fraction label also gives the specification of the testable RDA model.

**Note**

You can use command `vegandocs` to display document “partitioning.pdf” which presents Venn diagrams showing the fraction names in partitioning the variation of $Y$ with respect to 2, 3, and 4 tables of explanatory variables, as well as the equations used in variation partitioning.

The functions frequently give negative estimates of variation. Adjusted $R^2$ can be negative for any fraction; unadjusted $R^2$ of testable fractions always will be non-negative. Non-testable fractions cannot be found directly, but by subtracting different models, and these subtraction results can be negative. The fractions are orthogonal, or linearly independent, but more complicated or nonlinear dependencies can cause negative non-testable fractions.

The current function will only use RDA in multivariate partitioning. It is much more complicated to estimate the adjusted R-squares for CCA, and unbiased analysis of CCA is not currently implemented.

A simplified, fast version of RDA is used (function `simplerdaR`). The actual calculations are done in functions `varpartR` to `varpartT`, but these are not intended to be called directly by the user.

**Author(s)**

Pierre Legendre, Departement de Sciences Biologiques, Universite de Montreal, Canada. Adapted to `vegan` by Jari Oksanen.

**References**

(a) References on variation partitioning


(b) Reference on transformations for species data

(c) Reference on adjustment of the bimultivariate redundancy statistic

See Also

For analysing testable fractions, see rda and anova.cca. For data transformation, see decostand. Function inertcomp gives (unadjusted) components of variation for each species or site separately. Function rda displays unadjusted components in its output, but RsquareAdj will give adjusted $R^2$ that are similar to the current function also for partial models.

Examples

data(mite)
data(mite.env)
data(mite.pcmn)

## See detailed documentation:
## Not run:
vegandocs("partition")

## End(Not run)

# Two explanatory matrices -- Hellinger-transform Y
# Formula shortcut "~ ." means: use all variables in 'data'.
mod <- varpart(mite, ~ ., mite.pcmn, data=mite.env, transfo="hel")
mod

## argument 'bg' is passed to circle drawing, and the following
## defines semitransparent colours
col2 <- rgb(c(1,1),c(1,0), c(0,1), 0.3)
showvarparts(2, bg = col2)
plot(mod, bg = col2)

# Alternative way of to conduct this partitioning
# Change the data frame with factors into numeric model matrix
mm <- model.matrix(~ SubsDens + WatrCont + Substrate + Shrub + Topo, mite.env)[,-1]
mod <- varpart(decostand(mite, "hel"), mm, mite.pcmn)
# Test fraction [a] using partial RDA:
aFrac <- rda(decostand(mite, "hel"), mm, mite.pcmn)
anova(aFrac, step=200, perm.max=200)
# RsquareAdj gives the same result as component [a] of varpart
RsquareAdj(aFrac)

# Three explanatory matrices
mod <- varpart(mite, ~ SubsDens + WatrCont, ~ Substrate + Shrub + Topo,
              mite.pcmn, data=mite.env, transfo="hel")
mod
showvarparts(3)
plot(mod)
# An alternative formulation of the previous model using
# matrices mm1 and mm2 and Hellinger transformed species data
mm1 <- model.matrix(~ SubsDens + WatrCont, mite.env)[,-1]
mm2 <- model.matrix(~ Substrate + Shrub + Topo, mite.env)[,-1]
mite.hel <- decostand(mite, "hel")

# Use RDA to test fraction [a]
# Matrix can be an argument in formula
rda.result <- rda(mite.hel ~ mm1 + Condition(mm2) +
                  Condition(as.matrix(mite.pcnm)))
anova(rda.result, step=200, perm.max=200)

# Four explanatory tables
mod <- varpart(mite.hel, mm1, mm2, mite.pcnm)
plot(mod)

# Show values for all partitions by putting 'cutoff' low enough:
plot(mod, cutoff = -Inf, cex = 0.7)

---

**Description**

These functions are provided for compatibility with older versions of `vegan` only, and may be defunct as soon as the next release.

**Usage**

```r
commsimulator(x, method, thin=1)
S3 method for class 'adonis'
density(x, ...)
S3 method for class 'vegandensity'
plot(x, main = NULL, xlab = NULL, ylab = "Density",
 type = "l", zero.line = TRUE, obs.line = TRUE, ...)
S3 method for class 'adonis'
densityplot(x, data, xlab = "Null", ...)
```

**Arguments**

- `x` Community data for `commsimulator`, or an object to be handled by `density` or `densityplot` `## commsimulator`
- `method` Null model method: either a name (character string) of a method defined in `make.commsim` or a `commsim` function.
- `thin` Number of discarded null communities between two evaluations of nestedness statistic in sequential methods "swap" and "tswap" (ignored with non-sequential methods) `## density` and `densityplot`
Arguments of `plot_density, densityplot`.

Draw vertical line for the observed statistic. Logical value `TRUE` draws a red line, and `FALSE` draws nothing. Alternatively, `obs.line` can be a definition of the colour used for the line, either as a numerical value from the `palette` or as the name of the colour, or other normal definition of the colour.

data

Ignored.

Other arguments passed to functions.

Details

Function `commsimulator` is replaced with `make.commsim` which defines the Null models, and functions `nullmodel` and `simulate.nullmodel` that check the input data and generate the Null model communities. Function `commsimulator` was used to generate a single Null model for presence/absence (binary) data. Below is a copy of its original documentation in `ocecosimu`, where it is now replaced with `make.commsim, nullmodel` and `simulate.nullmodel`. Approximately the same documentation for these models is found in `make.commsim`. (However, the random number sequences for model r0 differ, and you must use method "r0.old" in `make.commsim` to reproduce the `commsimulator` results.)

Function `commsimulator` implements binary (presence/absence) null models for community composition. The implemented models are r0 which maintains the number of presences but fills these anywhere so that neither species (column) nor site (row) totals are preserved. Methods r0, r1 and r2 maintain the site (row) frequencies. Method r0 fills presences anywhere on the row with no respect to species (column) frequencies. Method r1 uses column marginal frequencies as probabilities, and r2 uses squared column sums. Methods r1 and r2 try to simulate original species frequencies, but they are not strictly constrained. All these methods are reviewed by Wright et al. (1998). Method c0 maintains species frequencies, but does not honour site (row) frequencies (Jonsson 2001).

The other methods maintain both row and column frequencies. Methods `swap` and `tswap` implement sequential methods, where the matrix is changed only little in one step, but the changed matrix is used as an input if the next step. Methods `swap` and `tswap` inspect random 2x2 submatrices and if they are checkerboard units, the order of columns is swapped. This changes the matrix structure, but does not influence marginal sums (Gotelli & Entsminger 2003). Method `swap` inspects submatrices so long that a swap can be done. Miklós & Podani (2004) suggest that this may lead into biased sequences, since some columns or rows may be more easily swapped, and they suggest trying a fixed number of times and doing zero to many swaps at one step. This method is implemented by method `tswap` or trial swap. Function `commsimulator` makes only one trial swap in time (which probably does nothing), but `ocecosimu` estimates how many submatrices are expected before finding a swappable checkerboard, and uses that ratio to thin the results, so that on average one swap will be found per step of `tswap`. However, the checkerboard frequency probably changes during swaps, but this is not taken into account in estimating the thin. One swap still changes the matrix only little, and it may be useful to thin the results so that the statistic is only evaluated after `burnin` steps (and thinned).

Methods `quasiswap` and `backtracking` are not sequential, but each call produces a matrix that is independent of previous matrices, and has the same marginal totals as the original data. The recommended method is `quasiswap` which is much faster because it is implemented in C. Method `backtracking` is provided for comparison, but it is so slow that it may be dropped from future
releases of vegan (or also implemented in C). Method quasiswap (Miklós & Podani 2004) implements a method where matrix is first filled honouring row and column totals, but with integers that may be larger than one. Then the method inspects random 2x2 matrices and performs a quasiswap on them. Quasiswap is similar to ordinary swap, but it also can reduce numbers above one to ones maintaining marginal totals. Method backtracking implements a filling method with constraints both for row and column frequencies (Gotelli & Entsminger 2001). The matrix is first filled randomly using row and column frequencies as probabilities. Typically row and column sums are reached before all incidences are filled in. After that begins “backtracking”, where some of the points are removed, and then filling is started again, and this backtracking is done so may times that all incidences will be filled into matrix. The quasiswap method is not sequential, but it produces a random incidence matrix with given marginal totals.

