Package ‘shrink’

February 20, 2015

Type Package
Title Global, Parameterwise and Joint Post-Estimation Shrinkage
Version 1.2.0
Date 2014-10-02
Author Daniela Dunkler, Georg Heinze
Maintainer Daniela Dunkler <daniela.dunkler@meduniwien.ac.at>
Description Post-estimation shrinkage of regression coefficients in statistical modeling can be
used to correct for the overestimation of regression coefficients caused by variable selection.
While global shrinkage modifies all regression coefficients by the same factor, parameterwise
shrinkage factors differ between regression coefficients. With variables which are either
highly correlated or associated with regard to contents, such as several columns of a design
matrix describing a nonlinear effect, parameterwise shrinkage factors are not interpretable
and a compromise between global and parameterwise shrinkage, termed 'joint shrinkage', is a
useful extension.
A computational shortcut to resampling-based shrinkage factor estimation based on DFBETA
residuals can be applied.
Global, parameterwise and joint shrinkage for models fitted by lm, glm, coxph, or (for
R <= 3.1.0) mfp is available.
Imports survival, MASS, rms
License GPL-2
NeedsCompilation no
Repository CRAN
Date/Publication 2014-10-02 19:17:18

R topics documented:

shrink-package ... 2
coef.shrink ... 4
deepvein ... 4
GBSG ... 6
predict.shrink ... 7
print.shrink ... 8
Description

In statistical modeling post-estimation shrinkage can be used to correct for the overestimation of regression coefficients caused by variable selection. While global shrinkage modifies all regression coefficients by the same factor, parameterwise shrinkage factors differ between regression coefficients. With variables which are either highly correlated or associated with regard to contents, such as several columns of a design matrix describing a nonlinear effect or two main effects and their pairwise interaction term, parameterwise shrinkage factors are not interpretable and a compromise between global and parameterwise shrinkage, termed 'joint shrinkage', is a useful extension. A computational shortcut to resampling-based shrinkage factor estimation based on DFBETA residuals can be applied. Global, parameterwise and joint shrinkage for models fitted by \texttt{lm}, \texttt{glm}, \texttt{coxph}, and (for R<=3.1.0) \texttt{mfp} is available.

Details

\begin{verbatim}
Package: shrink
Type: Package
Version: 1.2.0
Date: 2014-10-02
License: GPL-2
\end{verbatim}

Functions included in the \texttt{shrink}-package:

\begin{verbatim}
shrink a function to compute global, parameterwise and joint post-estimation
 shrinkage factors of fit objects of class \texttt{lm}, \texttt{glm}, \texttt{coxph}, or \texttt{mfp}.
coef.shrink returns shrunken regression coefficients from objects of class \texttt{shrink}.
predict.shrink obtains predictions from shrunken regression coefficients from objects
 of class \texttt{shrink}.
vcov.shrink returns the variance-covariance matrix of shrinkage factors.
print.shrink prints objects of class \texttt{shrink}.
summary.shrink summary of objects of class \texttt{shrink}.
\end{verbatim}

Data set included in the \texttt{shrink}-package:

\begin{verbatim}
deepvein deep vein thrombosis study
\end{verbatim}

Author(s)

Daniela Dunkler, Georg Heinze
Maintainer: <daniela.dunkler@meduniwien.ac.at>

References

See Also

shrink, coef.shrink, predict.shrink, print.shrink, summary.shrink, vcov.shrink, deepvein

Examples

with glm, family = binomial
set.seed(888)
intercept <- 1
beta <- c(0.5, 1.2)
n <- 200
x1 <- rnorm(n, mean = 1, sd = 1)
x2 <- rbinom(n, size = 1, prob = 0.3)
prob <- exp(linpred) / (1 + exp(linpred))
runis <- runif(n, min = 0, max = 1)
ytest <- ifelse(test = runis < prob, yes = 1, no = 0)
simdat <- data.frame(cbind(y = ifelse(runis < prob, 1, 0), x1, x2))
fit <- glm(y ~ x1 + x2, family = binomial, data = simdat, x = TRUE)
summary(fit)

global <- shrink(fit, type = "global", method = "dfbeta")
print(global)
coef(global)

shrink(fit, type = "parameterwise", method = "dfbeta")

shrink(fit, type = "parameterwise", method = "dfbeta", join = list(c("x1", "x2")))

#shrink(fit, type = "global", method = "jackknife")
#shrink(fit, type = "parameterwise", method = "jackknife")
#shrink(fit, type = "parameterwise", method = "jackknife",
 # join = list(c("x1", "x2")))

For more examples see shrink
Returns Shrunken Regression Coefficients from Objects of Class `shrink`

Description

This class of objects is returned by the `shrink` function. Objects of this class have methods for the functions `coef`, `predict`, `print`, `summary`, and `vcov`.

