Package ‘semTools’

February 20, 2015

<table>
<thead>
<tr>
<th>Type</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>Useful tools for structural equation modeling.</td>
</tr>
<tr>
<td>Version</td>
<td>0.4-6</td>
</tr>
<tr>
<td>Date</td>
<td>2014-10-2</td>
</tr>
<tr>
<td>Author</td>
<td>Sunthud Pornprasertmanit [aut, cre],</td>
</tr>
<tr>
<td></td>
<td>Patrick Miller [aut],</td>
</tr>
<tr>
<td></td>
<td>Alexander Schoemann [aut],</td>
</tr>
<tr>
<td></td>
<td>Yves Rosseel [aut],</td>
</tr>
<tr>
<td></td>
<td>Corbin Quick [ctb],</td>
</tr>
<tr>
<td></td>
<td>Mauricio Garnier-Villarreal [ctb],</td>
</tr>
<tr>
<td></td>
<td>James Selig [ctb],</td>
</tr>
<tr>
<td></td>
<td>Aaron Boulton [ctb],</td>
</tr>
<tr>
<td></td>
<td>Kristopher Preacher [ctb],</td>
</tr>
<tr>
<td></td>
<td>Donna Coffman [ctb],</td>
</tr>
<tr>
<td></td>
<td>Mijke Rhemtulla [ctb],</td>
</tr>
<tr>
<td></td>
<td>Alexander Robitzsch [ctb],</td>
</tr>
<tr>
<td></td>
<td>Craig Enders [ctb],</td>
</tr>
<tr>
<td></td>
<td>Ruber Arslan [ctb],</td>
</tr>
<tr>
<td></td>
<td>Bell Clinton [ctb],</td>
</tr>
<tr>
<td></td>
<td>Pavel Panko [ctb],</td>
</tr>
<tr>
<td></td>
<td>Edgar Merkle [ctb],</td>
</tr>
<tr>
<td></td>
<td>Terry Jorgensen [ctb],</td>
</tr>
<tr>
<td></td>
<td>Steven Chesnut [ctb]</td>
</tr>
<tr>
<td>Maintainer</td>
<td>Sunthud Pornprasertmanit sunthud.pornprasertmanit@ttu.edu</td>
</tr>
<tr>
<td>Depends</td>
<td>R(>= 3.0), methods, lavaan(>= 0.5-17)</td>
</tr>
<tr>
<td>Suggests</td>
<td>MASS, parallel, Amelia, mice, foreign, OpenMx, GPArotation, mnormt</td>
</tr>
<tr>
<td>Description</td>
<td>This package provide useful tools for structural equation modeling analysis. Note that the OpenMx package can be obtained from the following URL: http://openmx.psyc.virginia.edu/</td>
</tr>
<tr>
<td>License</td>
<td>GPL (>= 2)</td>
</tr>
<tr>
<td>LazyLoad</td>
<td>yes</td>
</tr>
<tr>
<td>LazyData</td>
<td>yes</td>
</tr>
</tbody>
</table>
R topics documented:

auxiliary ... 3
BootMiss-class ... 6
bsBootMiss .. 7
clipboard_saveFile .. 9
combinequark .. 11
compareFit .. 12
dat2way .. 13
dat3way .. 14
datCat .. 15
EFA-class .. 16
efaUnrotate ... 17
exLong .. 18
findRMSEApower .. 19
findRMSEApowernested ... 20
findRMSEAsamplesize ... 21
findRMSEAsamplesizenested 22
FitDiff-class .. 23
fitMeasuresMx .. 24
fmi .. 25
impliedFactorStat .. 27
imposeStart ... 28
indProd .. 31
kd .. 33
kurtosis .. 35
lavaanStar-class .. 36
lisrel2lavaan .. 37
loadingFromAlpha .. 39
longInvariance ... 40
mardiaKurtosis ... 42
mardiaSkew .. 43
maximalRelia .. 44
measurementInvariance ... 46
measurementInvarianceCat 48
miPowerFit ... 49
monteCarloMed ... 52
moreFitIndices ... 54
mvrnonnorm ... 57
net .. 58
Net-class ... 59
nullMx ... 60
analyzing data with full-information maximum likelihood with auxiliary variables

Description

Analyzing data with full-information maximum likelihood with auxiliary variables. The techniques used to account for auxiliary variables are both extra-dependent-variables and saturated-correlates approaches (Enders, 2008). The extra-dependent-variables approach is used for all single variables in the model (such as covariates or single-indicator dependent variable). For variables that are belong to a multiple-indicator factor, the saturated-correlates approach is used. Note that all covariates are treated as endogenous variables in this model (fixed.x = FALSE) so multivariate normality is assumed for the covariates. CAUTION: (1) this function will automatically change the missing data handling method to full-information maximum likelihood and (2) this function is still not applicable for categorical variables (because the maximum likelihood method is not available in lavaan for estimating models with categorical variables currently).
Usage

auxiliary(model, aux, fun, ...)
cfa.auxiliary(model, aux, ...)
sem.auxiliary(model, aux, ...)
growth.auxiliary(model, aux, ...)
lavaan.auxiliary(model, aux, ...)

Arguments

model The lavaan object, the parameter table, or lavaan script. If the lavaan object is provided, the lavaan object must be evaluated with mean structure.

aux The list of auxiliary variable

fun The character of the function name used in running lavaan model ("cfa", "sem", "growth", "lavaan").

... The additional arguments in the lavaan function.

Value

The lavaanStar object which contains the original lavaan object and the additional values of the null model, which need to be adjusted to account for auxiliary variables.

Author(s)

Sunthud Pornprasertmanit (Texas Tech University; <sunthud.pornprasertmanit@ttu.edu>)

References

See Also

lavaanStar

Examples

Example of confirmatory factor analysis

HS.model <- ' visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9'

dat <- data.frame(HolzingerSwineford1939, z=rnorm(nrow(HolzingerSwineford1939), 0, 1))

fit <- cfa(HS.model, data=dat, meanstructure=TRUE)
fitaux <- auxiliary(HS.model, aux="z", data=dat, fun="cfa") # Use lavaan script
fitaux <- cfa.auxiliary(fit, aux="z", data=dat) # Use lavaan output

Example of multiple groups confirmatory factor analysis
auxiliary

```r
fitgroup <- cfa(HS.model, data=dat, group="school", meanstructure=TRUE)
fitgroupaux <- cfa.auxiliary(fitgroup, aux="z", data=dat, group="school")

# Example of path analysis
mod <- ' x5 ~ x4
x4 ~ x3
x3 ~ x1 + x2'
fitpath <- sem(mod, data=dat, fixed.x=FALSE, meanstructure=TRUE) # fixed.x must be FALSE
fitpathaux <- sem.auxiliary(fitpath, aux="z", data=dat)

# Example of full structural equation modeling
dat2 <- data.frame(PoliticalDemocracy, z=rnorm(nrow(PoliticalDemocracy), 0, 1))
model <- ' ind60 ~ x1 + x2 + x3
dem60 ~ y1 + a*y2 + b*y3 + c*y4
dem65 ~ y5 + a*y6 + b*y7 + c*y8
dem60 ~ ind60
dem65 ~ ind60 + dem60

  y1 ~ y5
  y2 ~ y4 + y6
  y3 ~ y7
  y4 ~ y8
  y6 ~ y8',
fitsem <- sem(model, data=dat2, meanstructure=TRUE)
fitsemaux <- sem.auxiliary(fitsem, aux="z", data=dat2, meanstructure=TRUE)

# Example of covariate at the factor level
HS.model.cov <- ' visual ~ x1 + x2 + x3
textual ~ x4 + x5 + x6
  speed ~ x7 + x8 + x9
visual ~ sex
textual ~ sex
  speed ~ sex'
fitcov <- cfa(HS.model.cov, data=dat, fixed.x=FALSE, meanstructure=TRUE)
fitcovaux <- cfa.auxiliary(fitcov, aux="z", data=dat)

# Example of Endogenous variable with single indicator
HS.model.cov2 <- ' visual ~ x1 + x2 + x3
textual ~ x4 + x5 + x6
  x7 ~ visual + textual'
fitcov2 <- sem(HS.model.cov2, data=dat, fixed.x=FALSE, meanstructure=TRUE)
fitcov2aux <- sem.auxiliary(fitcov2, aux="z", data=dat)
```
Description

This class contains the results of Bollen-Stine bootstrap with missing data.

