Package ‘splm’

February 20, 2015

Title Econometric Models for Spatial Panel Data
Version 1.3-7
Date 2014-12-18
Description
ML and GM estimation and diagnostic testing of econometric models for spatial panel data.
Depends R (>= 2.12.0), spdep
Imports plm, maxLik, MASS, bdsmatrix, ibdreg, nlme, Matrix, spam
License GPL-2
LazyLoad yes
Author Giovanni Millo [aut, cre], Gianfranco Piras [aut]
Maintainer Giovanni Millo <giovanni.millo@generali.com>
Repository CRAN
Repository/R-Forge/Project splm
Repository/R-Forge/Revision 190
Repository/R-Forge/DateTimeStamp 2014-12-20 00:35:54
Date/Publication 2014-12-20 13:56:14
NeedsCompilation no

R topics documented:

bsjktest ... 2
bsktest ... 3
effects.splm ... 4
Insurance ... 5
itaww ... 6
listw2dgCMatrix ... 7
print.splm .. 7
RiceFarms .. 8
riceww .. 9
slag ... 10
bsjktest

Baltagi, Song, Jung and Koh LM test for spatial panels

Description

Baltagi, Song, Jung and Koh joint or conditional LM test for spatial error correlation or serial correlation sub spatial, serial correlation and random effects in panel models

Usage

bsjktest(x,...)
S3 method for class 'formula'
bsjktest(x, data, index=NULL, listw, test=c("C.1","C.2","C.3","J"), ...)

Arguments

x
an object of class formula
data
a data.frame or pdata.frame containing the variables in the model
index
either NULL (default) or a character vector to identify the indexes among the columns of the data.frame
listw
either a matrix or a listw representing the spatial structure
test
one of c("C.1","C.2","C.3","J"), the test to be performed. "C.3" is not implemented yet.
...
additional arguments to be passed

Value

an object of class htest

Author(s)

Giovanni Millo

References

bsktest

See Also
bsktest

Examples

data(Produc, package="plm")
data(usaww)
fm <- log(gsp)+log(pcap)+log(pc)+log(emp)+unemp
bsjktest(fm, data=Produc, listw = usaww, test="C.1")

bsktest Baltagi, Song and Koh LM test for spatial panels

Description

Baltagi, Song and Koh marginal or conditional LM test for spatial error correlation or random
effects in panel models

Usage

bsktest(x,...)
S3 method for class 'formula'
bsktest(x, data, index=NULL, listw, test=c("LMH","LM1","LM2","CLMlambda","CLMmu"),
standardize=TRUE, ...)

Arguments

x a formula
data a data.frame or pdata.frame containing the variables in the model
index either NULL (default) or a character vector to identify the indexes among the
columns of the data.frame
listw a listw representing the spatial structure
test one of c("LMH","LM1","LM2","CLMlambda","CLMmu"), the test to be performed
standardize whether to standardize the test statistic or not (applies only to LM1 and LM2)
... additional arguments to be passed

Value

an object of class htest

Author(s)

Gianfranco Piras
References

See Also

sphtest

Examples

data(Produc, package="plm")
data(usaww)
fm <- log(gsp)~log(pc)+log(emp)+unemp
bsktest(fm,data=Produc, listw = mat2listw(usaww),
 test="LM1", standardize=TRUE)

dataHusawwI

| effects.splm | method for extracting fixed effects |

Description

Methods used for extracting fixed effects from objects of class splm where type is one of "fixed effects lag" or "fixed effects error"

