Package ‘texreg’

February 20, 2015

Version 1.34
Date 2014-10-31
Title Conversion of R regression output to LaTeX or HTML tables.
Author Philip Leifeld
Maintainer Philip Leifeld <philip.leifeld@uni-konstanz.de>
Description texreg converts coefficients, standard errors, significance stars, and goodness-of-fit statistics of statistical models into LaTeX tables or HTML tables/MS Word documents or to nicely formatted screen output for the R console for easy model comparison. A list of several models can be combined in a single table. The output is highly customizable. New model types can be easily implemented.
Suggests nlme, survival, network, ergm, lme4 (>= 1.0), gamlss
Depends R (>= 2.15.0)
Imports methods
Enhances AER, betareg, brglm, dynlm, eha, erer, fGarch, gee, gmm, latentnet, ltmtest, MASS, mgcv, mmlogit, mnet, ordinal, plm, pscl, quantreg, relaimpo, rms, robustbase, RSiena, simex, sna, spdep, stats, survey, systemfit, tergm, xergm, Zelig
License GPL-2 | GPL-3
Repository CRAN
Repository/R-Forge/Project texreg
Repository/R-Forge/Revision 136
Repository/R-Forge/DateTimeStamp 2014-10-31 21:35:04
Date/Publication 2014-11-01 00:44:40
NeedsCompilation no

R topics documented:

texreg-package ... 2
coeftostring ... 3
createTexreg ... 3
Description

texreg converts coefficients, standard errors, significance stars, and goodness-of-fit statistics of statistical models into LaTeX tables or HTML tables/MS Word documents or to nicely formatted screen output for the R console for easy model comparison. A list of several models can be combined in a single table. The output is highly customizable. New model types can be easily implemented.

Details

Several packages like apsrtable, memisc, outreg, stargazer, or xtable are available for typesetting R regression output as LaTeX tables. However, texreg supports more flexible handling of new model types, supports multiple models side-by-side, supports confidence intervals and standard errors alike, has many options for customization, and beside LaTeX output, it can also print tables to the R console screen, save them as HTML or MS Word documents, or plot them as coefficient plots. If several models are submitted, they are merged by row labels of the coefficients, and they are inserted into the final table as separate columns. The package works with report generation tools like Sweave or knitr (including options for LaTeX, HTML, and Markdown). To display citation information, execute citation("texreg").

Author(s)

Philip Leifeld (http://www.philipleifeld.de)

See Also

texreg plotreg
coeftostring

Convert coefficients into standardized strings

Description
Convert coefficients into standardized strings.

Usage
```
coeftostring(x, lead.zero = FALSE, digits = 2)
```

Arguments
- **x**
 A numeric object, for example a coefficient resulting from a regression model.
- **lead.zero**
 If the number starts with "0" or "-0": should the zero be retained or removed? If true, the leading zero is kept.
- **digits**
 The number of decimal places to be used.

Details
This function converts numbers into strings and standardizes them according to some simple rules. The function is used by the texreg function.

Author(s)
Philip Leifeld (http://www.philipleifeld.de)

See Also
texreg-package texreg

Examples
```
coeftostring(-0.345, lead.zero = FALSE) # this should give "-.34"
```

createTexreg

Create a texreg object

Description
Create a texreg object with coefficients and GOF statistics.

Usage
```
createTexreg(coef.names, coef, se, pvalues = numeric(0), ci.low = numeric(0),
             ci.up = numeric(0), gof.names = character(0), gof = numeric(0),
             gof.decimal = logical(0), model.name = character(0))
```
Arguments

coef.names A vector of coefficient names.
coef The coefficient values.
se The standard errors. This is optional if the ci.low and ci.up slots are filled.
pvalues The p-values of the model. This is optional.
ci.low Lower bound of confidence interval (the actual values, not the confidence level). This is optional as long as se is available, but if it is provided, ci.up must also be provided.
ci.up Upper bound of confidence interval (the actual values, not the confidence level). This is optional as long as se is available, but if it is provided, ci.low must also be provided.
gof.names A vector of names of the goodness-of-fit statistics.
gof A vector of goodness-of-fit statistics.
gof.decimal A vector of boolean/logical values indicating for each GOF statistic if decimal places shall be used. This is optional.
model.name The name of the model. In some cases, models consist of two separate columns because two separate data-generating processes are modeled. In these cases, it may make sense to specify default names for the columns (that is, for each texreg object). This argument is optional.

Details

This function creates a texreg object. A texreg object contains information about coefficients, standard errors, p values (optional), and about goodness-of-fit statistics. Instead of standard errors and p values, a texreg object may also contain upper and lower bounds of a confidence interval. texreg objects are used by the texreg command to create LaTeX tables and other representations of the model results.

Author(s)

Philip Leifeld (http://www.philipleifeld.de)

References

See Also
texreg-package texreg

Examples

library(nlme) # load library for fitting linear mixed effects models
model <- lme(distance ~ age, data = Orthodont, random = ~ 1) # estimate model
coefficient.names <- rownames(summary(model)$tTable) # extract coefficient names
coefficients <- summary(model)$tTable[,1] # extract coefficient values
extract <- function(model, ...) {
 coef <- summary(model)$ coefficients
 se <- summary(model)$standard.errors
 pvalues <- summary(model)$significance
 lik <- summary(model)$logLik
 aic <- summary(model)$AIC
 bic <- summary(model)$BIC
 n <- nobs(model)
 gof <- c(aic, bic, lik, n)
 coef.names <- names(coef)
 se.names <- names(se)
 pvalues.names <- names(pvalues)
 gof.names <- names(gof)
 gof <- c(aic, bic, lik, n)
 gof.decimal <- TRUE

 tr <- createTexreg(
 coef.names = coef.names, se = se, pvalues = pvalues, gof.names = gof.names, gof = gof, gof.decimal = gof.decimal
)
}

Description

Extract coefficients and GOF measures from a statistical object.

Usage

extract(model, ...)

S4 method for signature 'aftreg'
extract(model, include.loglik = TRUE, include.lr = TRUE, include.nobs = TRUE, include.events = TRUE, include.trisk = TRUE, ...)

S4 method for signature 'Arima'
extract(model, include.pvalues = FALSE, include.aic = TRUE, include.loglik = TRUE, ...)

S4 method for signature 'betareg'
extract(model, include.precision = TRUE, include.pseudors = TRUE, include.loglik = TRUE, include.nobs = TRUE, ...)

S4 method for signature 'brglm'
extract(model, include.aic = TRUE,
include.bic = TRUE, include.loglik = TRUE,
include.deviance = TRUE, include.nobs = TRUE, ...)

S4 method for signature 'btergm'
extract(model, level = 0.95, ...)

S4 method for signature 'clm'
extract(model, include.thresholds = TRUE,
 include.aic = TRUE, include.bic=TRUE, include.loglik = TRUE,
 include.nobs = TRUE, ...)

S4 method for signature 'clogit'
extract(model, include.aic = TRUE,
 include.rsquared = TRUE, include.maxrs = TRUE,
 include.events = TRUE, include.nobs = TRUE,
 include.missings = TRUE, ...)

S4 method for signature 'coeftest'
extract(model, ...)