Objects from the Class

Objects can be created via the `bsBootMiss` function.

Slots

- `timeTrans`: Time (in seconds) using for data transformation
- `timeFit`: Time (in seconds) using for fitting Bootstrap data sets
- `transData`: Transformed data
- `bootDist`: The vector of chi-square values from Bootstrap data sets fitted by the target model
- `origChi`: The chi-square value from the original data set
- `df`: The degree of freedom of the model
- `bootP`: The p-value comparing the original chi-square with the bootstrap distribution

methods

- `summary`: The summary function is used to provide the detailed results of the Bollen-Stine bootstrap.
- `hist`: The hist function is used to provide the bootstrap distribution compared with the original chi-square value.

Author(s)

Terrence D. Jorgensen (University of Kansas; <TJorgensen314@gmail.com>)

See Also

- `bsBootMiss`

Examples

```r
# Multiple auxiliary variables
HS.model2 <- ' visual = x1 + x2 + x3
        speed  = x7 + x8 + x9'
fit <- cfa(HS.model2, data=HolzingerSwineford1939)
fitaux <- cfa.auxiliary(HS.model2, data=HolzingerSwineford1939, aux=c("x4", "x5"))
```
bsBootMiss

Bollen-Stine Bootstrap with the Existence of Missing Data

Description

Implement the Bollen and Stine’s (1992) Bootstrap when missing observations exist. The implemented method is proposed by Savalei and Yuan (2009). This can be used in two ways. The first and easiest option is to fit the model to incomplete data in lavaan using the FIML estimator, then pass that lavaan object to bsBootMis.

The second is designed for users of other software packages (e.g., LISREL, EQS, Amos, or Mplus). Users can import their data, chi-squared value, and model-implied moments from another package, and they have the option of saving (or writing to a file) either the transformed data or bootstrapped samples of that data, which can be analyzed in other programs. In order to analyze the bootstrapped samples and return a p value, users of other programs must still specify their model using lavaan syntax.

Usage

bsBootMiss(x, transformation = 2, nBoot = 500, model, rawData, Sigma, Mu, group, ChiSquared, EMcov, writeTransData = FALSE, transDataOnly = FALSE, writeBootData = FALSE, bootSamplesOnly = FALSE, writeArgs, seed = NULL, suppressWarn = TRUE, ...)

Arguments

x A target lavaan object used in the Bollen-Stine bootstrap transformation The transformation methods in Savalei and Yuan (2009). There are three methods in the article, but only the first two are currently implemented here. Use transformation = 1 when there are few missing data patterns, each of which has a large size, such as in a planned-missing-data design. Use transformation = 2 when there are more missing data patterns. The currently unavailable transformation = 3 would be used when several missing data patterns have n = 1.
nBoot The number of bootstrap samples.
model Optional. The target model if x is not provided.
rawData Optional. The target raw data set if x is not provided.
Sigma Optional. The model-implied covariance matrix if x is not provided.
Mu Optional. The model-implied mean vector if x is not provided.
group Optional character string specifying the name of the grouping variable in rawData if x is not provided.
ChiSquared Optional. The model-implied mean vector if x is not provided.
EMcov Optional, if x is not provided. The EM (or Two-Stage ML) estimated covariance matrix used to speed up Transformation 2 algorithm.
transDataOnly Logical. If TRUE, the result will provide the transformed data only.
writeTransData Logical. If TRUE, the transformed data set is written to a text file, transDataOnly is set to TRUE, and the transformed data is returned invisibly.

bootSamplesOnly Logical. If TRUE, the result will provide bootstrap data sets only.

writeBootData Logical. If TRUE, the stacked bootstrap data sets are written to a text file, bootSamplesOnly is set to TRUE, and the list of bootstrap data sets are returned invisibly.

writeArgs Optional. If TRUE or TRUE are TRUE, user can pass arguments to the write.table function as a list. Some default values are provided: file = "bootstrappedSamples.dat", row.names = FALSE, and na = "-999", but the user can override all of these by providing other values for those arguments in the writeArgs list.

seed The seed number used in randomly drawing bootstrap samples.

suppressWarn Logical. If TRUE, warnings from lavaan function will be suppressed when fitting the model to each bootstrap sample.

... The additional arguments in the lavaan function.

Value

As a default, this function returns bootMiss object containing the results of the bootstrap samples. Users can use print, summary, or hist functions to examine the results. The transformed data is returned instead if transDataOnly is TRUE. The bootstrap data sets are returned if bootSamplesOnly is TRUE.

Author(s)

Terrence D. Jorgensen (University of Kansas; <TJorgensen314@gmail.com>)

References

See Also

BootMiss

Examples

dat1 <- HolzingerSwineford1939
dat1$x5 <- ifelse(dat1$x1 <= quantile(dat1$x1, .3), NA, dat1$x5)
dat1$x9 <- ifelse(is.na(dat1$x5), NA, dat1$x9)

targetModel <- "
visual = x1 + x2 + x3
textual = x4 + x5 + x6
speed = x7 + x8 + x9"
"
targetFit <- sem(targetModel, dat1, meanstructure = TRUE, std.lv = TRUE, missing = "fiml", group = "school")
summary(targetFit, fit = TRUE, standardized = TRUE)

The number of bootstrap samples should be much higher.
temp <- bsBootMiss(targetFit, transformation = 1, nBoot = 10, seed = 31415)

temp
summary(temp)
hist(temp)
user can specify confidence level (default = 0.95), the location of
the legend ("none", "right", or "left"), and pass other arguments to hist()
hist(temp, conf = .90, legend = "none", xlab = "something else", breaks = 25)

copy the result of lavaan or FitDiff objects into a clipboard or a file

Description

Copy or save the result of lavaan or FitDiff object into a clipboard or a file. From the clipboard, users may paste the result into the Microsoft Excel or spreadsheet application to create a table of the output.

Usage

```r
clipboard(object, what = "summary", ...)
saveFile(object, file, what = "summary", tableFormat = FALSE, ...)
```

Arguments

- `object` The lavaan or FitDiff object
- `what` The attributes of the lavaan object to be copied in the clipboard. "summary" is to copy the screen provided from the summary function. "mifit" is to copy the result from the miPowerFit function. Other attributes listed in the inspect method in the lavaan-class could also be used, such as "coef", "se", "fit", "samp", and so on. For the FitDiff object, this argument is not active yet.
- `file` A file name used for saving the result
- `tableFormat` If TRUE, save the result in the table format using tabs for separation. Otherwise, save the result as the output screen printed in the R console.
- `...` Additional argument listed in the miPowerFit function (for lavaan object only).

Value

The resulting output will be saved into a clipboard or a file. If using the clipboard function, users may paste it in the other applications.
Author(s)

Sunthud Pornprasertmanit (Texas Tech University; <sunthud.pornprasertmanit@ttu.edu>)

Examples

```r
## Not run:
library(lavaan)
HW.model <- ' visual  = ~ x1 + c1*x2 + x3
textual  = ~ x4 + c1*x5 + x6
speed    = ~ x7 + x8 + x9 '

fit <- cfa(HW.model, data=HolzingerSwineford1939, group="school", meanstructure=TRUE)

# Copy the summary of the lavaan object
clipboard(fit)

# Copy the modification indices and the model fit from the miPowerFit function
clipboard(fit, "mifit")

# Copy the parameter estimates
clipboard(fit, "coef")

# Copy the standard errors
clipboard(fit, "se")

# Copy the sample statistics
clipboard(fit, "samp")

# Copy the fit measures
clipboard(fit, "fit")

# Save the summary of the lavaan object
saveFile(fit, "out.txt")

# Save the modification indices and the model fit from the miPowerFit function
saveFile(fit, "out.txt", "mifit")

# Save the parameter estimates
saveFile(fit, "out.txt", "coef")

# Save the standard errors
saveFile(fit, "out.txt", "se")

# Save the sample statistics
saveFile(fit, "out.txt", "samp")

# Save the fit measures
saveFile(fit, "out.txt", "fit")

## End(Not run)
```
combinequark

Combine the results from the quark function

Description

This function builds upon the `quark` function to provide a final dataset comprised of the original dataset provided to `quark` and enough principal components to be able to account for a certain level of variance in the data.