Usage

```r
## S3 method for class 'splm'
effects(object, ...)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>object</td>
<td>an object of class 'splm'</td>
</tr>
<tr>
<td>...</td>
<td>additional arguments to be passed over</td>
</tr>
</tbody>
</table>

Details

If the argument object is not of class splm the function will terminate with an error.

If the argument object is of class splm but type is not one of "fixed effects lag" or "fixed effects error", the function will terminate with an error.

Value

An object of class effects.splm

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>res</td>
<td>a list whose elements are various type of fixed effects and the intercept (when present)</td>
</tr>
</tbody>
</table>
Insurance consumption across Italian provinces, 1998-2002

Description

A panel of 103 observations

number of observations: 515

observation: provinces
country: Italy

Usage

data(Insurance)

Format

A dataframe containing:

code the province code according to Istat
year the year of observation
ppcd real per capita premiums in 2000 euros, non-life insurance excluding mandatory motor third-party liability
rgdp real per-capita GDP
bank real per-capita bank deposits
den population density per square Km
rirs real interest rate on lending to families and small enterprises
agen density of insurance agencies per 1000 inhabitants
school share of people with second grade schooling or more
vaagr share of value added, agriculture
fam average number of family members
inef judicial inefficiency index: average years to settle first degree of civil case
trust survey result to the question "do you trust others?"
dXX year dummies
NorthWest macroregional dummy
NorthEast macroregional dummy
Centre macroregional dummy
South macroregional dummy
Islands macroregional dummy (Sicily and Sardinia)

Author(s)
Giovanni Millo

Source

Description

Usage
data(itaww)

Format
A matrix with elements different from zero if province i and j are neighbors. Weights are row-standardized. Messina and Reggio Calabria, divided by the Messina Strait, are considered neighbours.

Author(s)
Giovanni Millo
listw2dgCMatrix

Interface between Matrix class objects and weights list

Description
Interface between Matrix class objects and weights list

Usage
listw2dgCMatrix(listw, zero.policy = NULL)

Arguments
listw a listw object created for example by nb2listw
zero.policy See lagsarlm for details

Value
Matrix class object: a sparse Matrix

Author(s)
Gianfranco Piras

Examples
data(columbus, package="spdep")
listw<-nb2listw(col.gal.nb)
spW<-listw2dgCMatrix(listw)

print.splm print method for class splm

Description
Method to print objects of class summary.splm and splm

Usage
S3 method for class 'splm'
print(x, digits = max(3,getOption("digits") -3), ...)

Arguments
x an object of class splm
digits minimal number of significant digits, see print.default
... additional arguments to be passed
Details

The summary function `summary.splm` returns an object of class 'splm' organized in a coefficient matrix.

Also a matrix for the error components, or the spatial coefficients will be generated depending on the estimated model.

Author(s)

Giovanni Millo, Gianfranco Piras

See Also

spml, spgm

Examples

```r
data(Produc, package = "plm")
data(usaww)
spremod<-splm(log(gsp)-log(pcap)+log(pc)+log(emp)+unemp, data=Produc, listw = mat2listw(usaww), model="random", lag=TRUE, spatial.error="none")
summary(spremod)
```

RiceFarms

Production of Rice in Indonesia

Description

A panel of 171 observations

number of observations: 1026

observation: farms

country: Indonesia

Usage

`data(RiceFarms)`

Format

A dataframe containing:

- **id**: the farm identifier
- **size**: the total area cultivated with rice, measured in hectares
- **status**: land status, on of 'owner' (non sharecroppers, owner operators or leaseholders or both), 'share' (sharecroppers), 'mixed' (mixed of the two previous status)
- **varieties**: one of 'trad' (traditional varieties), 'high' (high yielding varieties) and 'mixed' (mixed varieties)
bimas bIMAS is an intensification program; one of 'no' (non-bimas famer), 'yes' (bimas farmer) or 'mixed' (part but not all of farmer’s land was registered to be in the bimas program)

seed seed in kilogram
urea urea in kilogram
phosphate phosphate in kilogram
pesticide pesticide cost in Rupiah
pseed price of seed in Rupiah per kg
purea price of urea in Rupiah per kg
pphosph price of phosphate in Rupiah per kg
hiredlabor hired labor in hours
famlabor family labor in hours
totlabor total labor (excluding harvest labor)
wage labor wage in Rupiah per hour
output gross output of rice in kg
output net output, gross output minus harvesting cost (paid in terms of rice)
price price of rough rice in Rupiah per kg
region one of six regions

Author(s)
Yves Croissant

Source

riceww

Spatial weights matrix of Indonesian rice farms

Description

Spatial weights matrix of the 171 farms in the Indonesian Rice Farming example. Farms in the same village (out of six) are considered contiguous.

Usage

`data(riceww)`

Format

A matrix with elements different from zero if farms i and j are neighbors. Farms are considered neighbors if in the same village. Weights are row-standardized.
Author(s)

Giovanni Millo, data provided by Yves Croissant

slag
Spatial lag operator

Description

Spatial lagging method for vectors or pseries objects.

Usage