S4 method for signature 'coxph'
extract(model, include.aic = TRUE,
 include.rsquared = TRUE, include.maxrs = TRUE,
 include.events = TRUE, include.nobs = TRUE,
 include.missings = TRUE, include.zph = TRUE, ...)

S4 method for signature 'coxph.penal'
extract(model, include.aic = TRUE,
 include.rsquared = TRUE, include.maxrs = TRUE,
 include.events = TRUE, include.nobs = TRUE,
 include.missings = TRUE, include.zph = TRUE, ...)

S4 method for signature 'dynlm'
extract(model, include.rsquared = TRUE,
 include.adjrs = TRUE, include.nobs = TRUE,
 include.fstatistic = FALSE, ...)

S4 method for signature 'ergm'
extract(model, include.bic = TRUE, include.loglik = TRUE, ...)

S4 method for signature 'ergmm'
extract(model, include.bic = TRUE, ...)

S4 method for signature 'fGARCH'
extract(model, include.nobs = TRUE,
 include.aic = TRUE, include.loglik = TRUE, ...)

S4 method for signature 'gam'
extract(model, include.smooth = TRUE,
 include.aic = TRUE, include.bic = TRUE,
 include.loglik = TRUE, include.deviance = TRUE,
 include.devexpl = TRUE, include.dispersion = TRUE,
 include.rsquared = TRUE, include.gcv = TRUE,
 include.nobs = TRUE, include.nsmooth = TRUE, ...)

S4 method for signature 'gamlss'
extract(model, robust = FALSE,
 include.nobs = TRUE, include.nagelkerke = TRUE,
 include.gaic = TRUE, ...)

S4 method for signature 'gee'
extract(model, robust = TRUE,
 include.dispersion = TRUE, include.nobs = TRUE, ...)

S4 method for signature 'glm'
extract(model, include.aic = TRUE,
 include.bic = TRUE, include.loglik = TRUE,
 include.deviance = TRUE, include.nobs = TRUE, ...)

S4 method for signature 'glmerMod'
extract(model, method = c("naive", "profile", "boot", "Wald"), level = 0.95, nsim = 1000,
 include.aic = TRUE, include.bic = TRUE, include.dic = FALSE,
 include.deviance = FALSE, include.loglik = TRUE,
 include.nobs = TRUE, include.groups = TRUE,
 include.variance = TRUE, ...)

S4 method for signature 'glmmadmb'
extract(model, include.variance = TRUE,
 include.dispersion = TRUE, include.zero = TRUE,
 include.aic = TRUE, include.bic = TRUE,
 include.loglik = TRUE, include.nobs = TRUE,
 include.groups = TRUE, ...)

S4 method for signature 'glmrob'
extract(model, include.nobs = TRUE, ...)

S4 method for signature 'gls'
extract(model, include.aic = TRUE,
 include.bic = TRUE, include.loglik = TRUE,
 include.nobs = TRUE, ...)

S4 method for signature 'gmm'
extract(model, include.obj.fcn = TRUE,
 include.overidentification = FALSE, include.nobs = TRUE, ...)

extract
S4 method for signature 'hurdle'
extract(model, beside = FALSE,
 include.count = TRUE, include.zero = TRUE, include.aic = TRUE,
 include.loglik = TRUE, include.nobs = TRUE, ...)

S4 method for signature 'ivreg'
extract(model, include.rsquared = TRUE,
 include.adjrs = TRUE, include.nobs = TRUE,
 include.fstatistic = FALSE, ...)

S4 method for signature 'lm'
extract(model, include.rsquared = TRUE,
 include.adjrs = TRUE, include.nobs = TRUE,
 include.fstatistic = FALSE, ...)

S4 method for signature 'lme'
extract(model, include.aic = TRUE,
 include.bic = TRUE, include.loglik = TRUE,
 include.nobs = TRUE, include.groups = TRUE,
 include.variance = FALSE, ...)

S4 method for signature 'lme4'
extract(model, method = c("naive", "profile", "boot", "Wald"), level = 0.95, nsim = 1000,
 include.aic = TRUE, include.bic = TRUE, include.dic = FALSE,
 include.deviance = FALSE, include.loglik = TRUE,
 include.nobs = TRUE, include.groups = TRUE,
 include.variance = TRUE, ...)

S4 method for signature 'lmerMod'
extract(model, method = c("naive", "profile", "boot", "Wald"), level = 0.95, nsim = 1000,
 include.aic = TRUE, include.bic = TRUE, include.dic = FALSE,
 include.deviance = FALSE, include.loglik = TRUE,
 include.nobs = TRUE, include.groups = TRUE,
 include.variance = TRUE, ...)

S4 method for signature 'lmer'
extract(model, include.nobs = TRUE, ...)

S4 method for signature 'lmrob'
extract(model, include.nobs = TRUE, ...)

S4 method for signature 'lnam'
extract(model, include.rsquared = TRUE,
 include.adjrs = TRUE, include.aic = TRUE, include.bic = TRUE,
 include.loglik = TRUE, ...)

S4 method for signature 'lrm'
extract(model, include.pseudors = TRUE,
include.lr = TRUE, include.nobs = TRUE, ...

S4 method for signature 'maBina'
extract(model, ...)

S4 method for signature 'mer'
extract(model, method = c("naive", "profile", "boot", "Wald"), level = 0.95, nsim = 1000,
include.aic = TRUE, include.bic = TRUE, include.dic = FALSE,
include.deviance = FALSE, include.loglik = TRUE,
include.nobs = TRUE, include.groups = TRUE,
include.variance = TRUE, ...

S4 method for signature 'mnlogit'
extract(model, include.aic = TRUE,
include.loglik = TRUE, include.nobs = TRUE,
include.groups = TRUE, include.intercept = TRUE,
include.iterations = FALSE, ...)
S4 method for signature 'ols'
extract(model, include.nobs = TRUE,
 include.rsquared = TRUE, include.adjrs = TRUE,
 include.fstatistic = FALSE, include.lr = TRUE, ...)

S4 method for signature 'pgmm'
extract(model, include.nobs = TRUE,
 include.sargan = TRUE, include.wald = TRUE, ...)

S4 method for signature 'phreg'
extract(model, include.loglik = TRUE,
 include.lr = TRUE, include.nobs = TRUE, include.events = TRUE,
 include.trisk = TRUE, ...)

S4 method for signature 'plm'
extract(model, include.rsquared = TRUE,
 include.adjrs = TRUE, include.nobs = TRUE, ...)

S4 method for signature 'pmg'
extract(model, include.nobs = TRUE, ...)

S4 method for signature 'polr'
extract(model, include.thresholds = FALSE,
 include.aic = TRUE, include.bic = TRUE, include.loglik = TRUE,
 include.deviance = TRUE, include.nobs = TRUE, ...)

S4 method for signature 'rem.dyad'
extract(model, include.nvertices = TRUE,
 include.events = TRUE, include.aic = TRUE,
 include.aicc = TRUE, include.bic = TRUE, ...)

S4 method for signature 'rlm'
extract(model, include.nobs = TRUE, ...)

S4 method for signature 'rq'
extract(model, include.nobs = TRUE,
 include.percentile = TRUE, ...)

S4 method for signature 'sarlm'
extract(model, include.nobs = TRUE,
 include.lambda = TRUE, include.aic = TRUE,
 include.loglik = TRUE, include.wald = TRUE, ...)