Usage

`combinequark(quark, percent)`

Arguments

- `quark` Provide the `quark` object that was returned. It should be a list of objects. Make sure to include it in its entirety.
- `percent` Provide a percentage of variance that you would like to have explained. That many components (columns) will be extracted and kept with the output dataset. Enter this variable as a number WITHOUT a percentage sign.

Value

The output of this function is the original dataset used in `quark` combined with enough principal component scores to be able to account for the amount of variance that was requested.

Author(s)

Steven R. Chesnut (Texas Tech University; <steven.chesnut@ttu.edu>)

See Also

`quark`

Examples

```r
set.seed(123321)
dat <- HolzingerSwineford1939[,7:15]
misspat <- matrix(runif(nrow(dat) * 9) < 0.3, nrow(dat))
dat[misspat] <- NA
dat <- cbind(HolzingerSvineford1939[,1:3], dat)

quark.list <- quark(data = dat, id = c(1, 2))

final.data <- combinequark(quark = quark.list, percent = 80)
```
compareFit

Build an object summarizing fit indices across multiple models

Description

This function will create the template that compare fit indices across multiple lavaan outputs. The results can be exported to a clipboard or a file later.

Usage

compareFit(..., nested = TRUE)

Arguments

... lavaan outputs or lists of lavaan outputs
nested Logical whether the specified models are nested

Value

A FitDiff object that saves model fit comparisons across multiple models. If the output is not assigned as an object, the output is printed in two parts: 1) nested model comparison (if models are nested) and 2) fit indices summaries. In the fit indices summaries, daggers are tagged to the model with the best fit for each fit index.

Author(s)

Sunthud Pornprasertmanit (Texas Tech University; <sunthud.pornprasertmanit@ttu.edu>)

See Also

FitDiff, clipboard

Examples

```r
m1 <- ' visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9 '

fit1 <- cfa(m1, data=HolzingerSwineford1939)

m2 <- ' f1 =~ x1 + x2 + x3 + x4
f2 =~ x5 + x6 + x7 + x8 + x9 '

fit2 <- cfa(m2, data=HolzingerSwineford1939)

compareFit(fit1, fit2, nested=FALSE)

HW.model <- ' visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9 '
```
dat2way

out <- measurementInvariance(HW.model, data=HolzingerSwineford1939, group="school", quiet=TRUE)
compareFit(out)

dat2way Simulated Dataset to Demonstrate Two-way Latent Interaction

Description

A simulated data set with 2 independent factors and 1 dependent factor where each factor has three indicators

Usage

data(dat2way)

Format

A data frame with 500 observations of 9 variables.

x1 The first indicator of the first independent factor
x2 The second indicator of the first independent factor
x3 The third indicator of the first independent factor
x4 The first indicator of the second independent factor
x5 The second indicator of the second independent factor
x6 The third indicator of the second independent factor
x7 The first indicator of the dependent factor
x8 The second indicator of the dependent factor
x9 The third indicator of the dependent factor

Source

Data was generated by the mvrnorm function in the MASS package.

Examples

head(dat2way)
Simulated Dataset to Demonstrate Three-way Latent Interaction

Description

A simulated data set with 3 independent factors and 1 dependent factor where each factor has three indicators

Usage

data(dat3way)

Format

A data frame with 500 observations of 12 variables.

x1 The first indicator of the first independent factor
x2 The second indicator of the first independent factor
x3 The third indicator of the first independent factor
x4 The first indicator of the second independent factor
x5 The second indicator of the second independent factor
x6 The third indicator of the second independent factor
x7 The first indicator of the third independent factor
x8 The second indicator of the third independent factor
x9 The third indicator of the third independent factor
x10 The first indicator of the dependent factor
x11 The second indicator of the dependent factor
x12 The third indicator of the dependent factor

Source

Data was generated by the mvrnorm function in the MASS package.

Examples

head(dat3way)
datCat

Simulated Data set to Demonstrate Categorical Measurement Invariance

Description

A simulated data set with 2 factors with 4 indicators each separated into two groups.

Usage

```r
data(datCat)
```

Format

A data frame with 200 observations of 9 variables.

- **g** Sex of respondents
- **u1** Indicator 1
- **u2** Indicator 2
- **u3** Indicator 3
- **u4** Indicator 4
- **u5** Indicator 5
- **u6** Indicator 6
- **u7** Indicator 7
- **u8** Indicator 8

Source

Data was generated using the lavaan package.

Examples

```r
head(datCat)
```
EFA-class

Class For Rotated Results from EFA

Description
This class contains the results of rotated exploratory factor analysis.

Objects from the Class
Objects can be created via the orthRotate or obliqueRotate function.

Slots
- loading: Rotated standardized factor loading matrix
- rotate: Rotation matrix
- gradRotate: The gradient of the objective function at the rotated loadings
- convergence: Convergence status
- phi: Factor correlation. Will be an identity matrix if orthogonal rotation is used.
- se: Standard errors of the rotated standardized factor loading matrix
- method: Method of rotation
- call: The command used to generate this object

methods

- summary The summary function shows the detailed results of the rotated solution. This function
 has two arguments: suppress and sort. The suppress argument is used to not show the
 standardized loading values that less than the specified value. The default is 0.1. The sort is
 used to sort the factor loadings by the sizes of factor loadings in each factor. The default is
 TRUE.

Author(s)
Sunthud Pornprasertmanit (Texas Tech University; <sunthud.pornprasertmanit@ttu.edu>)

See Also
efaUnrotate; orthRotate; obliqueRotate

Examples

unrotated <- efaUnrotate(HolzingerSwineford1939, nf=3, varList=paste0("x", 1:9), estimator="mlr")
summary(unrotated, std=TRUE)
inspect(unrotated, "std")

Rotated by Quartimin
rotated <- obliqueRotate(unrotated, method="quartimin")
summary(rotated)
Unrotate Exploratory Factor Analysis Model

Description

This function will analyze unrotated exploratory factor analysis model. The unrotated solution can be rotated by the orthrotate and oblique rotate functions.

Usage

`efaUnrotate(data, nf, varList=NULL, start=TRUE, aux=NULL, ...)`

Arguments

- `data` A target data frame.
- `nf` The desired number of factors.
- `varList` Target observed variables. If not specified, all variables in the target data frame will be used.
- `start` Use starting values in the analysis from the factanal function. If FALSE, the starting values from the lavaan package will be used.
- `aux` The list of auxiliary variables. These variables will be included in the model by the saturated-correlates approach to account for missing information.
- `...` Other arguments in the cfa function in the lavaan package, such as ordered, se, or estimator.

Details

This function will generate a lavaan script for unrotated exploratory factor analysis model such that 1) all factor loadings are estimated, 2) factor variances are fixed to 1, 3) factor covariances are fixed to 0, and 4) the dot products of any pairs of columns in the factor loading matrix are fixed to zero (Johnson and Wichern, 2002). The reason for creating this function in addition to the factanal function is that users can enjoy some advanced features from the lavaan package such as scaled chi-square, diagonal weighted least square for ordinal indicators, or full-information maximum likelihood.

Value

A lavaan output of unrotated exploratory factor analysis solution.