Usage

```r
## S3 method for class 'shrink'
coef(object, ...)
```

Arguments

- `object`: object of class `shrink`.
- `...`: further arguments.

Value

A vector with shrunken regression coefficients.

Author(s)

Daniela Dunkler, Georg Heinze

See Also

`shrink`, `print.shrink`, `predict.shrink`, `summary.shrink`, `vcov.shrink`

Deep Vein Thrombosis Study

Description

A data frame containing time to recurrence of thrombosis and several potential prognostic factors measured at baseline for 929 individuals with deep vein thrombosis or unprovoked pulmonary embolism. 147 events of recurrence were observed during a median follow-up time of 37.8 months. The data are a modified and partly simulated version of the data set used by Eichinger et al. (2010) and are available under a GPL-2 license.

Usage

data(deepvein)
Format

The data frame contains observations of 929 individuals and the following variables:

- **pnr**: patient number.
- **time**: time to recurrence of thrombosis or end of study in months.
- **status**: = 1 recurrence of thrombosis.
- **sex**: gender.
- **fiimut**: factor II G20210A mutation.
- **fvleid**: factor V Leiden mutation.
- **log2ddim**: log2-transformed D-dimer.
- **bmi**: body mass index.
- **durther**: duration of anticoagulation therapy.
- **age**: age in years.
- **loc**: location of first thrombosis: pulmonary embolism (PE), distal, or proximal deep vein thrombosis.

References

Examples

data("deepvein")
summary(deepvein)

library("survival")
deepvein$loc <- relevel(deepvein$loc, ref = "PE")
fitfull <- coxph(Surv(time, status) ~ sex + fiimut + fvleid + log2ddim +
 bmi + durther + age + loc, data = deepvein, x = TRUE)
summary(fitfull)

DFBETA approximation
shrink(fitfull, type = "global", method = "dfbeta")
shrink(fitfull, type = "parameterwise", method = "dfbeta")
shrink(fitfull, type = "parameterwise", method = "dfbeta",
 join = list(c("locardistal", "locardproximal")))

jackknife estimate (time consuming)
#shrink(fitfull, type = "global", method = "jackknife")
#shrink(fitfull, type = "parameterwise", method = "jackknife")
#shrink(fitfull, type = "parameterwise", method = "jackknife",
join = list(c("locardistal", "locardproximal")))

backward elimination based on AIC
fitselect <- step(fitfull, direction = "backward")
summary(fitselect)
Description

A data frame containing the observations from the GBSG study.

Usage

data(GBSG)

Format

This data frame contains the observations of 686 women:

- **id** patient id.
- **htreat** hormonal therapy, a factor at two levels 0 (no) and 1 (yes).
- **age** of the patients in years.
- **menostat** menopausal status, a factor at two levels 1 (premenopausal) and 2 (postmenopausal).
- **tumsize** tumor size (in mm).
- **tumgrad** tumor grade, a ordered factor at levels 1 < 2 < 3.
- **posnodal** number of positive nodes.
- **prm** progesterone receptor (in fmol).
- **esm** estrogen receptor (in fmol).
- **rfst** recurrence free survival time (in days).
- **cens** censoring indicator (0 censored, 1 event).

References

predict.shrink

Examples

data("GBSG")
summary(GBSG)

predict.shrink

Predict Method for Objects of Class shrink

Description

Obtains predictions from shrunken regression coefficients from an object of class shrink. This class of objects is returned by the shrink function. Objects of this class have methods for the functions coef, predict, print, summary, and vcov.

Usage

S3 method for class 'shrink'
predict(object, newdata = NULL, type = c("link", "response", "lp", "risk", "expected", "terms"), terms = NULL, na.action = na.pass, collapse, safe = FALSE, ...)

Arguments

- **object**: an object of class shrink.
- **newdata**: a data frame for which predictions are obtained, otherwise predictions are based on the data stored in object.
- **type**: the type of prediction required.
- **terms**: with type = "terms" by default all terms are returned. A character vector specifies which terms are to be returned.
- **na.action**: function determining what should be done with missing values in newdata. The default is to include all observations.
- **collapse**: if family = coxph or Cox, an optional vector of subject identifiers. If specified, the output will contain one entry per subject rather than one entry per observation.
- **safe**: option from predict.mfp.
- **...**: additional arguments to be passed to methods.