S4 method for signature 'sclm'
extract(model, include.thresholds = TRUE,
 include.aic = TRUE, include.bic = TRUE, include.loglik = TRUE,
 include.nobs = TRUE, ...)
S4 method for signature 'sienaFit'
extract(model, include.iterations = TRUE, ...)

S4 method for signature 'simex'
extract(model, jackknife = TRUE,
 include.nobs = TRUE, ...)

S4 method for signature 'stermgm'
extract(model, beside = FALSE,
 include.formation = TRUE, include.dissolution = TRUE,
 include.nvertices = TRUE, include.aic = FALSE,
 include.bic = FALSE, include.loglik = FALSE, ...)

S4 method for signature 'survreg'
extract(model, include.aic = TRUE,
 include.bic = TRUE, include.loglik = TRUE,
 include.deviance = TRUE, include.nobs = TRUE, ...)

S4 method for signature 'survreg.penal'
extract(model, include.aic = TRUE,
 include.bic = TRUE, include.loglik = TRUE,
 include.deviance = TRUE, include.nobs = TRUE, ...)

S4 method for signature 'svyglm'
extract(model, include.aic = FALSE,
 include.bic = FALSE, include.loglik = FALSE,
 include.deviance = TRUE, include.dispersion = TRUE,
 include.nobs = TRUE, ...)

S4 method for signature 'systemfit'
extract(model, include.rsquared = TRUE,
 include.adjrs = TRUE, include.nobs = TRUE, ...)

S4 method for signature 'texreg'
extract(model, ...)

S4 method for signature 'tobit'
extract(model, include.aic = TRUE,
 include.bic = TRUE, include.loglik = TRUE,
 include.deviance = TRUE, include.nobs = FALSE,
 include.censnobs = TRUE, include.wald = TRUE, ...)

S4 method for signature 'weibreg'
extract(model, include.loglik = TRUE,
 include.lr = TRUE, include.nobs = TRUE,
 include.events = TRUE, include.trisk = TRUE, ...)
S4 method for signature 'zelig'
extract(model, include.aic = TRUE,
 include.bic = TRUE, include.loglik = TRUE,
 include.deviance = TRUE, include.nobs = TRUE,
 include.rsquared = TRUE, include.adjrs = TRUE,
 include.fstatistic = TRUE, ...)

S4 method for signature 'zeroinfl'
extract(model, beside = FALSE,
 include.count = TRUE, include.zero = TRUE, include.aic = TRUE,
 include.loglik = TRUE, include.nobs = TRUE, ...)

Arguments

- **model**: A statistical model object.
- **beside**: If available: should the model terms be arranged below each other or beside each other (default)? For example, in a stergm model, the formation and dissolution coefficients can be arranged in two columns of the table.
- **include.adjrs**: If available: should the adjusted R-squared be reported?
- **include.aic**: If available: should Akaike's information criterion (AIC) be reported?
- **include.aicc**: If available: should AICc be reported? This is a version of AIC with a correction for finite sample sizes.
- **include.bic**: If available: should the Bayesian information criterion (BIC) be reported?
- **include.censnobs**: If available: should the total, right-censored, left-censored, and uncensored number of observations be reported?
- **include.count**: If available: should the count model of a zero-inflated or hurdle regression be included in the coefficients block (before the zero-inflation or zero hurdle model)?
- **include.dev.exp**: If available: should the deviance explained be reported?
- **include.deviance**: If available: should the deviance be reported?
- **include.dic**: If available: should the deviance information criterion (DIC) be reported?
- **include.dispersion**: If available: should the dispersion or scale parameter be reported?
- **include.dissolution**: If available: should the coefficients for the dissolution phase in a STERGM be reported?
- **include.events**: If available: should the number of events be reported (in survival models)?
- **includeFORMATION**: If available: should the coefficients for the formation phase in a STERGM be reported?
- **include.fstatistic**: If available: should the F statistic be reported?
include.gaic If available: should the Generalized Akaike’s information criterion (GAIC) be reported?
include.gcv If available: should the GCV score be reported (in GAMs)?
include.groups If available: should the number of groups in a mixed-effects model (or k alternatives in a multinomial choice model) be reported?
include.intercept If available: should the intercept be included in the GOF block?
include.iterations If available: should the number of iterations be included?
include.lambda If available: should the lambda statistic and p-value be reported?
include.loglik If available: should the log-likelihood be reported?
include.lr If available: should the likelihood ratio test be reported?
include.maxrs If available: should the maximum possible R-squared be reported?
include.missings If available: should the number of missing observations be reported (in survival models)?
include.nagelkerke If available: should Nagelkerke’s R-squared be reported?
include.nobs If available: should the number of observations be reported?
include.nsmooth If available: should the number of smooth terms be reported (in GAMs)?
include.nvertices If available: should the number of vertices be reported in a statistical network model?
include.obj.fcn If available: should the value of the objective function (= criterion function) be reported (for gmm objects)? More precisely, this returns $E(g) \cdot \text{var}(g)^{-1} E(g)$.
include.overidentification If available: should the J-test for overidentification be reported (for gmm objects)?
include.percentile If available: should the percentile (tau) be reported?
include.precision If available: should the precision estimates of a betareg fit (the phi coefficients) be reported as part of the coefficients block?
include.pseudors If available: should the pseudo R-squared be reported?
include.pvalues If available: should the p values be reported (naive p values are not recommended for lme4 models, but see also the mcmc.pvalues argument)?
include.rsquared If available: should R-squared be reported?
include.sargan If available: should the Sargan test be reported?
include.smooth If available: should the smooth terms of a GAM be reported? If they are reported, the EDF value is reported as the coefficient, and DF is included in parentheses (not standard errors because a chi-square test is used for the smooth terms).

include.thresholds If available: should the threshold parameters (that is, the intercepts for the class boundaries) be reported in ordinal models?

include.trisk If available: should the total time at risk be reported (in event-history models)?

include.variance If available: should group variances be reported?

include.wald If available: should the Wald statistic be included?

include.zero If available: should the zero-inflation model of a zero-inflated regression or the zero hurdle model of a hurdle regression be included in the coefficients block (after the count model)?

include.zph If available: should the Cox proportional hazards assumption be tested (resulting in a p value indicating whether the proportional hazards assumption of the model is violated)?

jackknife If available: use Jackknife variance instead of Asymptotic variance.

level Confidence level \((1 - \alpha) \) for computing confidence intervals.

method The method used to compute confidence intervals or p values. In \texttt{lme4} models, the default value "naive" computes naive p values while the other methods compute confidence intervals using the \texttt{confint} function.

nsim In linear mixed effects models: the MCMC sample size or number of bootstrapping replications on the basis of which confidence intervals are computed (only if the \texttt{method} argument does not specify "naive", which is the default behavior). Note: large values may take considerable computing time.

robust If available: report robust instead of naive standard errors.

... Custom parameters which are handed over to subroutines.

details extract is a generic function which extracts coefficients and GOF measures from statistical model objects. There are several extract methods for the specific model types, which are called by the generic extract function if it encounters a model known to be handled by the specific method. The output is a \texttt{texreg} object, which is subsequently used by the \texttt{texreg} function.

methods \texttt{aftreg} An extract method for \texttt{aftreg} objects from the \texttt{eha} package.

\texttt{Arima} An extract method for \texttt{Arima} objects from the \texttt{stats} package.