Author(s)

Sunthud Pornprasertmanit (Texas Tech University; <sunthud.pornprasertmanit@ttu.edu>)
Examples

```r
unrotated <- efaUnrotate(HolzingerSwineford1939, nf=3, varList=paste0("x", 1:9), estimator="mlr")
summary(unrotated, std=TRUE)
inspect(unrotated, "std")

dat <- data.frame(HolzingerSvineford1939, z=rnorm(nrow(HolzingerSvineford1939), 0, 1))
unrotated2 <- efaUnrotate(dat, nf=2, varList=paste0("x", 1:9), aux="z")
```

exLong

Simulated Data set to Demonstrate Longitudinal Measurement Invariance

Description

A simulated data set with 1 factors with 3 indicators in three timepoints

Usage

```r
data(exLong)
```

Format

A data frame with 200 observations of 10 variables.

- **sex** Sex of respondents
- **y1t1** Indicator 1 in Time 1
- **y2t1** Indicator 2 in Time 1
- **y3t1** Indicator 3 in Time 1
- **y1t2** Indicator 1 in Time 2
- **y2t2** Indicator 2 in Time 2
- **y3t2** Indicator 3 in Time 2
- **y1t3** Indicator 1 in Time 3
- **y2t3** Indicator 2 in Time 3
- **y3t3** Indicator 3 in Time 3

Source

Data was generated using the simsem package.

Examples

```r
head(exLong)
```
findRMSEApower

Description

Find the proportion of the samples from the sampling distribution of RMSEA in the alternative hypothesis rejected by the cutoff derived from the sampling distribution of RMSEA in the null hypothesis. This function can be applied for both test of close fit and test of not-close fit (MacCallum, Browne, & Sugawara, 1996)

Usage

findRMSEApower(rmse0, rmseaA, df, n, alpha=.05, group=1)

Arguments

rmsea0 Null RMSEA
rmseaA Alternative RMSEA
df Model degrees of freedom
n Sample size of a dataset
alpha Alpha level used in power calculations
group The number of group that is used to calculate RMSEA.

Details

This function find the proportion of sampling distribution derived from the alternative RMSEA that is in the critical region derived from the sampling distribution of the null RMSEA. If rmseaA is greater than rmsea0, the test of close fit is used and the critical region is in the right hand side of the null sampling distribution. On the other hand, if rmseaA is less than rmsea0, the test of not-close fit is used and the critical region is in the left hand side of the null sampling distribution (MacCallum, Browne, & Sugawara, 1996).

Author(s)

Sunthud Pornprasertmanit (Texas Tech University; <sunthud.pornprasertmanit@ttu.edu>)

References

See Also

- `plotRMSEApower` to plot the statistical power based on population RMSEA given the sample size
- `plotRMSEAdist` to visualize the RMSEA distributions
- `findRMSEAsamplesize` to find the minium sample size for a given statistical power based on population RMSEA

Examples

```r
findRMSEApower(rmseA=.05, rmseaA=.08, df=20, n=200)
```

findRMSEApower

Find power given a sample size in nested model comparison

Description

Find the sample size that the power in rejection the samples from the alternative pair of RMSEA is just over the specified power.

Usage

```r
findRMSEApowernested(rmse0A = NULL, rmsea0B = NULL, rmsea1A, rmsea1B = NULL, dfA, dfB, n, alpha=.05, group=1)
```

Arguments

- `rmsea0A` The H0 baseline RMSEA.
- `rmsea0B` The H0 alternative RMSEA (trivial misfit).
- `rmsea1A` The H1 baseline RMSEA.
- `rmsea1B` The H1 alternative RMSEA (target misfit to be rejected).
- `dfA` degree of freedom of the more-restricted model.
- `dfB` degree of freedom of the less-restricted model.
- `n` Sample size.
- `alpha` The alpha level.
- `group` The number of group in calculating RMSEA.

Author(s)

Bell Clinton (University of Kansas; clintonbell@ku.edu); Pavel Panko (Texas Tech University; pavel.panko@ttu.edu); Sunthud Pornprasertmanit (Texas Tech University; sunthud.pornprasertmanit@ttu.edu)
findRMSEAsamplesize

References

See Also
- `plotRMSEApowernested` to plot the statistical power for nested model comparison based on population RMSEA given the sample size
- `findRMSEAsamplesizenested` to find the minimum sample size for a given statistical power in nested model comparison based on population RMSEA

Examples
```r
findRMSEApowernested(rmsea0A = 0.06, rmsea0B = 0.05, rmsea1A = 0.08, rmsea1B = 0.05, dfA = 22, dfB = 20, n = 200, alpha = 0.05, group = 1)
```

findRMSEAsamplesize
Find the minimum sample size for a given statistical power based on population RMSEA

Description
Find the minimum sample size for a specified statistical power based on population RMSEA. This function can be applied for both test of close fit and test of not-close fit (MacCallum, Browne, & Suguwara, 1996)

Usage
```r
findRMSEAsamplesize(rmsea0, rmseaA, df, power=0.80, alpha=.05, group=1)
```

Arguments
- `rmsea0`: Null RMSEA
- `rmseaA`: Alternative RMSEA
- `df`: Model degrees of freedom
- `power`: Desired statistical power to reject misspecified model (test of close fit) or retain good model (test of not-close fit)
- `alpha`: Alpha level used in power calculations
- `group`: The number of group that is used to calculate RMSEA.

Details
This function find the minimum sample size for a specified power based on an iterative routine. The sample size keep increasing until the calculated power from `findRMSEApower` function is just over the specified power. If `group` is greater than 1, the resulting sample size is the sample size per group.
findRMSEAsamplesizenested

Author(s)
Sunthud Pornprasertmanit (Texas Tech University; <sunthud.pornprasertmanit@ttu.edu>)

References

See Also
• plotRMSEApower to plot the statistical power based on population RMSEA given the sample size
• plotRMSEAdist to visualize the RMSEA distributions
• findRMSEApower to find the statistical power based on population RMSEA given a sample size

Examples
findRMSEAsamplesize(rmsea0=.05, rmseaA=.08, df=20, power=0.8)

findRMSEAsamplesizenested

Find sample size given a power in nested model comparison

Description
Find the sample size that the power in rejection the samples from the alternative pair of RMSEA is just over the specified power.

Usage
findRMSEAsamplesizenested(rmsea0A = NULL, rmsea0B = NULL, rmsea1A, rmsea1B = NULL, dfA, dfB, power=0.80, alpha=.05, group=1)

Arguments
rmsea0A The H0 baseline RMSEA.
rmsea0B The H0 alternative RMSEA (trivial misfit).
rmsea1A The H1 baseline RMSEA.
rmsea1B The H1 alternative RMSEA (target misfit to be rejected).
daF degree of freedom of the more-restricted model.
daB degree of freedom of the less-restricted model.
power The desired statistical power.
alpha The alpha level.
group The number of group in calculating RMSEA.
FitDiff-class

Author(s)
Bell Clinton (University of Kansas; <clintonbell@ku.edu>); Pavel Panko (Texas Tech University; <pavel.panko@ttu.edu>); Sunthud Pornprasertmanit (Texas Tech University; <sunthud.pornprasertmanit@ttu.edu>)

References

See Also
- `plotRMSEApowernested` to plot the statistical power for nested model comparison based on population RMSEA given the sample size
- `findRMSEApowernested` to find the power for a given sample size in nested model comparison based on population RMSEA

Examples

```r
generateRMSEAsamplesizenested(adjustedRMSEAa = 0, adjustedRMSEAb = 0, adjustedRMSEAC = 0.06, adjustedRMSEAD = 0.05, dfA = 22, dfB = 20, alpha=.05, group=1)
```

FitDiff-class

Class For Representing A Template of Model Fit Comparisons

Description
This class contains model fit measures and model fit comparisons among multiple models

Objects from the Class
Objects can be created via the `compareFit` function.

Slots
- `name`: The name of each model
- `nested`: Model fit comparisons between adjacent nested models that are ordered based on their degrees of freedom
- `ordernested`: The order of nested models regarding to their degrees of freedom
- `fit`: Fit measures of all models specified in the `name` slot

Methods
- `summary` The summary function is used to provide the nested model comparison results and the summary of the fit indices across models. This function has one argument: `fit.measures`. If "default" is specified, chi-square values, degree of freedom, p value, CFI, TLI, RMSEA, SRMR, AIC, and BIC are provided. If "all" is specified, all information given in the `fitMeasures` function is provided. Users may specify a vector of the name of fit indices that they wish.
fitMeasuresMx

Find fit measures from an MxModel result

Description

Find fit measures from MxModel result. The saturate and null models are analyzed in the function and fit measures are calculated based on the comparison with the null and saturate models. The function is adjusted from the fitMeasures function in the lavaan package.