Value

A vector or matrix of predictions.

Author(s)

Daniela Dunkler, Georg Heinze
See Also

`shrink`, `coef.shrink`, `print.shrink`, `summary.shrink`, `vcov.shrink`

print.shrink

Print Method for Objects of Class shrink

Description

This class of objects is returned by the `shrink` function. Objects of this class have methods for the functions `coef`, `predict`, `print`, `summary`, and `vcov`.

Usage

```r
## S3 method for class 'shrink'
print(x, ...)
```

Arguments

- `x` object of class `shrink`.
- `...` further arguments.

Author(s)

Daniela Dunkler, Georg Heinze

See Also

`shrink`, `coef.shrink`, `predict.shrink`, `summary.shrink`, `vcov.shrink`

shrink

Global, Parameterwise and Joint Shrinkage of Regression Coefficients

Description

Obtain global, parameterwise and joint post-estimation shrinkage factors for regression coefficients from fit objects of class `lm`, `glm`, `coxph`, or (for R<=$3.1.0$) `mfp`.

Usage

```r
shrink(fit, type = c("parameterwise", "global", "all"), method = c("jackknife", "dfbeta"), join = NULL, notes = TRUE, postfit = TRUE)
```
Arguments

- **fit**: a fit object of class `lm`, `glm`, `coxph`, or `mfp`. The fit object must have been called with `x = TRUE` (and `y = TRUE` in case of class `lm`).
- **type**: of shrinkage, either "parameterwise" (default), "global" shrinkage, or "all".
- **method**: of shrinkage estimation, either "jackknife" (based on leave-one-out resampling, default) or "dfbeta" (excellent approximation based on DFBETA residuals).
- **join**: compute optional joint shrinkage factors for sets of specified columns of the design matrix, if `type = "parameterwise"`. See details.
- **notes**: print notes. Default is TRUE.
- **postfit**: obtain fit with shrunken regression coefficients. This option is only available for models without an intercept. Default is TRUE.

Details

While global shrinkage modifies all regression coefficients by the same factor, parameterwise shrinkage factors differ between regression coefficients. With variables which are either highly correlated or associated with regard to contents, such as several columns of a design matrix describing a nonlinear effect, parameterwise shrinkage factors are not interpretable. Joint shrinkage of a set of such associated design variables will give one common shrinkage factor for this set.

Joint shrinkage factors may be useful when analysing highly correlated and/or such associated columns of the design matrix, e.g. dummy variables corresponding to a categorical explanatory variable with more than two levels, two variables and their pairwise interaction term, or several transformations of an explanatory variable enabling estimation of nonlinear effects. The analyst can define 'joint' shrinkage factors by specifying the `join` option if `type = "parameterwise"`. `join` expects a list with at least one character vector including the names of the columns of the design matrix for which a joint shrinkage factor is requested. For example the following specification of `join = list(c("dummy1", "dummy2", "dummy3"), c("main1", "main2", "interaction"), c("varX.fp1", "varX.fp2"))` requests the joint shrinkage factors for a) "dummy1", "dummy2" and "dummy3", b) "main1", "main2" and "interaction" and c) "varX.fp1" and "varX.fp2".

`shrink` also works for models incorporating restricted cubic splines computed with the `rcs` function from the `rms` library. A joint shrinkage factor of explanatory variable `varX` transformed with `rcs` can be obtained by `join = list(c("rcs(varX)"))` or by stating the names of the `rcs`-transformed variables as given in the respective fit object. (These two notations should not be mixed within one call to `shrink`.)

For linear regression models (`lm` or `glm with family = "gaussian"`) shrinkage factors obtained by Jackknife and the DFBETA approximation will be identical. For all other types of regression, the computational effort of estimating shrinkage factors may be greatly reduced by using `method = "dfbeta"` instead. However, for (very) small data sets `method = "jackknife"` may be of advantage, as the use of DFBETA residuals may underestimate the influence of some highly influential observations.

A shrunken intercept is estimated as follows: For all columns of the design matrix except for the intercept the shrinkage factors are multiplied with the respective regression coefficients and a linear predictor is computed. Then the shrunken intercept is estimated by modeling `fit$y ~ offset(linear predictor)`.
For regression models without an intercept, i.e., fit objects of class `coxph`, the shrunken regression coefficients can be directly estimated. This postfit is retained in the `$postfit` component of the `shrink` object.