\texttt{betareg} An extract method for \texttt{betareg} objects from the \texttt{betareg} package.

\texttt{brglm} An extract method for \texttt{brglm} objects from the \texttt{brglm} package.

\texttt{btergm} An extract method for \texttt{btergm} objects from the \texttt{xergm} package.

\texttt{clm} An extract method for \texttt{clm} objects from the \texttt{ordinal} package.
clogit An extract method for clogit objects from the **survival** package.
coeftest An extract method for coeftest objects from the **lmtest** package.
coxph An extract method for coxph objects from the **survival** package.
coxph.penal An extract method for coxph.penal objects from the **survival** package.
dynlm An extract method for dynlm objects from the **dynlm** package.
derg An extract method for ergm objects from the **ergm** package.
dergmm An extract method for ergmm objects from the **latentnet** package.
fGARCH An extract method for fGARCH objects from the **fGarch** package.
gam An extract method for gam objects from the **mgcv** package.
gamlss An extract method for gamlss objects from the **gamlss** package.
glm An extract method for gee objects from the **gee** package.
glm An extract method for glm objects from the **stats** package.
glmerMod An extract method for glmerMod objects from the (old) **lme4** package.
glmmadmb An extract method for glmmadmb objects from the **glmmADMB** package.
glmrob An extract method for glmrob objects from the **robustbase** package.
gls An extract method for gls objects from the **nlme** package.
gmm An extract method for gmm objects from the **gmm** package.
ivreg An extract method for ivreg objects from the **AER** package.
hurdle An extract method for hurdle objects from the **pscl** package.
lm An extract method for lm objects from the **stats** package.
lme An extract method for lme objects from the **nlme** package.
lme4 An extract method for lme4 objects from the **lme4** package.
lmerMod An extract method for lmerMod objects from the (old) **lme4** package.
lmerod An extract method for lmerod objects from the **robustbase** package.
lnam An extract method for lnam objects from the **sna** package.
lrm An extract method for lrm objects from the **Design** or **rms** package.
mabina An extract method for mabina objects from the **rer** package.
mer An extract method for mer objects from the (old) **lme4** package.
mlogit An extract method for mlogit objects from the **mnlogit** package.
multinom An extract method for multinom objects from the **nnet** package.
negbin An extract method for negbin objects from the **MASS** package.
netlogit An extract method for netlogit objects from the **sna** package.
nlme An extract method for nlme objects from the **nlme** package.
nlmerMod An extract method for nlmerMod objects from the (old) **lme4** package.
ols An extract method for ols objects from the **rms** package.
pgmm An extract method for pgmm objects from the **plm** package.
phreg An extract method for phreg objects from the **eha** package.
plm An extract method for plm objects from the plm package.

pmg An extract method for pmg objects from the plm package.

polr An extract method for polr objects from the MASS package.

rem.dyad An extract method for rem.dyad objects from the relevent package.

rlm An extract method for rlm objects from the MASS package.

rq An extract method for rq objects from the quantreg package.

sarlm An extract method for sarlm objects from the spdep package.

sclm An extract method for sclm objects from the ordinal package.

sienaFit An extract method for sienaFit objects from the RSiena package.

simex An extract method for simex objects from the simex package.

stergm An extract method for stergm objects from the tergm package.

survreg An extract method for survreg objects from the survival package.

survreg.penal An extract method for survreg.penal objects from the survival package.

svyglm An extract method for svyglm objects from the survey package.

systemfit An extract method for systemfit objects from the systemfit package.

texreg An extract method for texreg objects from the texreg package. The purpose is to allow for easy manipulation of the output. texreg objects can be created using the createTexreg function or using the extract function. After manipulating the object, it can be handed back to the screenreg, texreg, or htmlreg functions for creating a table.

tobit An extract method for tobit objects from the AER package.

weibreg An extract method for weibreg objects from the eha package.

zelig An extract method for zelig objects from the Zelig package.

zeroinfl An extract method for zeroinfl objects from the pscl package.

Author(s)

Philip Leifeld (http://www.philipleifeld.de)

References

See Also

texreg-package texreg
plotreg: Create coefficient plots from statistical model output

Description

Create coefficient plots from statistical model output.

Usage

plotreg(l, file = NULL, custom.model.names = NULL, custom.coef.names = NULL, custom.note = NULL, override.coef = 0, override.se = 0, override.pval = 0, override.ci.low = 0, override.ci.up = 0, omit.coef = NULL, reorder.coef = NULL, ci.level = 0.95, use.se = FALSE, mfrow = TRUE, xlim = NULL, cex = 2.5, lwd.zero-bar = 4, lwd.vbars = 1, lwd.inner = 7, lwd.outer = 5, signif.light = "#fbc9b9", signif.medium = "#f7523a", signif.dark = "#bd0017", insignif.light = "#c5dbe9", insignif.medium = "#5a9ecc", insignif.dark = "#1c5ba6", ...)

coeffplot(labels, estimates, lower.inner = NULL, upper.inner = NULL, lower.outer = NULL, upper.outer = NULL, signif.outer = TRUE, xlab = "Coefficients and confidence intervals", main = "Coefficient plot", xlim = NULL, cex = 2.5, lwd.zero-bar = 4, lwd.vbars = 1, lwd.inner = 7, lwd.outer = 5, signif.light = "#fbc9b9", signif.medium = "#f7523a", signif.dark = "#bd0017", insignif.light = "#c5dbe9", insignif.medium = "#5a9ecc", insignif.dark = "#1c5ba6", ...)

Arguments

l
A statistical model or a list of statistical models. Lists of models can be specified as l = list(model.1, model.2, ...). Different object types can also be mixed.

file
Using this argument, the resulting table is written to a file rather than to the R prompt. The file name can be specified as a character string. The file extension is automatically recognized. pdf, ps, png, bmp, jpg, and tiff are supported.

custom.model.names
A character vector of labels for the models. By default, the models are named Model1, Model2, etc. Specifying model.names = c("My name 1", "My name 2") etc. overrides the default behavior.
custom.coef.names

By default, plotreg uses the coefficient names which are stored in the models. The custom.coef.names argument can be used to replace them by other character strings in the order of appearance. For example, if a model shows a total of three coefficients (including the intercept), the argument custom.coef.names = c("Intercept", "variable 1", "variable 2") will replace their names in this order.

custom.note

With this argument, a replacement text for the xlab note below the diagram can be provided. If an empty character object is provided (custom.note = ""), the note will be omitted completely.

override.coef

Set custom values for the coefficients. New coefficients are provided as a list of numeric vectors. The list contains vectors of coefficients for each model. There must be as many vectors of coefficients as there are models. For example, if there are two models with three model terms each, the argument could be specified as override.coef = list(c(0.1, 0.2, 0.3), c(0.05, 0.06, 0.07)). If there is only one model, custom values can be provided as a plain vector (not embedded in a list). For example: override.coef = c(0.05, 0.06, 0.07).

override.se

Set custom values for the standard errors. This only has an effect where standard errors are converted into confidence intervals because no other CIs are present. New standard errors are provided as a list of numeric vectors. The list contains vectors of standard errors for each model. There must be as many vectors of standard errors as there are models. For example, if there are two models with three coefficients each, the argument could be specified as override.se = list(c(0.1, 0.2, 0.3), c(0.05, 0.06, 0.07)). If there is only one model, custom values can be provided as a plain vector (not embedded in a list). For example: override.se = c(0.05, 0.06, 0.07). Overriding standard errors can be useful for the implementation of robust SEs, for example.