The density function can directly access permutation results of the same function as permustats. The density function is identical to density.default and takes all its arguments, but adds the observed statistic to the result as item “observed”. The observed statistic is also put among the permuted values so that the results are consistent with significance tests. The plot method is similar to the default plot.density, but can also add the observed statistic to the graph as a vertical line. In adonis it is also possible to use directly densityplot function.

The deprecated density and densityplot methods are replaced with similar methods for permustats. The permustats offers more powerful analysis tools for permutations, including summary.permustats giving z values (a.k.a. standardized effect sizes, SES), and Q-Q plots (qqnorm.permustats, qqmath.permustats.

Below the old documentation:

The density methods are available for vegan functions adonis, anosim, mantel, mantel.partial, mrpp, permutest.cca, and protest. The density function for oecosimu is documented separately, and it is also used for adipart, hier.simu and multipart.

All vegan density functions return an object of class "vegandensity" inheriting from density, and can be plotted with its plot method. This is identical to the standard plot of density objects, but can also add a vertical line for the observed statistic.

Functions that can return several permuted statistics simultaneously also have densityplot method (adonis, oecosimu and diversity partitioning functions based on oecosimu). The standard density can only handle univariate data, and a warning is issued if the function is used for a model with several observed statistics

References


Description

Display NEWS, vignettes, other special documents or ChangeLog in vegan, or vignettes in `permute`.

Usage


Arguments

doc The name of the document (partial match, case sensitive).

Details

You can read the following documents with this function:

- NEWS: most important new functions, features, fixes etc. from the user’s point of view. These can be also read using `R` command `news` as `news(package = "vegan")`.
- ONEWS: old news about vegan version 1.1 before September 2011.
- intro-vegan: a vignette demonstrating a simple, standard ordination analysis. This can be also read using vignette("intro-vegan", package="vegan").
- diversity-vegan: a vignette describing (most) diversity analyses in vegan. This can be also read using vignette("diversity-vegan", package="vegan").
- decision-vegan: a vignette discussing design decisions in vegan. Currently this discusses parallel processing in vegan, implementing nestedness temperature (nestedtemp), backtracking algorithm in community null models (make.commsim), scaling of RDA results, and why WA scores are used as default instead of LC scores in constrained ordination.
- partitioning: Detailed description of variation partitioning schemes used in varpart.
- permutations: a vignette in the `permute` package giving an introduction to restricted permutation schemes. You can also read this using vignette("permutations", package="permute").

Note

Function vignette only works with vignettes processed by `R`, but the current function also shows other `.pdf` documents. You can extract `R` code from vignettes, but not from other documents (see Examples).

The permutations.pdf document is in the `permute` package.
Description

The function computes dissimilarity indices that are useful for or popular with community ecologists. All indices use quantitative data, although they would be named by the corresponding binary index, but you can calculate the binary index using an appropriate argument. If you do not find your favourite index here, you can see if it can be implemented using `designdist`. Gower, Bray–Curtis, Jaccard and Kulczynski indices are good in detecting underlying ecological gradients (Faith et al. 1987). Morisita, Horn–Morisita, Binomial, Cao and Chao indices should be able to handle different sample sizes (Wolda 1981, Krebs 1999, Anderson & Millar 2004), and Mountford (1962) and Raup–Crick indices for presence–absence data should be able to handle unknown (and variable) sample sizes.

Usage

```r
vegdist(x, method="bray", binary=FALSE, diag=FALSE, upper=FALSE,
na.rm = FALSE, ...)
```
Arguments

x  Community data matrix.
method  Dissimilarity index, partial match to "manhattan", "euclidean", "canberra", "bray", "kulczynski", "jaccard", "gower", "altGower", "morisita", "horn", "mountford", "raup", "binomial", "chao", "cao" or "mahalanobis".
binary  Perform presence/absence standardization before analysis using `decostand`.
diag  Compute diagonals.
upper  Return only the upper diagonal.
aa.rm  Pairwise deletion of missing observations when computing dissimilarities.
...  Other parameters. These are ignored, except in method ="gower" which accepts rangeNglobal parameter of `decostand`.

Details

Jaccard ("jaccard"), Mountford ("mountford"), Raup–Crick ("raup"), Binomial and Chao indices are discussed later in this section. The function also finds indices for presence/absence data by setting `binary = TRUE`. The following overview gives first the quantitative version, where $x_{ij}$ and $x_{ik}$ refer to the quantity on species (column) $i$ and sites (rows) $j$ and $k$. In binary versions $A$ and $B$ are the numbers of species on compared sites, and $J$ is the number of species that occur on both compared sites similarly as in `designdist` (many indices produce identical binary versions):

**euclidean**
\[
d_{jk} = \sqrt{\sum_i (x_{ij} - x_{ik})^2}
\]
binary: $\sqrt{A + B - 2J}$

**manhattan**
\[
d_{jk} = \sum_i |x_{ij} - x_{ik}|
\]
binary: $A + B - 2J$

**gower**
\[
d_{jk} = (1/M) \sum_i \frac{|x_{ij} - x_{ik}|}{\max x_i - \min x_i}
\]
binary: $(A + B - 2J)/M$, where $M$ is the number of columns (excluding missing values)

**altGower**
\[
d_{jk} = (1/NZ) \sum_i |x_{ij} - x_{ik}|
\]
where $NZ$ is the number of non-zero columns excluding double-zeros (Anderson et al. 2006).
binary: $\frac{A + B - 2J}{NZ}$

**canberra**
\[
d_{jk} = \frac{1}{NZ} \sum_i \frac{|x_{ij} - x_{ik}|}{x_{ij} + x_{ik}}
\]
where $NZ$ is the number of non-zero entries.
binary: $\frac{A + B - 2J}{\sum_i (x_{ij} + x_{ik})}$

**bray**
\[
d_{jk} = \frac{\sum_i |x_{ij} - x_{ik}|}{\sum_i (x_{ij} + x_{ik})}
\]
binary: $\frac{A + B - 2J}{\sum_i (x_{ij} + x_{ik})}$

**kulczynski**
\[
d_{jk} = 1 - 0.5 \left( \frac{\sum_{i} \min(x_{ij},x_{ik})}{\sum_{i} x_{ij}} + \frac{\sum_{i} \min(x_{ij},x_{ik})}{\sum_{i} x_{ik}} \right)
\]
binary: $1 - (J/A + J/B)/2$

**morisita**
\[
d_{jk} = 1 - \frac{2(\lambda_j + \lambda_k)}{\lambda_j + \lambda_k} \sum_{i} x_{ij} x_{ik}, \text{ where } \lambda_j = \sum_{i} x_{ij} (x_{ij} - 1)
\]
binary: cannot be calculated

**horn**  Like morisita, but $\lambda_j = \sum_{i} x_{ij}^2 / (\sum_{i} x_{ij})^2$
Jaccard index is computed as $2B/(1 + B)$, where $B$ is Bray–Curtis dissimilarity.

Binomial index is derived from Binomial deviance under null hypothesis that the two compared communities are equal. It should be able to handle variable sample sizes. The index does not have a fixed upper limit, but can vary among sites with no shared species. For further discussion, see Anderson & Millar (2004).

Cao index or CYd index (Cao et al. 1997) was suggested as a minimally biased index for high beta diversity and variable sampling intensity. Cao index does not have a fixed upper limit, but can vary among sites with no shared species. The index is intended for count (integer) data, and it is undefined for zero abundances; these are replaced with arbitrary value 0.1 following Cao et al. (1997). Cao et al. (1997) used $\log_{10}$, but the current function uses natural logarithms so that the values are approximately 2.30 times higher than with 10-based logarithms. Anderson & Thompson (2004) give an alternative formulation of Cao index to highlight its relationship with Binomial index (above).