```r
## S3 method for class 'pseries'
slag(x, listw, maxlag, ...)
```

Arguments

- `x` an object of class `pseries`
- `listw` an object of class `listw`
- `maxlag` the spatial lag order (including lower)
- `...` additional arguments to be passed

Value

a `pseries`

Author(s)

Giovanni Millo

Examples

```r
data(Produc, package="plm")
data(usaww)
usalw <- mat2listw(usaww)
fm <- log(gsp)-log(pcap)+log(pc)+log(emp)+unemp+slag(log(pcap),
        listw=usalw)
slxmod <- spreml(fm, data=Produc, w = usaww,
        model="pooling", lag=FALSE, errors="ols")
```
Description

GM estimation of panel data models with spatially correlated errors components of the form:

\[y_N(t) = \lambda W y + X_N(t)\beta + u_N(t) \]

\[u_N(t) = \rho W u_N(t) + \epsilon(t) \]

\[\epsilon_N = (e_T \otimes I_N)\mu_N + \nu_N \]

where \(\rho \), and the variance components \(\sigma^2_{\mu} \) and \(\sigma^2_{\nu} \) are estimated by GM, and the model coefficients by a feasible GLS estimator. The model can also include additional (other than the spatial lag) endogenous variables.

Usage

```
spgm(formula, data=lm(), index=NULL, listw=NULL, listw2 = NULL, 
model=c("within","random"), lag = FALSE, spatial.error=TRUE, 
moments = c("initial", "weights", "fullweights"), endog = NULL, 
instruments= NULL, lag.instruments = FALSE, verbose = FALSE, 
method = c("w2sls", "b2sls", "g2sls", "ec2sls"), control = list(), 
optim.method = "nlminb", pars = NULL)
```

Arguments

- `formula` a description of the model to be fit. The details of model specification are given for `lm`
- `data` an object of class `data.frame` or `pdata.frame`. An optional data frame containing the variables in the model. When the object is a `data.frame`, the first two columns may contain the indexes. See `index`
- `index` if not `NULL` (default), a character vector to identify the indexes among the columns of the `data.frame`
- `listw` an object of class `listw`, `matrix`, or `Matrix`
- `listw2` an object of class `listw`, `matrix`, or `Matrix`. Only if both `lag` and `spatial.error` are both `TRUE`
- `model` One of "within" or "random". The assumption made on the individual effects
- `lag` if `TRUE` a spatial lag of the dependent variable is added to the regression equation
- `spatial.error` a logic vector. If `TRUE` the spatial autoregressive error term is added to the model and an estimate for \(\rho \) is produced
moments "initial" (default) defines the set of GM estimator to be used. Alternatives are "weights" and "fullweights" (See Details)
endog additional endogenous variables. Default NULL. If not NULL should be specified as a formula with no dependent variable (endog = ~ x1 + x2). Note the ~ before the expression.
instruments external instruments. Default NULL. If not NULL should be specified as a formula with no dependent variable (instruments = ~ x1 + x2). Note the ~ before the expression.
lag.instruments should the external instruments be spatially lagged?
verbose default FALSE. If TRUE reports function values during optimization
method One of "w2s1s", "b2s1s", "g2s1s", "ec2s1s". (See Details)
control a list of control parameters for the optimization
optim.method default set to "nlminb". or optionally a method passed to optim to use an alternative optimizer.
pars initial values of the parameter rho and sigmav. The default for rho is to start from a regression of the spatially lagged residuals on the residuals (depending on the model). For sigmav the starting value is the variance of the residuals (again this depends on the model).

Details

The function is a very general interface to estimate various nested specifications of the general model including additional endogenous variables described above. When both spatial.error and lag are FALSE the model reduces to a panel data model with an additional endogeneous variable. The function then uses ivsplm to perform the Instrumental Variables and two-stage least squares for panel data model. method = "w2s1s" corresponds to the fixed effects estimator, method = "b2s1s" to the between effects model, method = "g2s1s" to the GLS random effects model, and method = "ec2s1s" to teh Baltagi’s EC2SLS.