override.pval

Set custom values for the p values. This only has an effect where standard errors are converted into confidence intervals because no other CIs are present. In this case, significance is derived from the p values rather than the confidence intervals. New p values are provided as a list of numeric vectors. The list contains vectors of p values for each model. There must be as many vectors of p values as there are models. For example, if there are two models with three coefficients each, the argument could be specified as override.pval = list(c(0.1, 0.2, 0.3), c(0.05, 0.06, 0.07)). If there is only one model, custom values can be provided as a plain vector (not embedded in a list). For example: override.pval = c(0.05, 0.06, 0.07). Overriding p values can be useful for the implementation of robust SEs and p values, for example.

override.ci.low

Set custom lower confidence interval bounds. This works like the other override arguments, with one exception: if confidence intervals are provided here and in the override.ci.up argument, the standard errors and p values as well as the ci.force argument are ignored.

override.ci.up

Set custom upper confidence interval bounds. This works like the other override arguments, with one exception: if confidence intervals are provided here and in the override.ci.low argument, the standard errors and p values as well as the ci.force argument are ignored.
omit.coef A character string which is used as a regular expression to remove coefficient rows from the table. For example, `omit.coef = "group"` deletes all coefficient rows from the diagram where the name of the coefficient contains the character sequence "group". More complex regular expressions can be used to filter out several kinds of model terms, for example `omit.coef = "(thresh)|(ranef)"` to remove all model terms matching either "thresh" or "ranef". The `omit.coef` argument is processed after the `custom.coef.names` argument, so the regular expression should refer to the custom coefficient names.

reorder.coef Reorder the rows of the coefficient block of the resulting table in a custom way. The argument takes a vector of the same length as the number of coefficients. For example, if there are three coefficients, `reorder.coef = c(3, 2, 1)` will put the third coefficient in the first row and the first coefficient in the third row. Reordering can be sensible because interaction effects are often added to the end of the model output although they were specified earlier in the model formula. Note: Reordering takes place after processing custom coefficient names and after omitting coefficients, so the `custom.coef.names` and `omit.coef` arguments should follow the original order.

ci.level If standard errors are converted to confidence intervals (because a model does not natively support CIs), what confidence level should be used for the outer confidence interval? By default, 0.95 is used (i.e., an alpha value of 0.05).

use.se Use one standard error for the inner horizontal bar and two standard errors from the estimate for the outer horizontal bar (instead of confidence intervals). Only available if standard errors can be extracted from the model using the respective `extract` function.

mfrow If multiple models are handed over as the l argument, several plots are produced. If `mfrow = TRUE` is set, multiple diagrams are aligned on the same page. If `mfrow = FALSE` is set, each diagram per model comes out as a separate plot.

xlim Horizontal limits. In the `coefplot` function, they must be provided as a vector with two numeric, e.g., `xlim = c(-5, 5)` for displaying a range from -5 to +5. In the `plotreg` function, they can be provided either as such a vector with two values or as a list of vectors (with each entry corresponding to a model in l).

lwd.zero.bar Line width of the vertical gray bar at the x value of 0. To remove the line, set `lwd.zero.bar = 0`.

lwd.vbars Line width of the thin vertical gray bars. To remove them completely, set `lwd.vbars = 0`.

labels The names of the model terms. They are arranged on the left axis.

estimates The coefficients (point estimates) of the model terms. They are depicted as bold dots in the coefficient plot.

lower.inner The lower bounds of the inner confidence intervals, provided as a vector. Inner CI means more relaxed (lower confidence level, higher alpha) because fewer observations have to fall into the CI, therefore the CI gets smaller.

upper.inner The upper bounds of the inner confidence intervals, provided as a vector. Inner CI means more relaxed (lower confidence level, higher alpha) because fewer observations have to fall into the CI, therefore the CI gets smaller.
lower.outer The lower bounds of the outer confidence intervals, provided as a vector. Outer CI means stricter or narrower (higher confidence level, lower alpha) because more observations have to fall into the CI, therefore the CI gets larger.

upper.outer The upper bounds of the outer confidence intervals, provided as a vector. Outer CI means stricter or narrower (higher confidence level, lower alpha) because more observations have to fall into the CI, therefore the CI gets larger.

signif.outer Different colors are used for significant estimates and confidence intervals. If signif.outer = TRUE, the outer CIs are used to evaluate significance, otherwise the inner CIs are used.

xlab The label of the x axis.

main The main title or heading of the plot.

cex Size of the point representing the estimate.

lwd.inner Line width of the inner confidence interval.

lwd.outer Line width of the outer confidence interval.

signif.light Color of outer confidence intervals for significant model terms.

signif.medium Color of inner confidence intervals for significant model terms.

signif.dark Color of point estimates and labels for significant model terms.

insignif.light Color of outer confidence intervals for insignificant model terms.

insignif.medium Color of inner confidence intervals for insignificant model terms.

insignif.dark Color of point estimates and labels for insignificant model terms.

... Custom options to be passed on to the extract function or the graphics device. See the help entries of extract and extract-methods for more information.

Details

The coefplot function produces coefficient plots (i.e., forest plots applied to point estimates and confidence intervals). It accepts raw data (the lower and upper bounds of inner and outer confidence intervals as well as the point estimates and their names) as input data. Significant coefficients and intervals can be plotted in a different color.

The plotreg function is a wrapper for the coefplot function and works much like the screenreg, texreg, and htmlreg functions. It accepts a single or multiple statistical models as input and internally extracts the relevant data from the models. If confidence intervals are not defined in the extract method of a statistical model (see extract and extract-methods), the default standard errors are converted to confidence intervals. Most of the arguments work either like in the screenreg, texreg, and htmlreg functions, or they work like in the coefplot function.

Author(s)

Philip Leifeld (http://www.philipleifeld.de)

See Also

texreg-package extract extract-methods texreg
Examples

```r
# example from the 'lm' help file:
ctl <- c(4.17, 5.58, 5.18, 6.11, 4.50, 4.61, 5.17, 4.53, 5.33, 5.14)
trt <- c(4.81, 4.17, 4.41, 3.59, 5.87, 3.83, 6.03, 4.89, 4.32, 4.69)
group <- gl(2, 10, 20, labels = c("Ctl", "Tt’’))
weight <- c(ctl, trt)
lm.D9 <- lm(weight ~ group)
screenreg(lm.D9)  # print model output to the R console
plotreg(lm.D9)  # plot model output as a diagram
```

print.texregTable

Print the output of a screenreg, texreg, or htmlreg call

Description

Print the output of a screenreg, texreg, or htmlreg call.

Usage

```r
## S3 method for class 'texregTable'
print(x, ...)  # A texregTable object. This is basically a simple character object with an additional class name called texregTable.
```

Arguments

- `x`: A texregTable object. This is basically a simple character object with an additional class name called texregTable.
- `...`: Additional arguments to be handed over to the `cat` function.

Details

This function prints a texregTable object, which results from a screenreg, texreg, or htmlreg call. Most of the time, this function is called implicitly by just entering the name of the object.