Mountford index is defined as $M = 1/\alpha$ where $\alpha$ is the parameter of Fisher’s logseries assuming that the compared communities are samples from the same community (cf. `fisherfit`, `fisherNalpha`). The index $M$ is found as the positive root of equation $\exp(aM) + \exp(bM) = 1 + \exp[(a + b - j)M]$, where $j$ is the number of species occurring in both communities, and $a$ and $b$ are the number of species in each separate community (so the index uses presence–absence information). Mountford index is usually misrepresented in the literature: indeed Mountford (1962) suggested an approximation to be used as starting value in iterations, but the proper index is defined as the root of the equation above. The function `vegdist` solves $M$ with the Newton method. Please note that if either $a$ or $b$ are equal to $j$, one of the communities could be a subset of other, and the dissimilarity is 0 meaning that non-identical objects may be regarded as similar and the index is non-metric. The Mountford index is in the range $0 \ldots \log(2)$, but the dissimilarities are divided by $\log(2)$ so that the results will be in the conventional range $0 \ldots 1$.

Raup–Crick dissimilarity (method = “raup”) is a probabilistic index based on presence/absence data. It is defined as $1 - \text{prob}(j)$, or based on the probability of observing at least $j$ species in shared in compared communities. The current function uses analytic result from hypergeometric distribution (`phyper`) to find the probabilities. This probability (and the index) is dependent on the number of species missing in both sites, and adding all-zero species to the data or removing missing species from the data will influence the index. The probability (and the index) may be almost zero or almost one for a wide range of parameter values. The index is non-metric: two communities with no shared species may have a dissimilarity slightly below one, and two identical communities may have dissimilarity slightly above zero. The index uses equal occurrence probabilities for all species, but Raup and Crick originally suggested that sampling probabilities should be proportional to species frequencies (Chase et al. 2011). A simulation approach with unequal species sampling probabilities is implemented in `raupcrick` function following Chase et al. (2011). The index can be also used for transposed data to give a probabilistic dissimilarity index of species co-occurrence (identical to Veech 2013).
Chao index tries to take into account the number of unseen species pairs, similarly as in method = "chao" in specpool. Function vegdist implements a Jaccard type index defined as \( d_{jk} = 1 - U_j U_k / (U_j + U_k - U_j U_k) \), where \( U_j = C_j / N_j + (N_k - 1) / N_k \times a_1 / (2 a_2) \times S_j / N_j \), and similarly for \( U_k \). Here \( C_j \) is the total number of individuals in the species of site \( j \) that are shared with site \( k \), \( N_j \) is the total number of individuals at site \( j \), \( a_1 \) (and \( a_2 \)) are the number of species occurring in site \( j \) that have only one (or two) individuals in site \( k \), and \( S_j \) is the total number of individuals in the species present at site \( j \) that occur with only one individual in site \( k \) (Chao et al. 2005).

Morisita index can be used with genuine count data (integers) only. Its Horn–Morisita variant is able to handle any abundance data.

Mahalanobis distances are Euclidean distances of a matrix where columns are centred, have unit variance, and are uncorrelated. The index is not commonly used for community data, but it is sometimes used for environmental variables. The calculation is based on transforming data matrix and then using Euclidean distances following Mardia et al. (1979).

Euclidean and Manhattan dissimilarities are not good in gradient separation without proper standardization but are still included for comparison and special needs.

Bray–Curtis and Jaccard indices are rank-order similar, and some other indices become identical or rank-order similar after some standardizations, especially with presence/absence transformation of equalizing site totals with decostand. Jaccard index is metric, and probably should be preferred instead of the default Bray-Curtis which is semimetric.

The naming conventions vary. The one adopted here is traditional rather than truthful to priority. The function finds either quantitative or binary variants of the indices under the same name, which correctly may refer only to one of these alternatives For instance, the Bray index is known also as Steinhaus, Czekanowski and Sørensen index. The quantitative version of Jaccard should probably called Ružička index. The abbreviation "horn" for the Horn–Morisita index is misleading, since there is a separate Horn index. The abbreviation will be changed if that index is implemented in vegan.

Value

Should provide a drop-in replacement for dist and return a distance object of the same type.

Note

The function is an alternative to dist adding some ecologically meaningful indices. Both methods should produce similar types of objects which can be interchanged in any method accepting either. Manhattan and Euclidean dissimilarities should be identical in both methods. Canberra index is divided by the number of variables in vegdist, but not in dist. So these differ by a constant multiplier, and the alternative in vegdist is in range (0,1). Function daisy (package cluster) provides alternative implementation of Gower index that also can handle mixed data of numeric and class variables. There are two versions of Gower distance ("gower", "altGower") which differ in scaling: "gower" divides all distances by the number of observations (rows) and scales each column to unit range, but "altGower" omits double-zeros and divides by the number of pairs with at least one above-zero value, and does not scale columns (Anderson et al. 2006). You can use decostand to add range standardization to "altGower" (see Examples). Gower (1971) suggested omitting double zeros for presences, but it is often taken as the general feature of the Gower distances. See Examples for implementing the Anderson et al. (2006) variant of the Gower index.
Most dissimilarity indices in `vegdist` are designed for community data, and they will give misleading values if there are negative data entries. The results may also be misleading or `NA` or `NaN` if there are empty sites. In principle, you cannot study species composition without species and you should remove empty sites from community data.

**Author(s)**

Jari Oksanen, with contributions from Tyler Smith (Gower index) and Michael Bedward (Raup–Crick index).

**References**


**See Also**

Function `designdist` can be used for defining your own dissimilarity index. Alternative dissimilarity functions include `dist` in base R, `daisy` (package `cluster`), and `dsvdis` (package `labdsv`). Function `betadiver` provides indices intended for the analysis of beta diversity.
Examples

data(varespec)
 vare.dist <- vegdist(varespec)
 # Orlóci's Chord distance: range 0 .. sqrt(2)
 vare.dist <- vegdist(decostand(varespec, "norm"), "euclidean")
 # Anderson et al. (2006) version of Gower
 vare.dist <- vegdist(decostand(varespec, "log"), "altGower")
 # Range standardization with "altGower" (that excludes double-zeros)
 vare.dist <- vegdist(decostand(varespec, "range"), "altGower")

vegemite

Display Compact Ordered Community Tables

Description

Functions vegemite and tabasco display compact community tables. Function vegemite prints text tables where species are rows, and each site takes only one column without spaces. Function tabasco provides interface for heatmap for a colour image of the data. The community table can be ordered by explicit indexing, by environmental variables or results from an ordination or cluster analysis.

Usage

vegemite(x, use, scale, sp.ind, site.ind, zero=".", select,...)
tabasco(x, use, sp.ind = NULL, site.ind = NULL, select,
        Rowv = TRUE, Colv = TRUE, ...)
coverscale(x, scale=c("Braun.Blanquet", "Domin", "Hult", "Hill", "fix","log"),
          maxabund)

Arguments

x                    Community data.
use                  Either a vector, or an object from cca, decorana etc. or hclust or a dendrogram for ordering sites and species.
sp.ind, site.ind     Species and site indices. In tabasco, these can also be hclust tree, agnes clusterings or dendrograms.
zero                 Character used for zeros.
select               Select a subset of sites. This can be a logical vector (TRUE for selected sites), or a vector of indices of selected sites. The order of indices does not influence results, but you must specify use or site.ind to reorder sites.
Rowv, Colv           Re-order dendrograms for the rows (sites) or columns (species) of x. If the Rowv = TRUE, row dendrograms are ordered by the first axis of correspondence analysis, and when Colv = TRUE column dendrograms by the weighted average (wascores) of the row order. Alternatively, the arguments can be vectors that are used to reorder the dendrogram.
scale  Cover scale used (can be abbreviated).
maxabund  Maximum abundance used with scale = "log". Data maximum in the selected subset will be used if this is missing.
...  Arguments passed to coverscale (i.e., maxabund) in vegemite and to heatmap in tabasco.