Value

`shrink` returns an object with the following components:

- **ShrinkageFactors**
 - a vector of shrinkage factors of regression coefficients.
- **ShrinkageFactorsVCOV**
 - the covariance matrix of the shrinkage factors.
- **ShrunkenRegCoef**
 - a vector with the shrunken regression coefficients.
- **postfit**
 - an optional postfit model with shrunken regression coefficients and associated standard errors for models without an intercept.
- **fit**
 - the original (unshrunken) fit object.
- **type**
 - the requested shrinkage type.
- **method**
 - the requested shrinkage method.
- **join**
 - the requested joint shrinkage factors.
- **call**
 - the function call.

If `type = "all"` then the object returned by `shrink` additionally contains

- **global**
 - a list with the following elements: `ShrinkageFactors`, `ShrinkageFactorsVCOV` and `ShrunkenRegCoef`.
- **parameterwise**
 - a list with the following elements: `ShrinkageFactors`, `ShrinkageFactorsVCOV` and `ShrunkenRegCoef`.
- **joint**
 - an optional list with the following elements: `ShrinkageFactors`, `ShrinkageFactorsVCOV` and `ShrunkenRegCoef`.

Note

For fit objects of class `mfp` with family `! = cox` regression coefficients of `fit` (obtained by `coef(fit)` and `fit$postfit` may not always be identical, because of `mfp`'s pretransformation applied to the explanatory variables in the model. The `shrink` function uses a) the names as given in `names(coef(fit))` and b) the regression coefficients as given in `summary(fit)` which correspond to the pretransformed explanatory variables.

Author(s)

Daniela Dunkler, Georg Heinze

References

See Also

`coef.shrink`, `predict.shrink`, `print.shrink`, `summary.shrink`, `vcov.shrink`

Examples

```r
## Example with Cox proportional hazards regression & rcs
library("survival")
library("rms")
data("GBSG")

fit1 <- coxph(Surv(rfst, cens) ~ rcs(age) + log(prm + 1), data = GBSG, x = TRUE)

shrink(fit1, type = "global", method = "dfbeta")
shrink(fit1, type = "parameterwise", method = "dfbeta")
shrink(fit1, type = "parameterwise", method = "dfbeta",
       join = list(c("rcs(age)")))
shrink(fit1, type = "parameterwise", method = "dfbeta",
       join = list(c("rcs(age)", c("log(prm + 1)"))))

dfbeta.pw <- shrink(fit1, type = "parameterwise", method = "dfbeta")
dfbeta.pw
dfbeta.pw$postfit

# correlations between shrinkage factors and standard errors of shrinkage factors
cov2cor(dfbeta.pw$ShrinkageFactorsVCOV)
sqrt(diag(dfbeta.pw$ShrinkageFactorsVCOV))

## Examples with glm (family = binomial)
set.seed(888)
intercept <- 1
beta <- c(0.5, 1.2)
n <- 1000
x1 <- rnorm(n, mean = 1, sd = 1)
x2 <- rbinom(n, size = 1, prob = 0.3)
prob <- exp(linpred) / (1 + exp(linpred))
runis <- runif(n, 0, 1)
ytest <- ifelse(runis < prob, yes = 1, no = 0)
simdat <- data.frame(cbind(y = ifelse(runis < prob, 1, 0), x1, x2))

fit2 <- glm(y ~ x1 + x2, family = binomial, data = simdat, x = TRUE)
summary(fit2)

shrink(fit2, type = "global", method = "dfbeta")
shrink(fit2, type = "parameterwise", method = "dfbeta")
shrink(fit2, type = "parameterwise", method = "dfbeta",
       join = list(c("x1", "x2")))

utils::data("Pima.te", package="MASS")
utils::data("Pima.tr", package="MASS")
Pima <- rbind(Pima.te, Pima.tr)
```
```r
fit3 <- glm(type ~ npreg + glu + bmi + ped + rcs(age),
            family = binomial, data = Pima, x = TRUE)
summary(fit3)

shrink(fit3, type = "global", method = "dfbeta")
shrink(fit3, type = "parameterwise", method = "dfbeta")
shrink(fit3, type = "parameterwise", method = "dfbeta", join = list(c("rcs(age)")))

## Examples with glm (family = gaussian) and lm
utils::data("anorexia", package = "MASS")
contrasts(anorexia$Treat) <- contr.treatment(n = 3, base = 2)
f44 <- glm(Postwt ~ Prewt + Treat, family = gaussian, data = anorexia, x = TRUE)
f44

shrink(fit44, type = "global", method = "dfbeta")
# which is identical to the more time-consuming jackknife approach:
# shrink(fit44, type = "global", method = "jackknife")
shrink(fit44, type = "parameterwise", method = "dfbeta")
shrink(fit44, type = "parameterwise", method = "dfbeta",
         join = list(c("Treat1", "Treat3")))

fit5 <- lm(Postwt ~ Prewt + Treat, data = anorexia, x = TRUE, y = TRUE)
f5

shrink(fit5, type = "global", method = "dfbeta")
shrink(fit5, type = "parameterwise", method = "dfbeta")
shrink(fit5, type = "parameterwise", method = "dfbeta",
         join = list(c("Treat1", "Treat3")))

utils::data("GAGurine", package = "MASS")
f66 <- glm(Age ~ rcs(GAG), family = gaussian, data = GAGurine, x = TRUE)
summary(fit66)

shrink(fit66, type = "global", method = "dfbeta")
shrink(fit66, type = "parameterwise", method = "dfbeta")
shrink(fit66, type = "parameterwise", method = "dfbeta", join = list("rcs(GAG)"))

## For R up to 3.1.0: Example with mfp (family = cox)
#library("mfp")
#fit7 <- mfp(Surv(rfst, cens) ~ fp(age, df = 4, select = 0.05) +
#            fp(prm, df = 4, select = 0.05), family = cox, data = GBSG)

#shrink(fit7, type = "global", method = "dfbeta")
#shrink(fit7, type = "parameterwise", method = "dfbeta",
#       join = list(c("age.1", "age.2")))

#shrink(fit7, type = "global", method = "jackknife")
#shrink(fit7, type = "parameterwise", method = "jackknife")
#shrink(fit7, type = "parameterwise", method = "jackknife")
```
summary.shrink

```r
# join = list(c("age.1", "age.2"))
#
# obtain global, parameterwise and joint shrinkage with one call to 'shrink'
#shrink(fit7, type = "all", method = "dfbeta",
# join = list(c("age.1", "age.2")))
```