Author(s)

Philip Leifeld (http://www.philipleifeld.de)

See Also

texreg-package texreg
texreg

Convert regression output to LaTeX or HTML tables

Description

Conversion of R regression output to LaTeX or HTML tables.

Usage

```r
texreg(l, file = NULL, single.row = FALSE, stars = c(0.001, 0.01, 0.05), custom.model.names = NULL, custom.coef.names = NULL, custom.gof.names = NULL, custom.note = NULL, digits = 2, leading.zero = TRUE, symbol = \\ cdot", override.coef = 0, override.se = 0, override.pval = 0, override.ci.low = 0, override.ci.up = 0, omit.coef = NULL, reorder.coef = NULL, reorder.gof = NULL, ci.force = FALSE, ci.force.level = 0.95, ci.test = 0, groups = NULL, bold = 0.00, center = TRUE, caption = "Statistical models", caption.above = FALSE, label = "table:coefficients", booktabs = FALSE, dcolumn = FALSE, sideways = FALSE, longtable = FALSE, use.packages = TRUE, table = TRUE, no.margin = TRUE, fontsize = NULL, scalebox = NULL, float.pos = "BL", ...)
```

```r
htmlreg(l, file = NULL, single.row = FALSE, stars = c(0.001, 0.01, 0.05), custom.model.names = NULL, custom.coef.names = NULL, custom.gof.names = NULL, custom.note = NULL, digits = 2, leading.zero = TRUE, symbol = &middot;", override.coef = 0, override.se = 0, override.pval = 0, override.ci.low = 0, override.ci.up = 0, omit.coef = NULL, reorder.coef = NULL, reorder.gof = NULL, ci.force = FALSE, ci.force.level = 0.95, ci.test = 0, groups = NULL, bold = 0.00, center = TRUE, caption = "Statistical models", caption.above = FALSE, star.symbol = "*", inline.css = TRUE, doctype = TRUE, html.tag = FALSE, head.tag = FALSE, body.tag = FALSE, ...)```

```r
screenreg(l, file = NULL, single.row = FALSE, stars = c(0.001, 0.01, 0.05), custom.model.names = NULL, custom.coef.names = NULL, custom.gof.names = NULL, custom.note = NULL, digits = 2, leading.zero = TRUE, symbol = ",", override.coef = 0, override.se = 0, override.pval = 0, override.ci.low = 0, override.ci.up = 0, omit.coef = NULL, reorder.coef = NULL, reorder.gof = NULL, ci.force = FALSE, ci.force.level = 0.95, ci.test = 0, groups = NULL, column.spacing = 2, outer.rule = "-", inner.rule = "-", ...)```
Arguments

1 A statistical model or a list of statistical models. Lists of models can be specified as `1 = list(model.1, model.2, ...)`. Different object types can also be mixed.

file Using this argument, the resulting table is written to a file rather than to the R prompt. The file name can be specified as a character string. Writing a table to a file can be useful for working with MS Office or LibreOffice. For example, using the `htmlreg` function, an HTML table can be written to a file with the extension `.doc` and opened with MS Word. The table can then be simply copied into any Word document, retaining the formatting of the table. Note that LibreOffice can import only plain HTML; CSS decorations are not supported; the resulting tables do not retain the full formatting in LibreOffice.

single.row By default, a model parameter takes up two lines of the table: the standard error is listed in parentheses under the coefficient. This saves a lot of horizontal space on the page and is the default table format in most academic journals. If `single.row = TRUE` is activated, however, both coefficient and standard error are placed in a single table cell in the same line.

stars The significance levels to be used to draw stars. Between 0 and 4 threshold values can be provided as a numeric vector. For example, `stars = numeric(0)` will not print any stars and will not print any note about significance levels below the table. `stars = 0.05` will attach one single star to all coefficients where the p value is below 0.05. `stars = c(0.01, 0.05, 0.1)` will print one, two, or three stars, or a symbol as specified by the `symbol` argument depending on the p values.

custom.model.names A character vector of labels for the models. By default, the models are named `Model 1`, `Model 2`, etc. Specifying `model.names = c("My name 1", "My name 2")` etc. overrides the default behavior.

custom.coef.names By default, `texreg` uses the coefficient names which are stored in the models. The `custom.coef.names` argument can be used to replace them by other character strings in the order of appearance. For example, if a table shows a total of three different coefficients (including the intercept), the argument `custom.coef.names = c("Intercept", "variable 1", "variable 2")` will replace their names in this order. Sometimes it happens that the same variable has a different name in different models. In this case, the user can use this function to assign identical names. If possible, the rows will then be merged into a single row unless both rows contain values in the same column.

Where the argument contains an NA value, the original name of the coefficient is kept. For example, `custom.coef.names = c(NA, "age", NA)` will only replace the second coef name and leave the first and third name as they are in the original model.

custom.gof.names A character vector which is used to replace the names of the goodness-of-fit statistics at the bottom of the table. The vector must have the same length as
the number of GOF statistics in the final table. The argument works like the custom.coef.names argument, but for the GOF values. NA values can be included where the original GOF name should be kept.

custom.note With this argument, a replacement text for the significance note below the table can be provided. If an empty character object is provided (custom.note = ""), the note will be omitted completely. If some character string is provided (e.g., custom.note = "My note"), the significance legend is replaced by My note. The original significance legend can be included by inserting the %stars wildcard. For example, a custom note can be added right after the significance legend by providing custom.note = "%stars. My note".

digits Set the number of decimal places for coefficients, standard errors and goodness-of-fit statistics. Do not use negative values! The argument works like the digits argument in the round function of the base package.

leading.zero Most journals require leading zeros of coefficients and standard errors (for example, 0.35). This is also the default texreg behavior. Some journals, however, require omission of leading zeros (for example, .35). This can be achieved by setting leading.zero = FALSE.

symbol If four threshold values are handed over to the stars argument, p values smaller than the largest threshold value but larger than the second-largest threshold value are denoted by this symbol. The default symbol is "\cdot" for the LaTeX dot, "·" for the HTML dot, or simply "." for the ASCII dot. If the texreg function is used, any other mathematical LaTeX symbol or plain text symbol can be used, for example symbol = "\circ" for a small circle (note that backslashes must be escaped). If the htmlreg function is used, any other HTML character or symbol can be used. For the screenreg function, only plain text characters can be used.

override.coef Set custom values for the coefficients. New coefficients are provided as a list of numeric vectors. The list contains vectors of coefficients for each model. There must be as many vectors of coefficients as there are models. For example, if there are two models with three model terms each, the argument could be specified as override.coef = list(c(0.1, 0.2, 0.3), c(0.05, 0.06, 0.07)). If there is only one model, custom values can be provided as a plain vector (not embedded in a list). For example: override.coef = c(0.05, 0.06, 0.07).

override.se Set custom values for the standard errors. New standard errors are provided as a list of numeric vectors. The list contains vectors of standard errors for each model. There must be as many vectors of standard errors as there are models. For example, if there are two models with three coefficients each, the argument could be specified as override.se = list(c(0.1, 0.2, 0.3), c(0.05, 0.06, 0.07)). If there is only one model, custom values can be provided as a plain vector (not embedded in a list). For example: override.se = c(0.05, 0.06, 0.07). Overriding standard errors can be useful for the implementation of robust SEs, for example.