Usage

fitMeasuresMx(object, fit.measures="all")

Arguments

object The target MxModel object
fit.measures Target fit measures

Value

A vector of fit measures
Author(s)

The original function is the fitMeasures function written by Yves Rosseel in the lavaan package. The function is adjusted for an MxModel object by Sunthud Pornprasertmanit (Texas Tech University; <sunthud.pornprasertmanit@ttu.edu>)

See Also

nullMx, saturateMx, standardizeMx

Examples

```r
## Not run:
library(OpenMx)
data(demoOneFactor)
manifests <- names(demoOneFactor)
latentVars <- c("G")
factorModel <- mxModel("One Factor",
    type="RAM",
    manifestVars=manifests,
    latentVars=latentVars,
    mxPath(from=latentVars, to=manifests),
    mxPath(from=manifests, arrows=2),
    mxPath(from=latentVars, arrows=2, free=FALSE, values=1.0),
    mxData(observed= cov(demoOneFactor), type="cov", numObs=500)
)
factorFit <- mxRun(factorModel)
round(fitMeasuresMx(factorFit), 3)

# Compare with lavaan
library(lavaan)
script <- "f1 ~ x1 + x2 + x3 + x4 + x5"
fitMeasures(cfa(script, sample.cov = cov(demoOneFactor), sample.nobs = 500, std.lv = TRUE))

## End(Not run)
```

fmi

Fraction of Missing Information.

Description

This function takes a list of imputed data sets and estimates the Fraction of Missing Information of the Variances and Means for each variable.

Usage

```r
fmi(dat.imp, method="saturated", varnames=NULL, group=NULL, exclude=NULL, digits=3)
```
Arguments

dat.imp List of imputed data sets, the function only accept a list of data frames.
method Specified the model used to estimated the variances and means. Can be one of the following: "saturated" ("sat") or "null", the default is "saturated". See Details for more information.
varnames A vector of variables names. This argument allow the user to get the fmi of a subset of variables. The function by default will estimate the fmi for all the variables.
group A variable name defining the groups. This will give the fmi for each group.
exclude A vector of variables names. These variables will be excluded from the analysis.
digits Number of decimals to print in the results.

Details

The function estimates a variance/covariance model for each data set using lavaan. If method = "saturated" the function will estimate all the variances and covariances, if method = "null" the function will only estimate the variances. The saturated model gives more reliable estimates. With big data sets using the saturated model could take a lot of time. In the case of having problems with big data sets it is helpful to select a subset of variables with varnames and/or use the "null" model. The function does not accept character variables.

Value

fmi returns a list with the Fraction of Missing Information of the Variances and Means for each variable in the data set.

Variances The estimated variance for each variable, and the respective standard error. Two estimates Fraction of Missing Information of the Variances. The first estimate of fmi (fmi.1) is asymptotic fmi and the second estimate of fmi (fmi.2) is corrected for small numbers of imputations
Means The estimated mean for each variable, and the respective standard error. Two estimates Fraction of Missing Information of the Means. The first estimate of fmi (fmi.1) is asymptotic fmi and the second estimate of fmi (fmi.2) is corrected for small numbers of imputations

Author(s)

Mauricio Garnier Villarreal (University of Kansas; <mgv@ku.edu>)

References

Examples

library(Amelia)
library(lavaan)

modsim <-
 f1 <- 0.7*y1+0.7*y2+0.7*y3
 f2 <- 0.7*y4+0.7*y5+0.7*y6
 f3 <- 0.7*y7+0.7*y8+0.7*y9'
datsim <- simulateData(modsim, model.type="cfa", meanstructure=TRUE,
 std.lv=TRUE, sample.nobs=c(200,200))
randomMiss2 <- rbinom(prod(dim(datsim)), 1, 0.1)
randomMiss2 <- matrix(as.logical(randomMiss2), nrow=nrow(datsim))
randomMiss2[,10] <- FALSE
datsim[randomMiss2] <- NA
datsimMI <- amelia(datsim, m=3, idvars="group")

out1 <- fmi(datsimMI$imputations, exclude="group")
out1

out2 <- fmi(datsimMI$imputations, exclude="group", method="null")
out2

out3 <- fmi(datsimMI$imputations, varnames=c("y1","y2","y3","y4"))
out3

out4 <- fmi(datsimMI$imputations, group="group")
out4

impliedFactorStat

Calculate the model-implied factor means and covariance matrix.

Description

Calculate reliability values of factors by coefficient omega

Usage

impliedFactorStat(object)
impliedFactorMean(object)
impliedFactorCov(object)

Arguments

object The lavaan model object provided after running the cfa, sem, growth, or lavaan functions.
Details

The impliedFactorMean function is used to calculated model-implied factor means:

\[\mu = (I - B)^{-1} \alpha, \]

where \(\mu \) is the model-implied factor mean, \(I \) is an identity matrix, \(B \) is an regression coefficient matrix, and \(\alpha \) is a vector of factor intercepts.

The impliedFactorCov function is used to calculated model-implied covariance matrix:

\[\Phi = (I - B)^{-1} \Psi (I - B)^{-1}', \]

where \(\Phi \) is the model-implied factor covariance matrix, \(\Psi \) is the residual factor covariance matrix.

The impliedFactorStat function is used to provide both model-implied means (if the mean structure is estimated) and covariance matrix.

Value

Model-implied factor means or model-implied factor covariance matrix, or both

Author(s)

Sunthud Pornprasertmanit (Texas Tech University; <sunthud.pornprasertmanit@ttu.edu>)

Examples

```r
HS.model <- ' visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9 '

fit <- cfa(HS.model, data=HolzingerSwineford1939, group="school")
impliedFactorStat(fit)
```

Description

This function will save the parameter estimates of a lavaan output and impose those parameter estimates as starting values for another analysis model. The free parameters with the same names or the same labels across two models will be imposed the new starting values. This function may help to increase the chance of convergence in a complex model (e.g., multitrait-multimethod model or complex longitudinal invariance model).

Usage

```r
imposeStart(out, expr, silent = TRUE)
```
Arguments

out The lavaan output that users wish to use the parameter estimates as starting values for an analysis model
expr The original code that users use to run a lavaan model
silent Logical to print the parameter table with new starting values

Value

A fitted lavaan model

Author(s)

Sunthud Pornprasertmanit (Texas Tech University; <sunthud.pornprasertmanit@ttu.edu>)

Examples

```r
# The following example show that the longitudinal weak invariance model
# using effect coding was not convergent with three time points but convergent
# with two time points. Thus, the parameter estimates from the model with
# two time points are used as starting values of the three time points.
# The model with new starting values is convergent properly.

weak2time <- '
# Loadings
f1t1 <- LOAD1*y1t1 + LOAD2*y2t1 + LOAD3*y3t1
f1t2 <- LOAD1*y1t2 + LOAD2*y2t2 + LOAD3*y3t2

# Factor Variances
f1t1 ~~ f1t1
f1t2 ~~ f1t2

# Factor Covariances
f1t1 ~~ f1t2

# Error Variances
y1t1 ~~ y1t1
y2t1 ~~ y2t1
y3t1 ~~ y3t1
y1t2 ~~ y1t2
y2t2 ~~ y2t2
y3t2 ~~ y3t2

# Error Covariances
y1t1 ~~ y1t2
y2t1 ~~ y2t2
y3t1 ~~ y3t2

# Factor Means
f1t1 ~ NA*y1
f1t2 ~ NA*y1
```
Measurement Intercepts
y1t1 ~ INT1*1
y2t1 ~ INT2*1
y3t1 ~ INT3*1
y1t2 ~ INT4*1
y2t2 ~ INT5*1
y3t2 ~ INT6*1