When spatial.error is TRUE and lag is FALSE the model is one with spatially autocorrelated error components. If effects is "random", the Kapoor et al. (2007) GM estimator is performed and the residuals in the first step come from an OLS regression. When moments is "initial", the initial estimator is calculated. This first set of GM estimators is based only on a subset of the moments conditions and assigns equal weights to each of them. When moments is "fullweights", the second set of GM estimators is calculated. This estimator is based on the full set of moments conditions. It also involves the expression for the variance covariance matrix of the sample moments calculated under the assumption of normally distributed innovations. The calculation of the trace terms in the expression of the variance covariance matrix of the sample moments uses codes from the Matrix package. When moments is "weights", the third set of GM estimator is used. This is motivated by computational issues. The procedure is analogous to the second one but uses a simplified expression for the variance covariance matrix of the sample moments. If effects is "fixed", the initial estimator is a within estimator and the moments conditions of Kapoor et al. (2007) are modified accordingly.

Finally, when both spatial.error and lag are TRUE the complete model is estimated (with or without additional endogenous variables). OLS residuals are no longer consistent because of the spatially lagged dependent variable. If effects is "random", two initial estimators are computed: a
within two-stage least squares and a between two stage least squares. The two sets of corresponding residuals are used in the spatial generalized moments estimator (GM) where the moments conditions of Kapoor et al. (2007) are again modified accordingly. If effects is "fixed", the initial estimator is a within two stage least squares estimator and the moments conditions of Kapoor et al. (2007) are modified accordingly.

Note that for the random effects models, σ^2_μ is not reported. σ^2_1 is reported instead. However, a value for σ^2_μ can easily be obtained from:

$$\sigma^2_1 = \sigma^2_\nu + T\sigma^2_\mu$$

The function also produces an estimate for θ which is a function of the variance components.

Value

An object of class "sp1m".

- **coefficients**: GLS coefficients estimate of the model parameters
- **vcov**: the variance covariance matrix of the estimated coefficients
- **residuals**: the GLS residuals
- **fitted.values**: difference between response variable and residuals
- **sigma2**: GLS residuals variance
- **type**: 'random effect GM'
- **rho**: a vector including the spatial parameter and the variance components (see Details)
- **model**: the matrix of the data used
- **call**: the call used to create the object

Author(s)

Gianfranco Piras

References

sphtest

Hausman test for spatial panel data models

Description

Hausman specification test for spatial panel data models

Usage

sphtest(x, ...)

S3 method for class 'formula'
sphtest(x, data, index = NULL, listw, spatial.model = c("lag", "error", "sarar"), method = c("ML", "GM"), errors = c("KKP", "BSK"), ...)

S3 method for class 'splm'
sphtest(x, x2, ...)

Arguments

x an object of class formula or splm
x2 an object of class splm
data an object of class data.frame or pdata.frame. An optional data frame containing the variables in the model. When the object is a data.frame, the first two columns may contain the indexes. See index
index if not NULL (default), a character vector to identify the indexes among the columns of the data.frame
listw an object of class listw created for example by nb2listw
spatial.model one of c("lag","error","sarar"), the model to be estimated (only lag, only error, both lag and error dependence)
method one of c("ML","GM")
errors one of c("BSK","KPP"). When method is "ML" defines the specification of the innovations
... additional arguments to be passed

Value

an object of class htest
spml

Author(s)

Gianfranco Piras

References

See Also

spgm

Examples

data(Produc, package="plm")
data(usaww)
fm <- log(gsp)-log(pcap)+log(pc)+log(emp)+unemp

test1<-sphtest(fm, data=Produc, listw = mat2listw(usaww),
 spatial.model = "error", method="GM")

test1
mod1<- spgm(fm, data=Produc, listw = usaww, model = "random",