override.pval Set custom values for the p values. New p values are provided as a list of numeric vectors. The list contains vectors of p values for each model. There must be as many vectors of p values as there are models. For example, if there are two models with three coefficients each, the argument could be specified as override.pval = list(c(0.1, 0.2, 0.3), c(0.05, 0.06, 0.07)). If
there is only one model, custom values can be provided as a plain vector (not embedded in a list). For example: override.pval = c(0.05, 0.06, 0.07). Overriding p values can be useful for the implementation of robust SEs and p values, for example.

override.ci.low
Set custom lower confidence interval bounds. This works like the other override arguments, with one exception: if confidence intervals are provided here and in the override.ci.up argument, the standard errors and p values as well as the ci.force argument are ignored.

override.ci.up
Set custom upper confidence interval bounds. This works like the other override arguments, with one exception: if confidence intervals are provided here and in the override.ci.low argument, the standard errors and p values as well as the ci.force argument are ignored.

omit.coef
A character string which is used as a regular expression to remove coefficient rows from the table. For example, omit.coef = "group" deletes all coefficient rows from the table where the name of the coefficient contains the character sequence "group". More complex regular expressions can be used to filter out several kinds of model terms, for example omit.coef = "(thresh)\((ranef)\)" to remove all model terms matching either "thresh" or "ranef". The omit.coef argument is processed after the custom.coef.names argument, so the regular expression should refer to the custom coefficient names. To omit GOF entries instead of coefficient entries, use the custom arguments of the extract functions instead (see the help entry of the extract function or extract-methods.

reorder.coef
Reorder the rows of the coefficient block of the resulting table in a custom way. The argument takes a vector of the same length as the number of coefficients. For example, if there are three coefficients, reorder.coef = c(3, 2, 1) will put the third coefficient in the first row and the first coefficient in the third row. Reordering can be sensible because interaction effects are often added to the end of the model output although they were specified earlier in the model formula.

Note: Reordering takes place after processing custom coefficient names and after omitting coefficients, so the custom.coef.names and omit.coef arguments should follow the original order.

reorder.gof
Reorder the rows of the goodness-of-fit block of the resulting table in a custom way. The argument takes a vector of the same length as the number of GOF statistics. For example, if there are three goodness-of-fit rows, reorder.gof = c(3, 2, 1) will exchange the first and the third row. Note: Reordering takes place after processing custom GOF names, so the custom.gof.names argument should follow the original order.

ci.force
Should confidence intervals be used instead of the default standard errors and p values? Most models implemented in the texreg package report standard errors and p values by default while few models report confidence intervals. However, the functions in the texreg package can convert standard errors and into confidence intervals if desired. To enforce confidence intervals instead of standard errors, the ci.force argument accepts either a logical value indicating whether all models or none of the models should be forced to report confidence intervals (ci.force = TRUE for all and ci.force = FALSE for none) or a vector of
logical values indicating for each model separately whether the model should be forced to report confidence intervals (e.g., ci.force = c(FALSE, TRUE, FALSE)).

ci.force.level
If the ci.force argument is used to convert standard errors to confidence intervals, what confidence level should be used? By default, 0.95 is used (i.e., an alpha value of 0.05).

ci.test
If confidence intervals are reported, the ci.test argument specifies the reference value to establish whether a coefficient/CI is significant. The default value ci.test = 0, for example, will attach a significance star to coefficients if the confidence interval does not contain 0. If no star should be printed at all, ci.test = NULL can be used. The ci.test argument works both for models with native support for confidence intervals and in cases where the ci.force argument is used.

groups
This argument can be used to group the rows of the table into blocks. For example, there could be one block for hypotheses and another block for control variables. Each group has a heading, and the row labels within a group are indented. The partitions must be handed over as a list of named numeric vectors, where each number is a row index and each name is the heading of the group. Example: groups = list("first group" = 1:4, "second group" = 7:8).

bold
[only in the texreg and htmlreg functions] The p value threshold below which the coefficient shall be formatted in a bold font. For example, bold = 0.05 will cause all coefficients which are significant at the 95% level to be formatted in bold. Note that this is not compatible with the dcolumn argument in the texreg function. If both are TRUE, dcolumn is switched off and a warning message appears. Note also that it is advisable to use stars = FALSE together with the bold argument because having both bolded coefficients and significance stars usually does not make any sense.

center
[only in the texreg and htmlreg functions] Should the table be horizontally aligned at the center of the page?

caption
[only in the texreg and htmlreg functions] Set the caption of the table.

caption.above
[only in the texreg and htmlreg functions] Should the caption of the table be placed above the table? By default, it is placed below the table.

label
[only in the texreg function] Set the label of the table environment.

booktabs
[only in the texreg function] Use the booktabs LaTeX package to get thick horizontal rules in the output table (recommended).

dcolumn
[only in the texreg function] Use the dcolumn LaTeX package to get a nice alignment of the coefficients (recommended).

sideways
[only in the texreg function] If sideways = TRUE is set, the table floating environment is replaced by a sidewaysstable float, and the rotating package is loaded in the preamble. The argument only has an effect if table = TRUE is also set.

longtable
[only in the texreg function] If longtable = TRUE is set, the longtable environment from the longtable LaTeX package is used to set tables across multiple pages. Note that this argument is not compatible with the sideways and scalebox arguments. These arguments will be automatically switched off when longtable = TRUE is set.
[only in the texreg function] If this argument is set to TRUE (= the default behavior), the required LaTeX packages are loaded in the beginning. If set to FALSE, the use package statements are omitted from the output.

By default, texreg puts the actual tabular object in a table floating environment. To get only the tabular object without the whole table header, set table = FALSE.

[only in the texreg function] In order to save space, inner margins of tables are switched off by default. To reactivate the default table spacing, set no.margin = FALSE.

[only in the texreg function] The fontsize argument serves to change the font size used in the table. Valid values are "tiny", "scriptsize", "footnotesize", "small", "normalsize", "large", "Large", "LARGE", "huge", and "Huge". Note that the scalebox argument often achieves better results when the goal is to change the size of the table.

[only in the texreg function] The scalebox argument serves to resize the table. For example, scalebox = 1.0 is equivalent to the normal size, scalebox = 0.5 decreases the size of the table by one half, and scalebox = 2.0 doubles the space occupied by the table. Note that the scalebox argument does not work when the longtable argument is used.

[only in the texreg function] This argument specifies where the table should be located on the page or in the document. By default, no floating position is specified, and LaTeX takes care of the position automatically. Possible values include h (here), p (page), t (top), b (bottom), any combination thereof, e.g. tb, or any of these values followed by an exclamation mark, e.g. tl!, in order to enforce this position. The square brackets do not have to be specified.

[only in the htmlreg function] Alternative characters for the significance stars can be specified. This is useful if knitr and Markdown are used for HTML report generation. In Markdown, asterisks or stars are interpreted as special characters, so they have to be escaped. To make htmlreg compatible with Markdown, specify star.symbol = "*". Note that some other modifications are recommended for usage with knitr in combination with Markdown or HTML (see the inline.css, doctype, html.tag, head.tag, and body.tag arguments).