Constraints for Effect-coding Identification
LOAD1 == 3 - LOAD2 - LOAD3
INT1 == 0 - INT2 - INT3
INT4 == 0 - INT5 - INT6

model2time <- lavaan(weak2time, data = exLong)

weak3time <- '

Loadings
f1t1 <- LOAD1*y1t1 + LOAD2*y2t1 + LOAD3*y3t1
f1t2 <- LOAD1*y1t2 + LOAD2*y2t2 + LOAD3*y3t2
f1t3 <- LOAD1*y1t3 + LOAD2*y2t3 + LOAD3*y3t3

Factor Variances
f1t1 ~~ f1t1
f1t2 ~~ f1t2
f1t3 ~~ f1t3

Factor Covariances
f1t1 ~~ f1t2 + f1t3
f1t2 ~~ f1t3

Error Variances
y1t1 ~~ y1t1
y2t1 ~~ y2t1
y3t1 ~~ y3t1
y1t2 ~~ y1t2
y2t2 ~~ y2t2
y3t2 ~~ y3t2
y1t3 ~~ y1t3
y2t3 ~~ y2t3
y3t3 ~~ y3t3

Error Covariances
y1t1 ~~ y1t2
y2t1 ~~ y2t2
y3t1 ~~ y3t2
y1t1 ~~ y1t3
y2t1 ~~ y2t3
y3t1 ~~ y3t3
y1t2 ~~ y1t3
y2t2 ~~ y2t3
y3t2 ~~ y3t3

Factor Means
indProd function will make products of indicators using no centering, mean centering, double-mean centering, or residual centering. The orthogonalize function is the shortcut of the indProd function to make the residual-centered indicators products.

Usage

\[
\text{indProd(data, var1, var2, var3=NULL, match = TRUE, meanC = TRUE, residualC = FALSE, doubleMC = TRUE, namesProd = NULL)}
\]
\[
\text{orthogonalize(data, var1, var2, var3=NULL, match=TRUE, namesProd=NULL)}
\]

Arguments

- **data**: The desired data to be transformed.
- **var1**: Names or indices of the variables loaded on the first factor.
- **var2**: Names or indices of the variables loaded on the second factor.
indProd

<table>
<thead>
<tr>
<th>Var</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>var3</td>
<td>Names or indices of the variables loaded on the third factor (for three-way interaction)</td>
</tr>
<tr>
<td>match</td>
<td>Specify TRUE to use match-paired approach (Marsh, Wen, & Hau, 2004). If FALSE, the resulting products are all possible products.</td>
</tr>
<tr>
<td>meanC</td>
<td>Specify TRUE for mean centering the main effect indicator before making the products</td>
</tr>
<tr>
<td>residualC</td>
<td>Specify TRUE for residual centering the products by the main effect indicators (Little, Bovaird, & Widaman, 2006).</td>
</tr>
<tr>
<td>doubleMC</td>
<td>Specify TRUE for centering the resulting products (Lin et. al., 2010)</td>
</tr>
<tr>
<td>namesProd</td>
<td>The names of resulting products</td>
</tr>
</tbody>
</table>

Value

The original data attached with the products.

Author(s)

Sunthud Pornprasertmanit (Texas Tech University; <sunthud.pornprasertmanit@ttu.edu>) Alexander Schoemann (East Carolina University; <schoemanna@ecu.edu>)

References

See Also

- **probe2WayMC** For probing the two-way latent interaction when the results are obtained from mean-centering, or double-mean centering.
- **probe3WayMC** For probing the three-way latent interaction when the results are obtained from mean-centering, or double-mean centering.
- **probe2WayRC** For probing the two-way latent interaction when the results are obtained from residual-centering approach.
- **probe3WayRC** For probing the two-way latent interaction when the results are obtained from residual-centering approach.
- **plotProbe** Plot the simple intercepts and slopes of the latent interaction.
Examples

Mean centering / two-way interaction / match-paired
dat <- indProd(attitude[,1], var1=1:3, var2=4:6)

Residual centering / two-way interaction / match-paired
dat2 <- indProd(attitude[,1], var1=1:3, var2=4:6, match=FALSE, meanC=FALSE, residualC=TRUE, doubleMC=FALSE)

Double-mean centering / two-way interaction / match-paired
dat3 <- indProd(attitude[,1], var1=1:3, var2=4:6, match=FALSE, meanC=TRUE, residualC=FALSE, doubleMC=TRUE)

Mean centering / three-way interaction / match-paired
dat4 <- indProd(attitude[,1], var1=1:2, var2=3:4, var3=5:6)

Residual centering / three-way interaction / match-paired
dat5 <- indProd(attitude[,1], var1=1:2, var2=3:4, var3=5:6, match=FALSE, meanC=FALSE, residualC=TRUE, doubleMC=FALSE)

Double-mean centering / three-way interaction / match-paired
dat6 <- indProd(attitude[,1], var1=1:2, var2=3:4, var3=5:6, match=FALSE, meanC=TRUE, residualC=TRUE, doubleMC=TRUE)

kd Generate data via the Kaiser-Dickman (1962) algorithm.

Description

Given a covariance matrix and sample size, generate raw data that correspond to the covariance matrix. Data can be generated to match the covariance matrix exactly, or to be a sample from the population covariance matrix.

Usage

kd(covmat, n, type = c("exact", "sample"))

Arguments

covmat a symmetric, positive definite covariance matrix
n the sample size for the data that will be generated
type type of data generation. exact generates data that exactly correspond to covmat. sample treats covmat as a population covariance matrix, generating a sample of size n.

Details

By default, R’s cov() function divides by n-1. The data generated by this algorithm result in a covariance matrix that matches covmat, but you must divide by n instead of n-1.
Value

kd returns a data matrix of dimension n by nrow(covmat).

Author(s)

Ed Merkle (University of Missouri; merklee@missouri.edu)

References

Examples

First Example

```r
## Get data
dat <- HolzingerSwineford1939[,7:15]
hs.n <- nrow(dat)

## Covariance matrix divided by n
hscov <- ((hs.n-1)/hs.n) * cov(dat)

## Generate new, raw data corresponding to hscov
newdat <- kd(hscov, hs.n)

## Difference between new covariance matrix and hscov is minimal
newcov <- (hs.n-1)/hs.n * cov(newdat)
summary(as.numeric(hscov - newcov))

## Generate sample data, treating hscov as population matrix
newdat2 <- kd(hscov, hs.n, type="sample")
```

Another example

```r
## Define a covariance matrix
covmat <- matrix(0, 3, 3); diag(covmat) <- 1.5; covmat[2:3, 1] <- c(1.3, 1.7); covmat[3, 2] <- 2.1
covmat <- covmat + t(covmat)

## Generate data of size 300 that have this covariance matrix
rawdat <- kd(covmat, 300)

## Covariances are exact if we compute sample covariance matrix by dividing by n (vs by n-1)
summary(as.numeric((299/300)*cov(rawdat) - covmat))

## Generate data of size 300 where covmat is the population covariance matrix
rawdat2 <- kd(covmat, 300)
```
kurtosis

Finding excessive kurtosis

Description
Finding excessive kurtosis (g2) of an object

Usage
kurtosis(object, population=FALSE)

Arguments
- object: A vector used to find a excessive kurtosis
- population: TRUE to compute the parameter formula. FALSE to compute the sample statistic formula.

Details
The excessive kurtosis computed is g2. The parameter excessive kurtosis γ₂ formula is

\[\gamma_2 = \frac{\mu_4}{\mu_2^2} - 3, \]

where \(\mu_i \) denotes the \(i \) order central moment.
The excessive kurtosis formula for sample statistic \(g_2 \) is

\[g_2 = \frac{k_4}{k_2^2}, \]

where \(k_i \) are the \(i \) order k-statistic.
The standard error of the excessive kurtosis is

\[Var(\hat{g}_2) = \frac{24}{N} \]

where \(N \) is the sample size.