 spatial.error = TRUE, moments="fullweights")
mod2<- spgm(fm, data=Produc, listw = usaww, model = "within",
 spatial.error = TRUE)

spml

Spatial Panel Model by Maximum Likelihood

Description

Maximum likelihood (ML) estimation of spatial panel models, possibly with fixed or random effects.

Usage

spml(formula, data, index=NULL, listw, listw2=listw, na.action,
 model=c("within","random","pooling"),
 effect=c("individual","time","twoways"),
 lag=FALSE, spatial.error=c("b","kpk","none"),
 ...)

Arguments

- **formula**: A symbolic description of the model to be estimated.
- **data**: An object of class `data.frame` or `pdata.frame`. A data frame containing the variables in the model. When the object is a `data.frame`, the first two columns shall contain the indexes, unless otherwise specified. See `index` if not NULL (default), a character vector to identify the indexes among the columns of the `data.frame`.
- **listw**: An object of class `listw` or a matrix. It represents the spatial weights to be used in estimation.
- **listw2**: An object of class `listw` or a matrix. Second of set spatial weights for estimation, if different from the first (e.g., in a 'sarar' model).
- **na.action**: See `spdep` for more details.
- **model**: One of `c("within", "random", "pooling")`.
- **effect**: One of `c("individual", "time", "twoways")`; the effects introduced in the model.
- **lag**: Default=FALSE. If TRUE, a spatial lag of the dependent variable is added.
- **spatial.error**: One of `c("b", "kdp", "none")`. The type of spatial error in the specification, if any. See details.
- **...**: Additional argument to pass over to other functions.

Details

The models are estimated by two-step Maximum Likelihood. Further optional parameters to be passed on to the estimator may be: `pvar`: if TRUE the `pvar` function is called; `hess`: if TRUE use numerical Hessian instead of GLS for the standard errors of the estimates; `quiet`: if FALSE report function and parameters values during optimization; `initval`: one of `c("zeros", "estimate")`, the initial values for the parameters. If "zeros" a vector of zeros is used. If "estimate" the initial values are retrieved from the estimation of the nested specifications. Alternatively, a numeric vector can be specified. `x.tol`: Tolerance. See `nlminb` for details. `rel.tol`: Relative tolerance. See `nlminb` for details.

Value

An object of class "splm".

- **coefficients**: Coefficients estimate of the model parameters.
- **arcoef**: The coefficient for the spatial lag on \(y \).
- **errcomp**: The estimates of the error variance components.
- **vcov**: The asymptotic variance covariance matrix of the estimated coefficients.
- **vcov.arcoef**: The asymptotic variance of the estimated spatial lag parameter.
- **vcov.errcomp**: The asymptotic variance covariance matrix of the estimated error covariance parameters.
- **type**: 'random effects ML'
residuals the model residuals
fitted.values the fitted values, calculated as \(\hat{y} = X \hat{\beta} \)
sigma2 GLS residuals variance
model the matrix of the data used
call the call used to create the object
logLik the value of the log likelihood function at the optimum
errors the value of the errors argument

Author(s)
Giovanni Millo

References

See Also
spgm

Examples
```r
data(Produc, package = "plm")
data(usaww)
fm <- log(gsp) ~ log(pcap) + log(pc) + log(emp) + unemp
## the two standard specifications (SEM and SAR) one with FE
## and the other with RE:
## fixed effects panel with spatial errors
fespaterr <- spml(fm, data = Produc, listw = mat2listw(usaww),
                  model="within", spatial.error="b", Hess = FALSE)
summary(fespaterr)
## random effects panel with spatial lag
respatlag <- spml(fm, data = Produc, listw = mat2listw(usaww),
                   model="random", spatial.error="none", lag=TRUE)
summary(respatlag)
impac1 <- impacts(respatlag, listw = mat2listw(usaww, style = "W"), time = 17)
summary(impac1, zstats=TRUE, short=TRUE)
```
spreml
Spatial Panel Model with Random Effects by Maximum Likelihood

Description

Maximum likelihood (ML) estimation of spatial panel models with random effects and serial error correlation.

Usage