[only in the htmlreg function] Should the CSS stylesheets be embedded directly in the code of the table (inline.css = TRUE), or should the CSS stylesheets be enclosed in the <head> tag, that is, separated from the table code (inline.css = FALSE)? Having inline CSS code makes the code of the table more complex, but sometimes it may be helpful when only the table shall be printed, without the head of the HTML file (for example when the table is embedded in a knitr report). As a rule of thumb: use inline CSS if the table is not saved to a file.

[only in the htmlreg function] Should the first line of the HTML code contain the DOCTYPE definition? If TRUE, the HTML 4 TRANSITIONAL version is used. If FALSE, no DOCTYPE will be included. Omitting the DOCTYPE can be helpful when the knitr package is used to generate HTML code because knitr requires only the plain table, not the whole HTML document including the document type declaration. Including the DOCTYPE can be helpful when the code is saved to a file, for example as an MS Word document.
html.tag [only in the htmlreg function] Should the table code (and possibly the <body> and <head> tags) be enclosed in an <html> tag? Suppressing this tag is recommended when knitr is used for dynamic HTML or Markdown report generation. Including this tag is recommended when the code is saved to a file, for example as an MS Word document.

head.tag [only in the htmlreg function] Should the <head> tag (including CSS definitions and title/caption) be included in the HTML code? Suppressing this tag is recommended when knitr is used for dynamic HTML or Markdown report generation. Including this tag is recommended when the code is saved to a file, for example as an MS Word document.

body.tag [only in the htmlreg function] Should the table code be enclosed in a <body> HTML tag? Suppressing this tag is recommended when knitr is used for dynamic HTML or Markdown report generation. Including this tag is recommended when the code is saved to a file, for example as an MS Word document.

column.spacing [only in the screenreg function] The amount of space between any two columns of a table. By default, two spaces are used. If the tables do not fit on a single page horizontally, the value can be set to 1 or 0.

outer.rule [only in the screenreg function] The character which is used to draw the outer horizontal line above and below a table. If an empty character object is provided (i.e., outer.rule = ""), there will be no outer horizontal lines. Recommended values are ",", "=", "-", "_", or ".#".

inner.rule [only in the screenreg function] The character which is used to draw the inner horizontal line above and below a table. If an empty character object is provided (i.e., outer.rule = ""), there will be no inner horizontal lines. Recommended values are ",", "=", or "_".

... Custom options to be passed on to the extract function. For example, most extract methods provide custom options for the inclusion or exclusion of specific goodness-of-fit statistics. See the help entries of extract and extract-methods for more information.

Details
texreg converts coefficients, standard errors, significance stars, and goodness-of-fit statistics of statistical models into LaTeX tables or HTML tables or into nicely formatted screen output for the R console. A list of several models can be combined in a single table. The output is customizable. New model types can be easily implemented. Confidence intervals can be used instead of standard errors and p values.

The texreg() function creates LaTeX code for inclusion in a LaTeX document or for usage with Sweave or knitr.

The htmlreg() function creates HTML code. Tables in HTML format can be saved with a ".html" extension and displayed in a web browser. Alternatively, they can be saved with a ".doc" extension and opened in MS Word for inclusion in office documents. htmlreg() also works with knitr and HTML or Markdown. Note that the inline.css, doctype, html.tag, head.tag, and body.tag arguments must be adjusted for the different purposes (see the description of the arguments).

The screenreg() function creates text representations of tables and prints them to the R console. This is an alternative to the summary method and serves easy model comparison. Moreover, once
a table has been prepared in the R console, it can be later exported to \LaTeX{} or HTML with little extra effort because the majority of arguments of the three functions is identical.

Author(s)

Philip Leifeld (http://www.philipleifeld.de)

References

See Also

texreg-package, extract, extract-methods, plotreg

Examples

```r
# Linear mixed-effects models
library(nlme)
model.1 <- lme(distance ~ age, data = Orthodont, random = ~ 1)
model.2 <- lme(distance ~ age + Sex, data = Orthodont, random = ~ 1)
texreg(list(model.1, model.2), booktabs = TRUE, dcolumn = TRUE)

# Ordinary least squares model (example from the 'lm' help file)
ctl <- c(4.17,5.58,5.18,6.11,4.58,4.61,5.17,4.53,5.33,5.14)
trt <- c(4.81,4.17,4.41,3.59,5.87,3.83,6.03,4.59,4.72,4.55)
group <- gl(2,10,20, labels = c("Ctl","Trt"))
weight <- c(ctl, trt)
lm.D9 <- lm(weight ~ group)
table.string <- texreg(lm.D9, return.string = TRUE)
cat(table.string)

# Create a 'fake' Office document containing a regression table
htmlreg(list(model.1, model.2), file = "texreg.doc",
    inline.css = FALSE, doctype = TRUE, html.tag = TRUE,
    head.tag = TRUE, body.tag = TRUE)
unlink("texreg.doc")
```
Index

*Topic IO
 plotreg, 17
 texreg, 22
 texreg-package, 2

*Topic methods
 extract, 5

*Topic misc
 plotreg, 17
 texreg, 22
 texreg-package, 2

*Topic print
 plotreg, 17
 texreg, 22
 texreg-package, 2

*Topic utilities
 plotreg, 17
 texreg, 22
 texreg-package, 2

coefplot (plotreg), 17
coeftostring, 3
createtexreg, 3, 16

extract, 5, 16, 19, 20, 25, 28, 29
extract, aftreg-method (extract), 5
extract, Arima-method (extract), 5
extract, betareg-method (extract), 5
extract, bgglm-method (extract), 5
extract, bterglm-method (extract), 5
extract, clm-method (extract), 5
extract, clogit-method (extract), 5
extract, coeftest-method (extract), 5
extract, coxph-method (extract), 5
extract, coxph.penval-method (extract), 5
extract, dynlm-method (extract), 5
extract, ergm-method (extract), 5
extract, ergmm-method (extract), 5
extract, FGARCH-method (extract), 5
extract, gam-method (extract), 5
extract, gamlss-method (extract), 5
extract, gee-method (extract), 5
extract, glm-method (extract), 5
extract, glmerMod-method (extract), 5
extract, glmmadmb-method (extract), 5
extract, glmrrob-method (extract), 5
extract, gls-method (extract), 5
extract, gmm-method (extract), 5
extract, hurdle-method (extract), 5
extract, ivreg-method (extract), 5
extract, lm-method (extract), 5
extract, lme-method (extract), 5
extract, lme4-method (extract), 5
extract, lmerMod-method (extract), 5
extract, lmrob-method (extract), 5
extract, lnam-method (extract), 5
extract, lrm-method (extract), 5
extract, mabina-method (extract), 5
extract, mer-method (extract), 5
extract, mnlogit-method (extract), 5
extract, multinom-method (extract), 5
extract, negbin-method (extract), 5
extract, netlogit-method (extract), 5
extract, nlme-method (extract), 5
extract, nlmerMod-method (extract), 5
extract, ols-method (extract), 5
extract, pgmm-method (extract), 5
extract, phreg-method (extract), 5
extract, plm-method (extract), 5
extract, pmg-method (extract), 5
extract, polr-method (extract), 5
extract, rem.dyad-method (extract), 5
extract, rlm-method (extract), 5
extract, rq-method (extract), 5
extract, sarlm-method (extract), 5
extract, sclm-method (extract), 5
extract, sienaFit-method (extract), 5
extract, simex-method (extract), 5
extract, stergm-method (extract), 5
extract, survreg-method (extract), 5

30