Details

The function vegemite prints a traditional community table. The display is transposed, so that species are in rows and sites in columns. The table is printed in compact form: only one character can be used for abundance, and there are no spaces between columns. Species with no occurrences are dropped from the table.

Function tabasco produces a similar table as vegemite using heatmap, where abundances are coded by colours. The function can also display dendrograms for sites (columns) or species if these are given as an argument (use for sites, sp.ind for species).

The parameter use will be used to re-order output. The use can be a vector or an object from hclust or agnes, a dendrogram or any ordination result recognized by scores (all ordination methods in vegan and some of those not in vegan). The hclust, agnes and dendrogram must be for sites. The dendrogram is displayed above the sites in tabasco, but is not shown in vegemite. No dendrogram for species is displayed, except when given in sp.ind.

If use is a vector, it is used for ordering sites. If use is an object from ordination, both sites and species are arranged by the first axis (provided that results are available both also for species). When use is an object from hclust, agnes or a dendrogram, the sites are ordered similarly as in the cluster dendrogram. Function tabasco re-orders the dendrogram if Rowv = TRUE or Rowv is a vector. Such re-ordering is not available for vegemite, but it can be done by hand using reorder.dendrogram or reorder.hclust. Please note that dendrogram and hclust reordering can differ: unweighted means of merged branches are used in dendrogram, but weighted means (= means of leaves of the cluster) are used in reorder.hclust. In all cases where species scores are missing, species are ordered by their weighted averages (wascores) on site order.

Species and sites can be ordered explicitly giving their indices or names in parameters sp.ind and site.ind. If these are given, they take precedence over use. A subset of sites can be displayed using argument select, but this cannot be used to order sites, but you still must give use or site.ind. However, tabasco makes two exceptions: site.ind and select cannot be used when use is a dendrogram (clustering result). In addition, the sp.ind can be an hclust tree, agnes clustering or a dendrogram, and in that case the dendrogram is plotted on the left side of the heatmap. Phylogenetic trees cannot be directly used, as.hclust.phylo (package ape) can transform these to hclust trees.

If scale is given, vegemite calls coverscale to transform percent cover scale or some other scales into traditional class scales used in vegetation science (coverscale can be called directly, too). Braun-Blanquet and Domin scales are actually not strict cover scales, and the limits used for codes r and + are arbitrary. Scale Hill may be inappropriately named, since Mark O. Hill probably never intended this as a cover scale. However, it is used as default 'cut levels' in his TWINSPLAN, and surprisingly many users stick to this default, and this is a de facto standard in publications. All traditional scales assume that values are cover percentages with maximum 100. However, non-traditional alternative log can be used with any scale range. Its class limits are integer powers of 1/2 of the maximum (argument maxabund), with + used for non-zero entries less than 1/512 of the maximum (log stands alternatively for logarithmic or logical). Scale fix is intended for ‘fixing’
10-point scales: it truncates scale values to integers, and replaces 10 with X and positive values below 1 with +.

Value

The functions are used mainly to display a table, but they return (invisibly) a list with items:

- **species**: Ordered species indices
- **sites**: Ordered site indices

These items can be used as arguments `sp.ind` and `site.ind` to reproduce the table. In addition to the proper table, `vegemite` prints the numbers of species and sites and the name of the used cover scale at the end.

Note

The name `vegemite` was chosen because the output is so compact, and the `tabasco` because it is just as compact, but uses heat colours.

Author(s)

Jari Oksanen

References

The cover scales are presented in many textbooks of vegetation science; I used:


See Also

- `cut` and `approx` for making your own 'cover scales' for `vegemite`. Function `tabasco` is based on `heatmap` which in turn is based on `image`. Both functions order species with weighted averages using `wascores`.

Examples

```r
data(varespec)
Print only more common species
freq <- apply(varespec > 0, 2, sum)
vegemite(varespec, scale="Hult", sp.ind = freq > 10)
Order by correspondence analysis, use Hill scaling and layout:
dca <- decorana(varespec)
vegemite(varespec, dca, "Hill", zero="-")
Show one class from cluster analysis, but retain the ordering above
clus <- hclust(vegdist(varespec))
cl <- cutree(clus, 3)
set <- vegemite(varespec, use=dca, select = cl == 3, scale="Br")
Re-create previous
vegemite(varespec, sp=set$sp, site=set$site, scale="Hult")
Re-order clusters by ordination
clus <- as.dendrogram(clus)
```
wascores <- reorder(clus, scores(dca, choices=1, display="sites"), agglo.FUN = mean)
vegemite(varespec, clus, scale = "Hult")

## Abundance values have such a wide range that they must be rescaled
## or all abundances will not be shown in tabasco
tabasco(decostand(varespec, "log"), dca)

## Classification trees for species
data(dune, dune.taxon)
taxontree <- hclust(taxa2dist(dune.taxon))
plothtree <- hclust(vegdist(dune), "average")
## Automatic reordering of clusters
tabasco(dune, plotree, sp.ind = taxontree)
## No reordering of taxonomy

wascores

---

### Description

Computes Weighted Averages scores of species for ordination configuration or for environmental variables.

### Usage

```r
wascores(x, w, expand=FALSE)
eigengrad(x, w)
```

### Arguments

- **x**: Environmental variables or ordination scores.
- **w**: Weights: species abundances.
- **expand**: Expand weighted averages so that they have the same weighted variance as the corresponding environmental variables.

### Details

Function `wascores` computes weighted averages. Weighted averages ‘shrink’: they cannot be more extreme than values used for calculating the averages. With `expand = TRUE`, the function ‘dehsrinks’ the weighted averages by making their biased weighted variance equal to the biased weighted variance of the corresponding environmental variable. Function `eigengrad` returns the inverses of squared expansion factors or the attribute shrinkage of the `wascores` result for each environmental gradient. This is equal to the constrained eigenvalue of `cca` when only this one gradient was used as a constraint, and describes the strength of the gradient.
Value

Function wascores returns a matrix where species define rows and ordination axes or environmental variables define columns. If expand = TRUE, attribute shrinkage has the inverses of squared expansion factors or cca eigenvalues for the variable. Function eigengrad returns only the shrinkage attribute.

Author(s)

Jari Oksanen

See Also

monomds, cca.

Examples

data(varespec)
data(varechem)
vare.dist <- vegdist(wisconsin(varespec))
vare.mds <- monomDS(vare.dist)
vare.points <- postMDS(vare.mds$points, var.e.dist)
vare.wa <- wascores(vare.points, varespec)
plot(scores(vare.points), pch="+", asp=1)
text(vare.wa, rownames(vare.wa), cex=0.8, col="blue")
## Omit rare species (frequency <= 4)
freq <- apply(varespec>0, 2, sum)
plot(scores(vare.points), pch="+", asp=1)
text(vare.wa[freq > 4,, rownames(vare.wa)[freq > 4], cex=0.8, col="blue")
## Works for environmental variables, too.
wascores(varechem, varespec)
## And the strengths of these variables are:
eigengrad(varechem, varespec)

---

**wcmdscale**

*Weighted Classical (Metric) Multidimensional Scaling*

Description

Weighted classical multidimensional scaling, also known as weighted principal coordinates analysis.