Value
A value of an excessive kurtosis with a test statistic if the population is specified as FALSE

Author(s)
Sunthud Pornprasertmanit (Texas Tech University; <sunthud.pornprasertmanit@ttu.edu>)
References

See Also

• skew Find the univariate skewness of a variable
• mardiaSkew Find the Mardia’s multivariate skewness of a set of variables
• mardiaKurtosis Find the Mardia’s multivariate kurtosis of a set of variables

Examples

kurtosis(1:5)

lavaanStar-class Class For Representing A (Fitted) Latent Variable Model with Additional Elements

Description

This is the lavaan class that contains additional information about the fit values from the null model. Some functions are adjusted according to the change.

Objects from the Class

Objects can be created via the auxiliary function or runMI.

Slots

call: The function call as returned by match.call().
timing: The elapsed time (user+system) for various parts of the program as a list, including the total time.
Options: Named list of options that were provided by the user, or filled-in automatically.
ParTable: Named list describing the model parameters. Can be coerced to a data.frame. In the documentation, this is called the ‘parameter table’.
Data: Object of internal class "Data": information about the data.
SampleStats: Object of internal class "SampleStats": sample statistics
Model: Object of internal class "Model": the internal (matrix) representation of the model
Fit: Object of internal class "Fit": the results of fitting the model
nullfit: The fit-indices information from the null model
imputed: The list of information from running multiple imputation. The first element is the convergence rate of the target and null models. The second element is the fraction missing information. The first estimate of FMI (FMI.1) is asymptotic FMI and the second estimate of FMI (FMI.2) is corrected for small numbers of imputation. The third element is the fit values of the target model by the specified chi-squared methods. The fourth element is the fit values of the null model by the specified chi-square methods.
auxNames: The list of auxiliary variables in the analysis.
Author(s)
Sunthud Pornprasertmanit (Texas Tech University; <sunthud.pornprasertmanit@ttu.edu>)

References
see lavaan

See Also
auxiliary; runMI

Examples

hs.model <- ' visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9'

dat <- data.frame(HolzingerSwineford1939, z=rnorm(nrow(HolzingerSwineford1939), 0, 1))

fit <- cfa(hs.model, data=dat)
fitaux <- auxiliary(hs.model, aux="z", data=dat, fun="cfa")

Description
This function can be used to estimate a structural equation model in lavaan using LISREL syntax. Data are automatically imported from the LISREL syntax file, or, if data files names are provided within LISREL syntax, from the same directory as the syntax itself, as per standard LISREL data importation.

Usage
lisrel2lavaan(filename = NULL, analyze = TRUE, silent = FALSE, ...)

Arguments
filename Filename of the LISREL syntax file. If the filename argument is not specified, the user will be prompted with a file browser with which LISREL syntax file can be selected (recommended).

analyze Logical. If analyze==TRUE (default), data will be automatically imported and analyzed; lavaan summary output displayed and fit object will be returned silently. If analyze==FALSE, data will not be imported or analyzed; instead, a lavaan parameter table containing the model specifications will be returned.

silent Logical. If false (default) the data will be analyzed and output displayed. If true, a fit object will be returned and summary output will not be displayed.

... Additional arguments to be passed to lavaan.
Output summary is printed to screen and lavaan fit object is returned.

Note

lisrel2lavaan is still in development, and not all LISREL commands are currently functional. A number of known limitations are outlined below. If an error is encountered that is not listed, please contact <corbinq@umich.edu>.

1. data importation lisrel2lavaan currently supports .csv, .dat, and most other delimited data formats. However, formats that are specific to LISREL or PRELIS (e.g., the .PSF file format) cannot be imported. lisrel2lavaan supports raw data, covariance matrices, and correlation matrices (accompanied by a variance vector). Symmetric matrices can either contain lower triangle or full matrix. For MACS structure models, either raw data or summary statistics (that include a mean vector) are supported.

2. variable labels Certain variable labels that are permitted in LISREL cannot be supported in lisrel2lavaan. duplicate labels Most importantly, no two variables of any kind (including phantom variables) should be given the same label when using lisrel2lavaan. If multiple variables are given the same label, lavaan will estimate an incorrect model. numeric character labels All variable labels are recommended to include non-numeric characters. In addition, the first character in each variable label is recommended to be non-numeric. labels not specified If variable labels are not provided by the user, names will be generated reflecting variable assignment (e.g. 'eta1', 'ksi1'); manifest variables will be in lower case and latent variables in upper case.

3. OU paragraph Not all commands in the OU paragraph are presently supported in lisrel2lavaan. The ME command can be used to specify estimation method; however, not all estimations available in LISREL are currently supported by lavaan. If the specified ME is unsupported, lisrel2lavaan will revert to default estimation. The AD, EP, IT, ND and NP keywords will be ignored. Requests for text files containing starting values (e.g., .0U BE) will also be ignored.

4. starting values Certain functionalities related to starting values in LISREL are not yet operational in lisrel2lavaan. Note that due to differences in estimation, starting values are not as important in lavaan model estimation as in LISREL. text file output Requests for text files containing starting values for individual matrices in the in the .0U command (e.g., .0U BE) are not currently supported. These requests will be ignored. MA paragraph Specification of matrix starting values using the MA command is permitted by providing starting values within syntax directly. However, lisrel2lavaan has sometimes encountered problems with importation when files are specified following the MA paragraph.

Author(s)

Corbin Quick (University of Michigan; <corbinq@umich.edu>)

Examples

```r
## Not run:
## calling lisrel2lavaan without specifying the filename argument will
## open a file browser window with which LISREL syntax can be selected.
```
loadingFromAlpha

Find standardized factor loading from coefficient alpha assuming that all items have equal loadings.

Usage

```
loadingFromAlpha(alpha, ni)
```

Arguments

- `alpha`: A desired coefficient alpha value.
- `ni`: A desired number of items.

Value

- `result`: The standardized factor loadings that make desired coefficient alpha with specified number of items.

Author(s)

Sunthud Pornprasertmanit (Texas Tech University; <sunthud.pornprasertmanit@ttu.edu>)

Examples

```
loadingFromAlpha(0.8, 4)
```
longInvariance

Measurement Invariance Tests Within Person

Description

Testing measurement invariance across timepoints (longitudinal) or any context involving the use of the same scale in one case (e.g., a dyad case with husband and wife answering the same scale). The measurement invariance uses a typical sequence of model comparison tests. This function currently works with only one scale.