summary.shrink
Summary Method for Objects of Class shrink

Description

This class of objects is returned by the **shrink** function. Objects of this class have methods for the functions `coef.shrink`, `predict.shrink`, `print.shrink`, `summary.shrink`, and `vcov.shrink`.

Usage

```r
## S3 method for class 'shrink'
summary(object, digits = 6, ...)
```

Arguments

- `object`
 object of class `shrink`.
- `digits`
 integer, used for number formatting with `signif()`.
- `...`
 further arguments.

Value

A matrix with regression coefficients of the orginial fit, corresponding shrinkage factors and shrunken regression coefficients.

Author(s)

Daniela Dunkler, Georg Heinze

See Also

`shrink`, `coef.shrink`, `print.shrink`, `predict.shrink`, `vcov.shrink`
vcov.shrink

Calculate Variance-Covariance Matrix of Shrinkage Factors for Objects of Class shrink

Description

This class of objects is returned by the shrink function. Objects of this class have methods for the functions coef, predict, print, summary, and vcov.

Usage

S3 method for class 'shrink'
vcov(object, digits = 6, ...)

Arguments

- object: object of class shrink.
- digits: integer, used for number formatting with signif().
- ...: further arguments.

Value

A matrix of the estimated covariances between the obtained shrinkage factors.

Author(s)

Daniela Dunkler, Georg Heinze

See Also

shrink, coef.shrink, predict.shrink, print.shrink, summary.shrink
Index

*Topic **datasets**
 deepvein, 4
 GBSG, 6
*Topic **models**
 shrink, 8
 shrink-package, 2
*Topic **nonlinear**
 shrink, 8
 shrink-package, 2
*Topic **package**
 shrink-package, 2
*Topic **regression**
 shrink, 8
 shrink-package, 2
*Topic **survival**
 shrink, 8
 shrink-package, 2
*Topic **utilities**
 coef.shrink, 4
 predict.shrink, 7
 print.shrink, 8
 summary.shrink, 13
 vcov.shrink, 14

coef.shrink, 3, 4, 8, 11, 13, 14

deepevein, 3, 4

GBSG, 6

predict.shrink, 3, 4, 7, 8, 11, 13, 14
print.shrink, 3, 4, 8, 8, 11, 13, 14

rcs, 9

shrink, 3, 4, 8, 8, 13, 14
shrink-package, 2
signif, 13, 14
summary.shrink, 3, 4, 8, 11, 13, 14

vcov.shrink, 3, 4, 8, 11, 13, 14