Usage

```
wcmdscale(d, k, eig = FALSE, add = FALSE, x.ret = FALSE, w)
S3 method for class 'wcmdscale'
plot(x, choices = c(1, 2), type = "t",
S3 method for class 'wcmdscale'
scores(x, choices = NA, ...)```
Arguments

\(d\)
a distance structure such as that returned by \texttt{dist} or a full symmetric matrix containing the dissimilarities.

\(k\)
the dimension of the space which the data are to be represented in; must be in \{1, 2, \ldots, n - 1\}. If missing, all dimensions with above zero eigenvalue.

\(\text{eig}\)
indicates whether eigenvalues should be returned.

\(\text{add}\)
logical indicating if an additive constant \(c^*\) should be computed, and added to the non-diagonal dissimilarities such that all \(n - 1\) eigenvalues are non-negative.
\textbf{Not implemented}.

\(\text{x.ret}\)
indicates whether the doubly centred symmetric distance matrix should be returned.

\(w\)
Weights of points.

\(x\)
The \texttt{wcmdscale} result object when the function was called with options \(\text{eig} = \text{TRUE}\) or \(\text{x.ret} = \text{TRUE}\) (See Details).

\(\text{choices}\)
Axes to be returned; \texttt{NA} returns all real axes.

\(\text{type}\)
Type of graph which may be "t"ext, "p"oints or "n"one.

\ldots
Other arguments passed to graphical functions.

Details

Function \texttt{wcmdscale} is based on function \texttt{cmdscale} (package \texttt{stats} of base R), but it uses point weights. Points with high weights will have a stronger influence on the result than those with low weights. Setting equal weights \(w = 1\) will give ordinary multidimensional scaling.

With default options, the function returns only a matrix of scores scaled by eigenvalues for all real axes. If the function is called with \(\text{eig} = \text{TRUE}\) or \(\text{x.ret} = \text{TRUE}\), the function returns an object of class "\texttt{wcmdscale}" with \texttt{print}, \texttt{plot}, \texttt{scores}, \texttt{eigenvals} and \texttt{stressplot} methods, and described in section Value.

Value

If \(\text{eig} = \text{FALSE}\) and \(\text{x.ret} = \text{FALSE}\) (default), a matrix with \(k\) columns whose rows give the coordinates of points corresponding to positive eigenvalues. Otherwise, an object of class \texttt{wcmdscale} containing the components that are mostly similar as in \texttt{cmdscale}:

\(\text{points}\)
a matrix with \(k\) columns whose rows give the coordinates of the points chosen to represent the dissimilarities.

\(\text{eig}\)
the \(n - 1\) eigenvalues computed during the scaling process if \(\text{eig}\) is true.

\(x\)
the doubly centred and weighted distance matrix if \(\text{x.ret}\) is true.

\(\text{GOF}\)
Goodness of fit statistics for \(k\) axes. The first value is based on the sum of absolute values of all eigenvalues, and the second value is based on the sum of positive eigenvalues.

\(\text{weights}\)
Weights.

\(\text{negaxes}\)
A matrix of scores for axes with negative eigenvalues scaled by the absolute eigenvalues similarly as \texttt{points}. This is \texttt{NULL} if there are no negative eigenvalues or \(k\) was specified, and would not include negative eigenvalues.

\(\text{call}\)
Function call.
References

Gower, J. C. (1966) Some distance properties of latent root and vector methods used in multivariate

See Also

The function is modelled after `cmdscale`, but adds weights (hence name) and handles negative
eigenvalues differently. `eigenvals.wcmdscale` and `stressplot.wcmdscale` are some specific
methods. Other multidimensional scaling methods are `monoMDS`, and `isoMDS` and `sammon` in package
`MASS`.

Examples