```r
spreml(formula, data, index = NULL, w, w2=w, lag = FALSE,
errors = c("semsrre", "semsr", "srre", "semre", 
"re", "sr", "sem","ols", "sem2srre", "sem2re"),
pvar = FALSE, hess = FALSE, quiet = TRUE,
initval = c("zeros", "estimate"),
x.tol = 1.5e-18, rel.tol = 1e-15, ...)
```

Arguments

- `formula`: a symbolic description of the model to be estimated
- `data`: an object of class `data.frame` or `pdata.frame`. A data frame containing the variables in the model. When the object is a `data.frame`, the first two columns shall contain the indexes, unless otherwise specified. See `index`
- `index`: if not `NULL` (default), a character vector to identify the indexes among the columns of the `data.frame`
- `w`: an object of class `listw` or a matrix. It represents the spatial weights to be used in estimation.
- `w2`: an object of class `listw` or a matrix. Second set of spatial weights for estimation, if different from the first (e.g., in a ‘sarar’ model).
- `lag`: default=FALSE. If TRUE, a spatial lag of the dependent variable is added.
- `errors`: specifies the error covariance structure. See details.
- `pvar`: legacy parameter here only for compatibility.
- `hess`: default=FALSE. If TRUE estimate the covariance for beta_hat by numerical Hessian instead of GLS at optimal values.
- `quiet`: default=TRUE. If FALSE, report function and parameters values during optimization.
- `initval`: one of c("zeros", "estimate"), the initial values for the parameters. If "zeros" a vector of zeros is used. if "estimate" the initial values are retrieved from the estimation of the nested specifications. Alternatively, a numeric vector can be specified.
- `x.tol`: control parameter for tolerance. See `nlminb` for details.
- `rel.tol`: control parameter for relative tolerance. See `nlminb` for details.
- `...`: additional arguments to pass over to other functions, e.g. method.
Details

Second-level wrapper for estimation of random effects models with serial and spatial correlation. The specifications without serial correlation (no "sr" in errors) can be called through spml, the extended ones only through spreml. The models are estimated by two-step Maximum Likelihood. Abbreviations in errors correspond to: "sem" Anselin-Baltagi type spatial autoregressive error: if present, random effects are not spatially correlated; "sem2" Kapoor, Kelejian and Prucha-type spatial autoregressive error model with spatially correlated random effects; "sr" serially correlated remainder errors; "re" random effects; "ols" spherical errors (usually combined with lag=T). The optimization method can be passed on as optional parameter. Default is "nlminb"; all constrained optimization methods from maxLik are allowed ("BFGS", "NM", "SANN") but the latter two are still experimental.

Value

An object of class "splm".

- coefficients: coefficients estimate of the model parameters
- arcoef: the coefficient for the spatial lag on y
- errcomp: the estimates of the error variance components
- vcov: the asymptotic variance covariance matrix of the estimated coefficients
- vcov.arcoef: the asymptotic variance of the estimated spatial lag parameter
- vcov.errcomp: the asymptotic variance covariance matrix of the estimated error covariance parameters
- type: 'random effects ML'
- residuals: the model residuals
- fitted.values: the fitted values, calculated as \(\hat{y} = X \hat{\beta} \)
- sigma2: GLS residuals variance
- model: the matrix of the data used
- call: the call used to create the object
- logLik: the value of the log likelihood function at the optimum
- errors: the value of the errors argument

Author(s)

Giovanni Millo

References

See Also

spml
Examples