```r
## Correspondence analysis as a weighted principal coordinates
## analysis of Euclidean distances of Chi-square transformed data
data(dune)
rs <- rowSums(dune)/sum(dune)
d <- dist(decostand(dune, "chi"))
ord <- wcmdscale(d, w = rs, eig = TRUE)
## Ordinary CA
ca <- cca(dune)
## Eigenvalues are numerically similar
ca$CA$eig - ord$eig
## Configurations are similar when site scores are scaled by
eigenvalues in CA
procrustes(ord, ca, choices=1:19, scaling = 1)
plot(procrustes(ord, ca, choices=1:2, scaling=1))
## Reconstruction of non-Euclidean distances with negative eigenvalues
d <- vegdist(dune)
ord <- wcmdscale(d, eig = TRUE)
## Only positive eigenvalues:
cor(d, dist(ord$points))
## Correction with negative eigenvalues:
cor(d, sqrt(dist(ord$points)^2 - dist(ord$negaxes)^2))
```
Index

*Topic **IO**
 read.cep, 209
*Topic **aplot**
 envfit, 85
 linestack, 107
 ordiarrows, 148
 ordihull, 150
 ordilabel, 153
 ordiplot, 155
 ordipointlabel, 157
 ordisurf, 162
 orditorp, 171
 plot.cca, 188
*Topic **character**
 make.cepnames, 109
*Topic **cluster**
 cascadeKM, 41
*Topic **datagen**
 commsim, 56
 nullmodel, 142
 oecosimu, 144
 permat, 176
 simulate.rda, 222
*Topic **datasets**
 BCI, 21
 dune, 82
 dune.taxon, 83
 mite, 121
 pyrifos, 200
 sipoo, 224
 varespec, 249
*Topic **distribution**
 fisherfit, 91
 permutstat, 181
 radfit, 201
*Topic **documentation**
 vegandocs, 257
*Topic **dynamic**
 orditkplot, 168

*Topic **file**
 read.cep, 209
*Topic **hplot**
 betadisper, 24
 biplot.rda, 35
 linestack, 107
 ordiplot, 155
 ordipointlabel, 157
 ordiresids, 159
 orditorp, 171
 ordixyplot, 172
 plot.cca, 188
 vegemite, 263
*Topic **htest**
 anosim, 14
 anova.cca, 17
 clamtest, 54
 envfit, 85
 mantel, 110
 mrpp, 129
 procrustes, 197
 vegan-package, 4
*Topic **iplot**
 ordiplot, 155
 orditkplot, 168
*Topic **manip**
 beals, 22
 decostand, 68
 dispweight, 76
 vegemite, 263
*Topic **methods**
 betadisper, 24
 permutest.betadisper, 186
*Topic **misc**
 vegan-deprecated, 254
*Topic **models**
 add1.cca, 5
 as.mlm.cca, 19
 cca.object, 48
deviance.cca, 72
humpfit, 98
model.matrix.cca, 122
MOSest, 126
nobs.adonis, 141
ordistep, 160
simulate.rda, 222
specaccum, 227
SSarrhenius, 235
vegan-package, 4

*Topic multivariate
add1.cca, 5
adipart, 7
adonis, 11
anosim, 14
anova.cca, 17
as.mlm.cca, 19
betadisper, 24
betadiver, 29
bgdispersal, 31
bioenv, 33
capscale, 37
cca, 44
cca.object, 48
CCorA, 51
commssim, 56
contribdiv, 62
decorana, 64
decostand, 68
designdist, 70
deviance.cca, 72
dispindmorisita, 74
dispweight, 76
disconnected, 78
eigenvals, 84
evf, 85
eventstar, 89
goodness.cca, 94
goodness.metaMDS, 96
indpwr, 101
isomap, 102
kendall.global, 105
mantel, 110
mantel.correlog, 112
MDSrotate, 115
metaMDS, 116
model.matrix.cca, 122
monoMDS, 123
mrpp, 129
mso, 133
multipart, 135
nullmodel, 142
oecosimu, 144
ordistep, 160
orisdurf, 162
pcnm, 174
permut, 176
permutations, 183
permut.test.betadisper, 186
prc, 191
predict.cca, 194
procrustes, 197
rankindex, 205
raupcrick, 207
reorder.hclust, 213
RsquareAdj, 215
scores, 216
screeplot.cca, 217
simper, 220
simulate.rda, 222
spantree, 224
stepacross, 237
stressplot.wcmdscale, 240
tsallis, 247
varpart, 250
vegan-package, 4
vegdist, 258
wascores, 266
wcmdscale, 267

*Topic nonlinear
humpfit, 98

*Topic nonparametric
adonis, 11
anosim, 14
bgdispersal, 31
kendall.global, 105
mrpp, 129
oecosimu, 144
vegan-package, 4

*Topic optimize
eventstar, 89

*Topic package
vegan-package, 4

*Topic print
vegemite, 263

*Topic regression
INDEX

capscale, 6, 7, 17–20, 37, 47–50, 73, 84–86, 94, 96, 122, 155, 159, 160, 162, 175, 188, 191, 194–196, 222, 223, 240
cascadeKM, 41, 107
cca.object, 20, 40, 46, 47, 48, 85, 133, 135, 193
CCorA, 51, 141
chisq.test, 59, 146
chull, 152, 153
cIndexKM (cascadeKM), 41
clamtest, 54
cloud, 172–174
clustIndex, 41–43
cmdscale, 38–40, 69, 103, 104, 119, 125, 268, 269
coeff, 99, 204
coeff.cca, 20, 47, 49, 51
coeff.cca (predict.cca), 194
coeff.radfit (radfit), 201
coeff.rda, 49
coeff.rda (predict.cca), 194
commsim, 56, 76, 77, 142, 144–148, 180, 254
commsimulator, 147
commsimulator (vegan-deprecated), 254
confint.glm, 100, 128
confint.MOSTest (MOSTest), 126
confint.profile.glm, 99
contour, 165, 166
contr.treatment, 192, 193
contrasts, 12, 45, 193
contribdiv, 62
cooks.distance, 20, 47
cophenetic, 245
cophenetic.spantree, 239
cophenetic.plot (spantree), 224
cor, 33–35, 107, 110–112, 206, 207
cor.test, 111, 206
corresp, 45, 67
coverscale (vegemite), 263
cut, 265
cutree, 107
daisy, 34, 206, 246, 261, 262
data.frame, 87, 122
decorana, 45, 64, 86, 87, 141, 151, 152, 156, 164, 165, 189, 194, 196, 219, 220
decostand, 24, 46, 68, 120, 204, 250, 253, 259, 261
dendrogram, 214, 263, 264
density, 93, 13 – 14, 256
density.adonis (vegan-deprecated), 254
density.anosim (vegan-deprecated), 254
density.default, 182, 256
density.mantel (vegan-deprecated), 254
density.mrpp (vegan-deprecated), 254
density.oeosimu (vegan-deprecated), 254
density.permutest (permustats), 181
density.permutest.cca (vegan-deprecated), 254
density.protest (vegan-deprecated), 254
densityplot, 146, 182, 255, 256
densityplot.adonis (vegan-deprecated), 254
densityplot.oeosimu (vegan-deprecated), 254
densityplot.permutest (permustats), 181 Deprecated, 257
designdist, 30, 31, 70, 130, 208, 221, 245, 258, 259, 262
deviance, 73, 99, 204
deviance.cca, 6, 7, 19, 47, 51, 72, 161
deviance.radfit (radfit), 201
deviance.rda, 6
deviance.rda (deviance.cca), 72
dispindmorisita, 74
dispweight, 76
distconnected, 78, 104, 225, 238, 239
diversity, 63, 79, 93, 212, 213, 234, 243, 248
downweight (decorana), 64
drarefy (diversity), 79
drop.scope, 18
drop1, 6, 7
drop1.cca, 19, 47, 73, 161, 162
drop1.cca (add1.cca), 5
drop1.default, 6
dsvdis, 262
dudi, 84
dune, 82, 83
envfit, 45, 84, 85
eigengrad (wascores), 266
eigenvals, 84, 268
eigenvals.betadisper (betadisper), 24
eigenvals.cca, 47, 51
eigenvals.wcmdscale, 269
e llipsoidhull, 152
envfit, 45, 85, 95, 165, 167, 173
estaccumR (specpool), 232
estimator (specpool), 232
eventstar, 89
extractAIC, 73, 99
extractAIC.cca, 7, 161, 162
extractAIC.cca (deviance.cca), 72
factor, 45, 87, 190, 246
factorfit (envfit), 85
family, 77, 98, 100, 127, 202–204
fieller.MOStest (MOStest), 126
fisher.alpha, 92, 93, 260
fisher.alpha (diversity), 79
fisherfit, 80, 91, 100, 205, 260
fitdistr, 92, 93
fitspecaccum, 235, 236
fitspecaccum (specaccum), 227
fitted, 99, 204
fitted.capscale (predict.cca), 194
fitted.cca, 51, 159, 223
fitted.cca (predict.cca), 194
fitted.procrustes (procrustes), 197
fitted.radfit (radfit), 201
fitted.rda, 223
fitted.rda (predict.cca), 194
formula, 33, 34, 37, 45, 48, 86, 87
friedman.test, 107
gam, 163–167
Gamma, 100, 203, 204
gaussian, 203, 215
gdispweight (dispweight), 76
glm, 77, 99, 100, 126–128, 202–204, 215
goodness (goodness.cca), 94
goodness.cca, 47, 94, 196
goodness.monoMDS, 96
goodness.monoMDS (goodness.monoMDS), 96
hatvalues, 20
hclust, 107, 130, 131, 151, 152, 213, 214, 225, 226, 245, 246, 263, 264
head.summary.cca (plot.cca), 188
heatmap, 263–265
hiersimu, 137, 180, 256
hiersimu (adipart), 7
humpfit, 98, 128
identify, 156
identify.ordiplot, 26, 36, 154, 190, 199, 203
identify.ordiplot (ordiplot), 155
image, 263, 265
indpower, 24, 101
indval, 101, 107
inertcomp, 47, 253
inertcomp (goodness.cca), 94
influence.measures, 19, 20
inherits, 48
initMDS (metaMDS), 116
intersetcor, 20, 47
intersetcor (goodness.cca), 94
invisible, 81, 151, 152
isomap, 102, 141, 239
isomapdist (isomap), 102
isOMDS, 97, 116–120, 124–126, 217, 269
kendall.global, 105, 183
kendall.post, 183
kendall.post (kendall.global), 105
kmeans, 41–43, 107
labels.envfit (envfit), 85
lag.plot, 180
Lattice, 159, 160, 173, 174, 203, 205
lda, 190
legend, 55, 133, 192
lines, 80, 149–153
lines.fitspecaccum (specaccum), 227
lines.humpfit (humpfit), 98
lines.permat (permat), 176
lines.preston (fisherfit), 91
lines.prestonfit (fisherfit), 91
lines.procrustesfit (procrustes), 197
lines.radfit(radfit), 201
lines.radline(radfit), 201
lines.spantree(spantree), 224
lines.specaccum(specaccum), 227
linestack, 107, 192
lm, 19, 20, 47, 51, 175, 215, 223
lm.influence, 47
logLik, 204
logLik, radfit(radfit), 201
lset, 205
Machine, 207
make.cephames, 82, 109
make.commsim, 144–146, 177, 178, 180, 254, 255, 257
make.commsim(commsim), 56
make.names, 109, 110, 210
make.unique, 109
mantel.correlog, 112
mantel.partial, 34, 175, 182, 256
matlines, 231
matplot, 192
mcmc, 146
mcnemar.test, 32
MDSrotate, 115, 119, 120
meandist (mrpp), 129
metaMDS, 35, 38, 39, 45, 67, 97, 104, 115, 116, 125, 126, 141, 240
metaMDSdist, 38
metaMDSdist(metaMDS), 116
metaMDSiter (metaMDS), 116
metaMDSredist, 97
metaMDSredist (metaMDS), 116
metaMDSrotate, 125
mite, 121
model.frame, 123
model.frame.cca, 51
model.frame.cca (model.matrix.cca), 122
model.matrix, 13, 123
model.matrix.cca, 51, 122
monoMDS, 15, 35, 67, 97, 115–120, 123, 200, 207, 240, 267, 269
MOSTest, 126
mrpp, 13, 14, 16, 111, 129, 182, 256
ms, 133
msoplot (ms), 133
multipart, 135, 256
mvrnorm, 223
na.action, 48–50
na.exclude, 38, 44, 48, 50
na.fail, 38, 44
na.omit, 38, 44, 48, 50
nestedbetajac, 31
nestedbetajac (nestedtemp), 138
nestedbetasor, 31
nestedbetasor (nestedtemp), 138
nestedchecker, 146
nestedchecker (nestedtemp), 138
nesteddisc, 146
nesteddisc (nestedtemp), 138
nesteddist, 146
nesteddist (nestedtemp), 138
nestedtemp, 138, 145–148, 257
news, 257, 258
nlm, 80, 81, 93, 100, 203
nls, 228–230, 235, 236
no.shared, 117, 205, 207, 238, 239
no.shared (distconnected), 78
nobs.adonis, 141
nobs.betadisper (nobs.adonis), 141
nobs.cca, 50, 51
nobs.cca (nobs.adonis), 141
nobs.CCorA (nobs.adonis), 141
nobs.decorana (nobs.adonis), 141
nobs.isomap (nobs.adonis), 141
nobs.metaMDS (nobs.adonis), 141
nobs.pcmn (nobs.adonis), 141
nobs.procrustes (nobs.adonis), 141
nobs.rad (nobs.adonis), 141
nobs.varpart (nobs.adonis), 141
nobs.wcmdscale (nobs.adonis), 141
nullmodel, 56, 61, 76, 140, 142, 144–148, 180, 255
numPerms, 185, 186
object.size, 146
oecosimu, 8–10, 61, 136, 137, 139–141, 144, 180, 182, 207, 208, 246, 255, 256
optim, 157, 158
optimize, 89
ordered, 246
orderingKM (cascadeKM), 41
ordiareatest, 182
ordiareatest (ordihull), 150
ordiarrows, 148, 152, 173
ordicloud (ordixyplot), 172
ordicluster, 226
ordicluster (ordihull), 150
ordiellipse (ordihull), 150
ordigrid, 152
ordigrid (ordiarrows), 148
ordihull, 150
ordilattice, 80, 86, 103, 149, 151, 153
ordilattice.getEnvfit (ordixyplot), 172
ordimedian (betadisper), 24
ordiplot, 26, 30, 36, 103, 120, 148–151, 155, 170, 171, 190, 191, 203, 216
ordipointlabel, 157, 169, 170
ordiRstep, 6, 47
ordiRstep (ordistep), 160
ordiresids, 159
ordirgl, 170
ordisegments, 152
ordisegments (ordiarrows), 148
ordispider, 95
ordispider (ordihull), 150
ordisplom (ordixyplot), 172
ordistep, 6, 7, 47, 160
ordisurf, 45, 88, 162
orditerminfo, 48
orditkplot, 154, 158, 168
orditorp, 154, 170, 171
ordixyplot, 172, 216

p.adjust, 105, 106, 113
pairs.profile, 99
palette, 255
panel.cloud, 173
panel.cloud, 173, 174
panel.ordi (ordixyplot), 172
panel.ordi3d (ordixyplot), 172
panel.ordi3d (ordixyplot), 172
panel.ordiarrows (ordixyplot), 172
panel.splom, 173, 174
panel.splom, 173, 174
panel.xyplot, 173
par, 80, 154, 169, 170, 228
paste, 110
pca, 84
pcaiv, 47
pchisq, 77
pcnm, 84, 141, 174
pco, 84

pd, 246
permat, 176
permatfull, 61, 144, 146
permatfull (permat), 176
permatswap, 59, 61, 144, 146
permatswap (permat), 176
permustats, 13, 15, 16, 111, 131, 146, 181, 199, 256
permutations, 12, 15, 87, 111, 183
permute, 186
permute (anova.cca), 17
permute (betadisper), 26, 27, 182, 186
permute (cca), 49, 182, 256
persp, 165, 212, 213, 249
persp.renyi (reyni), 211
persp.tsallis (tsallis), 247
phylosor, 246
phyper, 260
plot, 80, 108, 156
plot.anosim (anosim), 14
plot.betadisper (betadisper), 24
plot.betadiver (betadiver), 29
plot.cascadeKM (cascadeKM), 41
plot.cca, 36, 39, 40, 46, 47, 49, 86, 148, 150, 155, 156, 170, 171, 188
plot.clamtest (clamtest), 54
plot.contrib (contrib), 62
plot.decorana, 148, 150, 155, 156, 171
plot.decorana (decorana), 64
plot.default, 25, 171, 219
plot.density, 255, 256
plot.envfit (envfit), 85
plot.fisher (fisherfit), 91
plot.fisherfit (fisherfit), 91
plot.fitspeccum (speccum), 227
plot.gam, 165, 166
plot.hclust, 214
plot.humpfit (humpfit), 98
plot.isomap (isomap), 102
plot.lm, 127, 159, 160
plot.mantel.correlog (mantel.correlog), 112
plot.meandist (mrpp), 129
plot.metaMDS, 171
plot.metaMDS (metaMDS), 116
plot.monoMDS (monoMDS), 123
plot.MOStest (MOStest), 126
plot.nestednodf (nestedtemp), 138
plot.nestedtemp (nestedtemp), 138
plot.ordipointlabel (ordipointlabel), 157
plot.ordisurf (ordisurf), 162
plot.orditkplot (orditkplot), 168
plot.permat (permat), 176
plot.poolaccum (specpool), 232
plot.prc (prc), 191
plot.preston (fisherfit), 91
plot.prestonfit (fisherfit), 91
plot.procrustes, 155, 156
plot.procrustes (procrustes), 197
plot.profile, 99
plot.rad, 155
plot.rad (radfit), 201
plot.radfit (radfit), 201
plot.radline (radfit), 201
plot.renyi (renyi), 211
plot.renyiaccum (renyi), 211
plot.spantree (spantree), 224
plot.specaccum (specaccum), 227
plot.taxondive (taxondive), 241
plot.varpart (varpart), 250
plot.varpart234 (varpart), 250
plot.vegandensity (vegan-deprecated), 254
plot.wcmdscale (wcmdscale), 267
plotmath, 108
pointLabel, 157, 158
points, 36, 149, 157, 171, 190, 191
points.cca (plot.cca), 188
points.decorana (decorana), 64
points.humpfit (humpfit), 98
points.metaMDS (metaMDS), 116
points.ordiplot (ordiplot), 155
points.orditkplot (orditkplot), 168
points.procrustes (procrustes), 197
points.radfit (radfit), 201
points.radline (radfit), 201
polygon, 151–154, 231
poolaccum, 231
poolaccum (specpool), 232
postMDS (metaMDS), 116
prc, 47, 191
prcomp, 84, 85, 217, 219, 220, 240
predict, 204
predict.cca, 47–49, 51, 194, 222
predict.decorana, 67
predict.decorana (predict.cca), 194
predict.fitspecaccum (specaccum), 227
predict.gam, 163, 166
predict.humpfit (humpfit), 98