```r
data(Produc, package = "plm")
data(usaww)
f <- log(gsp) ~ log(pcap) + log(pc) + log(emp) + unemp
## random effects panel with spatial lag and serial error correlation
## optimization method set to "BFGS"
sarsrmod <- spreml(fm, data = Produc, w = usaww, errors="sr", lag=TRUE,
                   method="BFGS")
summary(sarsrmod)
```

`summary.splm`
summary method for class splm

Description

Method for summarizing the results of objects of class `splm`

Usage

```r
## S3 method for class 'spml'
summary(object,...)
```

Arguments

- `object` an object of class `splm`
- `...` additional arguments to be passed

Details

The summary function `summary.splm` returns an objects of class `splm` organized in a coefficient matrix.

Also a matrix for the error components, or the spatial coefficients will be generated depending on the estimated model.

When the `spml` is produced by the function `spsegm`, the summary will be generated looping over the number of equations in the system.

Value

An object of class `summary.splm`

Author(s)

Giovanni Millo, Gianfranco Piras

See Also

spml, spgm
Examples

```r
data(Produc, package = "plm")
data(usaww)
GM <- spgm(log(gsp)-log(pc)+log(emp)+log(pc)+log(emp)+unemp, data=Produc,
          listw=usaww, moments = "fullweights", spatial.error = TRUE)
summary(GM)
```

usaww

Spatial weights matrix - US states

Description

Spatial weights matrix of the 48 continental US States based on the queen contiguity criterium.

Usage

data(usaww)

Format

A matrix with elements different from zero if state i and j are neighbors. Weights are row standardized. According to the queen contiguity criterium, Arizona and Colorado are considered neighbours.

Author(s)

Giovanni Millo

vcov.splm

Covariance extractor method for splm objects

Description

Covariance extractor method for splm objects. Seldom used as such but needed, e.g., for interoperability with testing functions in lmtest and car.

Usage

```r
## S3 method for class 'splm'
vcov(object, ...)
```

Arguments

- `object` an object of class splm
- `...` additional arguments to be passed; currently not used
Value

a covariance matrix of beta coefficients

Author(s)

Giovanni Millo

References

Examples

```r
## not run:
## data(Produc, package="plm")
## data(usaww)
## fm <- log(gsp)-log(pcap)+log(pc)+log(emp)+unemp
## sarremod <- spml(fm, data=Produc, listw = mat2listw(usaww),
## # model="random", lag=TRUE, spatial.error="none")
## ## compact representation of betas
## library(lmtest)
## coeftest(sarremod)
## ## linear hypothesis test
## library(car)
## lht(sarremod, "log(pcap)=log(pc)")
```
Index

*Topic **datasets**
- Insurance, 5
- itaww, 6
- RiceFarms, 8
- riceww, 9
- usaww, 21

*Topic **htest**
- bskjtest, 2
- bsktest, 3
- sphtest, 14

*Topic **slag**
- slag, 10

*Topic **spatial**
- effects.splm, 4
- listw2dgCMatrix, 7
- print.splm, 7
- spgm, 11
- spml, 15
- spreml, 18
- summary.splm, 20

*Topic **vcov**
- vcov.splm, 21

bsjktest, 2
bsktest, 3

effects.splm, 4

Insurance, 5
itaww, 6
ivsplm(spgm), 11

listw2dgCMatrix, 7

print.effects.splm(effects.splm), 4
print.splm, 7

RiceFarms, 8
riceww, 9

slag, 10

sperrorgm(spgm), 11
spgm, 11
sphtest, 14
spml, 15
spreml, 18
spsarargm(spgm), 11
summary.splm, 20

usaww, 21

vcov.splm, 21

23