predict.nls, 229
predict.procrustes (procrustes), 197
predict.radfit (radfit), 201
predict.radline (radfit), 201
predict.rda, 49, 222
predict.rda (predict.cca), 194
predict.specaccum (specaccum), 227
pregraphKM (cascadeKM), 41
prepanel.ordi3d (ordi3dplot), 172
prestondistr (fisherfit), 91
prestonfit, 205
prestonfit (fisherfit), 91
princomp, 84, 85, 217, 219, 220, 240
print.commsim (commsim), 56
print.nullmodel (nullmodel), 142
print.permat (permat), 176
print.simmat (nullmodel), 142
print.specaccum (specaccum), 227
print.summary.cca (plot.cca), 188
print.summary.decorana (decorana), 64
print.summary.permat (permat), 176
procrustes, 35, 119, 120, 141, 197, 216
profile.glm, 100, 128
profile.humpfit (humpfit), 98
profile.MOSTest (MOSTest), 126
protest, 35, 111, 182, 206, 207, 256
protest (procrustes), 197
pyrifos, 200
qnorm, 159
qqmath, 146, 159, 160, 182
qqmath.permustats, 256
qqmath.permustats (permustats), 181
qqnorm, 146, 182, 205
qqnorm.permustats, 256
qqnorm.permustats (permustats), 181
qqplot, 93, 205
qr, 49
quasipoisson, 77, 203
r2dtable, 59, 178, 180
rad.lognormal, 93
rad.lognormal (radfit), 201
rad.null (radfit), 201
rad.preempt (radfit), 201
radNzipf (radfit), 201
rad.zipf (radfit), 201
rad.zipfbrot (radfit), 201
radfit, 93, 141, 201, 219
radlattice (radfit), 201
rank, 16, 206
rankindex, 35, 118, 120, 205
rarecurve (diversity), 79
rarefy, 229, 231
rarefy (diversity), 79
raupcrick, 71, 146, 148, 207, 260
rda, 6, 7, 17–20, 36–40, 48, 50, 72, 73, 84–86, 94, 96, 122, 133, 135, 152, 155, 156, 159–162, 175, 188, 190–196, 215, 222, 223, 240, 251, 253
rda (cca), 44
read.cerp, 209
relevel, 192, 193
renyi, 136, 211, 248, 249
renyiaccum, 231, 248, 249
renyiaccum (renyi), 211
reorder, 213
reorder.dendrogram, 213, 214, 264
reorder.hclust, 213, 264
residuals, 204
residuals.cca, 51
residuals.cca (predict.cca), 194
residuals.glm, 99, 204
residuals.procrustes (procrustes), 197
rev.hclust (reorder.hclust), 213
rgl.isomap, 103
rgl.renyiaccum, 212, 213, 249
rmdtaxa, 148
rnorm, 223
rrarefy, 231
rrarefy (diversity), 79
RsquareAdj, 161, 162, 215, 253
RsquareAdj.cca, 51
RsquareAdj.rda, 47
rug, 108
s, 165, 166
s.label, 154
sammon, 226, 269
sample, 180, 222
scale, 34, 50
scores, 27, 50, 86, 103, 149, 150, 152–154, 156, 163–165, 167–171, 173, 198, 216, 225, 264
scores.betadisper (betadisper), 24
scores.betadiver (betadiver), 29
scores.cca, 47, 49, 51, 95, 198, 216, 217
scores.cca (plot.cca), 188
scores.decorana, 216, 217
scores.decorana (decorana), 64
scores.envfit, 217
scores.envfit (envfit), 85
scores.hclust (reorder.hclust), 213
scores.metaMDS, 216, 217
scores.metaMDS (metaMDS), 116
scores.monolMDS, 217
scores.monolMDS (monolMDS), 123
scores.ordiplot (ordiplot), 150
scores.orditkplot (orditkplot), 168
scores.pcnm, 217
scores.pcnm (pcnm), 174
scores.rda, 36, 39, 192, 216, 217
scores.rda (plot.cca), 188
scores.wcmdscale (wcmdscale), 267
screeplot, 220
screeplot.cca, 47, 217
screeplot.decorana (screeplot.cca), 217
screeplot.pcomp (screeplot.cca), 217
screeplot.prcomp (screeplot.cca), 217
segments, 149, 150, 152, 153, 198, 199, 231
selfStart, 229
set.seed, 142
Shepard, 96, 97
shuffleset (varpart), 250
shuffleSet, 185, 186, 220, 222
simper, 220
simpleRDA2 (varpart), 250
simulate, 142, 222, 223
simulate.capscale (simulate.rda), 222
simulate.cca, 47
simulate.cca (simulate.rda), 222
simulate.nullmodel, 61, 145, 146, 148, 178, 223, 255
simulate.nullmodel (nullmodel), 142
simulate.rda, 222
sipoo, 224
smacofSym, 124–126
smooth.terms, 164, 165
spandepth (spantree), 224
spantree, 79, 104, 175, 176, 224
specaccum, 212, 213, 227, 233, 234
specnumber (diversity), 79
INDEX

specpool, 24, 93, 228, 229, 232, 261
specpool$vect (specpool), 232
spenvcor, 20, 47
spenvcor (goodness.cca), 94
spline, 229
splom, 172–174
sqrt, 118
SSarrhenius, 229, 235
SSasymp, 229
SSgitay, 229
SSgitay (SSarrhenius), 235
SSgleason, 229
SSgleason (SSarrhenius), 235
SSgompertz, 229, 236
SSlogis, 229, 236
SSlolmolino, 229
SSlolmolino (SSarrhenius), 235
SSmicmen, 229, 236
SSweibull, 229, 236
step, 6, 7, 47, 72, 73, 160–162
stepacross, 23, 38, 39, 78, 79, 103, 104, 117,
119, 120, 205–207, 226, 237
str.nullmodel (nullmodel), 142
stressplot, 125, 240, 241, 268
stressplot (goodness.metaMDS), 96
stressplot.capscale, 97
stressplot.capscale
 (stressplot.wcmdscale), 240
stressplot.cca, 97
stressplot.cca (stressplot.wcmdscale), 240
stressplot.monoMDS, 241
stressplot.prcomp
 (stressplot.wcmdscale), 240
stressplot.princomp
 (stressplot.wcmdscale), 240
stressplot.rda, 97
stressplot.rda (stressplot.wcmdscale), 240
stressplot.wcmdscale, 97, 240, 269
stripchart, 108
strsplit, 110
substring, 110
summary.anosim (anosim), 14
summary.bioenv (bioenv), 33
summary.cca, 46, 47, 49
summary.cca (plot.cca), 188
summary.clamtest (clamtest), 54
summary.decorana (decorana), 64
summary.dispweight (dispweight), 76
summary.eigenvals (eigenvals), 84
summary glm, 127
summary.humpfit (humpfit), 98
summary.isomap (isomap), 102
summary.meandist (mrpp), 129
summary.mlm, 20
summary.ordiellipse (ordihull), 150
summary.ordihull (ordihull), 150
summary.permat (permat), 176
summary.permustats, 256
summary.permustats (permustats), 181
summary.poolaccum (specpool), 232
summary.prc (prc), 191
summary.procrustes (procrustes), 197
summary.radfit.frame (radfit), 201
summary.simper (simper), 220
summary.specaccum (specaccum), 227
summary.taxondive (taxondive), 241
svd, 45, 84, 85
swan, 239
swan (beals), 22
swap.web, 59, 178, 180
symbols, 88
tabasco (vegemite), 263
tail.summary.cca (plot.cca), 188
taxa2dist (taxondive), 241
taxondive, 84, 241, 246
te, 166
terms, 13, 48
text, 36, 149, 151, 153, 154, 157, 171, 190,
191
text.cca (plot.cca), 188
text.decorana (decorana), 64
text.metaMDS (metaMDS), 116
text.ordiplot (ordiplot), 155
text.orditkplot (orditkplot), 168
text.procrustes (procrustes), 197
ttkcanvas, 170
tolerance, 243
tolerance.cca, 47
treedist, 84
treedist (treedive), 245
treedive, 84, 146, 148, 245
treeheight (treedive), 245
trellis.par.set, 173
ts, 146
tsallis, 89, 90, 136, 247

TsallisAccum, 231

TsallisAccum(tsallis), 247
tsd, 180

TukeyHSD, 25–27

TukeyHSD.betadisper, 187, 188

TukeyHSD.betadisper(betadisper), 24

update, 142

update.nullmodel(nullmodel), 142

varechem(varespec), 249

varespec, 249

varpart, 14, 47, 141, 215, 216, 250, 257

varpart2(varpart), 250

varpart3(varpart), 250

varpart4(varpart), 250

vectorfit(envfit), 85

vegan(veg-package), 4

vegan-deprecated, 254

vegan-package, 4

vegandocs, 4, 47, 139, 145, 190, 220, 233, 251, 252, 257

vegemite, 263

veiledspec, 234

veiledspec(fisherfit), 91

vif, 95, 96, 196

vif.cca, 20, 47, 49

vif.cca(goodness.cca), 94

vignette, 4, 47, 139, 190, 233, 257, 258

wascores, 117, 119, 120, 263–265, 266

wcmds, 84, 85, 141, 175, 240, 267

weighted.mean, 214

weights.cca, 51

weights.cca(ordihull), 150

weights.decorana(ordihull), 150

weights.rda(ordihull), 150

wisconsin, 118, 120

wisconsin(decostand), 68

xfig, 169

xy.coords, 219