Usage

```r
longInvariance(model, varList, auto = "all", constrainAuto = FALSE,
               fixed.x = TRUE, std.lv = FALSE, group=NULL, group.equal="",
               group.partial="", warn=TRUE, debug=FALSE, strict = FALSE, quiet = FALSE,
               ...)```

**Arguments**

- `model` lavaan syntax or parameter table
- `varList` A list containing indicator names of factors used in the invariance testing, such as the list that the first element is the vector of indicator names in the first time-point and the second element is the vector of indicator names in the second timepoint. The order of indicator names should be the same (but measured in different times or different units).
- `auto` The order of autocorrelation on the measurement errors on the similar items across factor (e.g., Item 1 in Time 1 and Time 2). If 0 is specified, the autocorrelation will be not imposed. If 1 is specified, the autocorrelation will imposed for the adjacent factor listed in `varList`. The maximum number can be specified is the number of factors specified minus 1. If `auto` is specified, the maximum number of order will be used.
- `constrainAuto` If TRUE, the function will equate the auto-covariance to be equal within the same item across factors. For example, the covariance of item 1 in time 1 and time 2 is equal to the covariance of item 1 in time 2 and time 3.
- `fixed.x` See lavaan.
- `std.lv` See lavaan.
- `group` See lavaan.
- `group.equal` See lavaan.
- `group.partial` See lavaan.
- `warn` See lavaan.
- `debug` See lavaan.
- `strict` If TRUE, the sequence requires `strict` invariance. See details for more information.
quiet

If TRUE, a summary is printed out containing an overview of the different models that are fitted, together with some model comparison tests.

Additional arguments in the lavaan function.

Details

If strict = FALSE, the following four models are tested in order:

1. Model 1: configural invariance. The same factor structure is imposed on all units.
2. Model 2: weak invariance. The factor loadings are constrained to be equal across units.
3. Model 3: strong invariance. The factor loadings and intercepts are constrained to be equal across units.
4. Model 4: The factor loadings, intercepts and means are constrained to be equal across units.

Each time a more restricted model is fitted, a chi-square difference test is reported, comparing the current model with the previous one, and comparing the current model to the baseline model (Model 1). In addition, the difference in cfi is also reported (delta.cfi).

If strict = TRUE, the following five models are tested in order:

1. Model 1: configural invariance. The same factor structure is imposed on all units.
2. Model 2: weak invariance. The factor loadings are constrained to be equal across units.
3. Model 3: strong invariance. The factor loadings and intercepts are constrained to be equal across units.
4. Model 4: strict invariance. The factor loadings, intercepts and residual variances are constrained to be equal across units.
5. Model 5: The factor loadings, intercepts, residual variances and means are constrained to be equal across units.

Note that if the chi-square test statistic is scaled (e.g. a Satorra-Bentler or Yuan-Bentler test statistic), a special version of the chi-square difference test is used as described in http://www.statmodel.com/chidiff.shtml

Value

Invisibly, all model fits in the sequence are returned as a list.

Author(s)

Sunthud Pornprasertmanit (Texas Tech University; <sunthud.pornprasertmanit@ttu.edu>); Yves Rosseel (Ghent University; <Yves.Rosseel@UGent.be>)

References

mardiaKurtosis

Finding Mardia's multivariate kurtosis

Description

Finding Mardia's multivariate kurtosis of multiple variables

Usage

mardiaKurtosis(dat)

Arguments

dat       The target matrix or data frame with multiple variables

Details

The Mardia's multivariate kurtosis formula (Mardia, 1970) is

\[
b_{2,d} = \frac{1}{n} \sum_{i=1}^{n} \left[ (X_i - \bar{X})^\prime S^{-1} (X_i - \bar{X}) \right]^2,
\]

where \(d\) is the number of variables, \(X\) is the target dataset with multiple variables, \(n\) is the sample size, \(S\) is the sample covariance matrix of the target dataset, and \(\bar{X}\) is the mean vectors of the target dataset bined in \(n\) rows. When the population multivariate kurtosis is normal, the \(b_{2,d}\) is asymptotically distributed as normal distribution with the mean of \(d(d + 2)\) and variance of \(8d(d + 2)/n\).
mardiaSkew

Value

A value of a Mardia’s multivariate kurtosis with a test statistic

Author(s)

Sunthud Pornprasertmanit (Texas Tech University; <sunthud.pornprasertmanit@ttu.edu>)

References


See Also

- `skew` Find the univariate skewness of a variable
- `kurtosis` Find the univariate excessive kurtosis of a variable
- `mardiaSkew` Find the Mardia’s multivariate skewness of a set of variables

Examples

```r
library(lavaan)
mardiaKurtosis(HolzingerSwineford1939[,paste("x", 1:9, sep="")])
```

Description

Finding Mardia’s multivariate skewness of multiple variables

Usage

`mardiaSkew(dat)`

Arguments

dat The target matrix or data frame with multiple variables

Details

The Mardia’s multivariate skewness formula (Mardia, 1970) is

\[
b_{1,d} = \frac{1}{n^2} \sum_{i=1}^{n} \sum_{j=1}^{n} \left[ (X_i - \bar{X})' S^{-1} (X_j - \bar{X}) \right]^3,
\]

where \(d\) is the number of variables, \(X\) is the target dataset with multiple variables, \(n\) is the sample size, \(S\) is the sample covariance matrix of the target dataset, and \(\bar{X}\) is the mean vectors of the target dataset binded in \(n\) rows. When the population multivariate skewness is normal, the \(\frac{6}{d}b_{1,d}\) is asymptotically distributed as chi-square distribution with \(d(d+1)(d+2)/6\) degrees of freedom.
maximalRelia

Value

A value of a Mardia’s multivariate skewness with a test statistic

Author(s)

Sunthud Pornprasertmanit (Texas Tech University; <sunthud.pornprasertmanit@ttu.edu>)

References


See Also

- `skew` Find the univariate skewness of a variable
- `kurtosis` Find the univariate excessive kurtosis of a variable
- `mardiaKurtosis` Find the Mardia’s multivariate kurtosis of a set of variables

Examples

```r
library(lavaan)
mardiaSkew(HolzingerSwineford1939[,paste("x", 1:9, sep="")])
```

maximalRelia

*Calculate maximal reliability*

Description

Calculate maximal reliability of a scale

Usage

`maximalRelia(object)`

Arguments

- `object` The lavaan model object provided after running the `cfa`, `sem`, `growth`, or `lavaan` functions.
Details

Given that a composite score ($W$) is a weighted sum of item scores:

$$W = w'x,$$

where $x$ is a $k \times 1$ vector of the scores of each item, $w$ is a $k \times 1$ weight vector of each item, and $k$ represents the number of items. Then, maximal reliability is obtained by finding $w$ such that reliability attains its maximum (Li, 1997; Raykov, 2012). Note that the reliability can be obtained by

$$\rho = \frac{w'S_T w}{w'S_X w}$$

where $S_T$ is the covariance matrix explained by true scores and $S_X$ is the observed covariance matrix. Numerical method is used to find $w$ in this function.

For continuous items, $S_T$ can be calculated by

$$S_T = \Lambda \Psi \Lambda',$$

where $\Lambda$ is the factor loading matrix and $\Psi$ is the covariance matrix among factors. $S_X$ is directly obtained by covariance among items.

For categorical items, Green and Yang’s (2009) method is used for calculating $S_T$ and $S_X$. The element $i$ and $j$ of $S_T$ can be calculated by

$$[S_T]_{ij} = \sum_{c_i=1}^{C_i-1} \sum_{c_j=1}^{C_j-1} \Phi_2(\tau_{x_{c_i}}, \tau_{x_{c_j}}, [\Lambda \Psi \Lambda']_{ij}) - \sum_{c_i=1}^{C_i-1} \Phi_1(\tau_{x_{c_i}}) \sum_{c_j=1}^{C_j-1} \Phi_1(\tau_{x_{c_j}}),$$

where $C_i$ and $C_j$ represents the number of thresholds in Items $i$ and $j$, $\tau_{x_{c_i}}$ represents the threshold $c_i$ of Item $i$, $\Phi_1(\tau_{x_{c_i}})$ is the cumulative probability of $\tau_{x_{c_i}}$ given a univariate standard normal cumulative distribution and $\Phi_2(\tau_{x_{c_i}}, \tau_{x_{c_j}}, \rho)$ is the joint cumulative probability of $\tau_{x_{c_i}}$ and $\tau_{x_{c_j}}$ given a bivariate standard normal cumulative distribution with a correlation of $\rho$

Each element of $S_X$ can be calculated by

$$[S_T]_{ij} = \sum_{c_i=1}^{C_i-1} \sum_{c_j=1}^{C_j-1} \Phi_2(\tau_{V_{c_i}}, \tau_{V_{c_j}}, \rho_{ij}^*) - \sum_{c_i=1}^{C_i-1} \Phi_1(\tau_{V_{c_i}}) \sum_{c_j=1}^{C_j-1} \Phi_1(\tau_{V_{c_j}}),$$

where $\rho_{ij}^*$ is a polychoric correlation between Items $i$ and $j$.

Value

Maximal reliability values of each group. The maximal-reliability weights are also provided. Users may extracted the weighted by the attr function (see example below).
measurementInvariance

Author(s)
Sunthud Pornprasertmanit (Texas Tech University; <sunthud.pornprasertmanit@ttu.edu>)

References

See Also
reliability for reliability of an unweighted composite score

Examples

total <- 'f =~ x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 '~
fit <- cfa(total, data=HolzingerSwineford1939)
maximalRelia(fit)

# Extract the weight
mr <- maximalRelia(fit)
attr(mr, "weight")

measurementInvariance  Measurement Invariance Tests

Description
Testing measurement invariance across groups using a typical sequence of model comparison tests.

Usage
measurementInvariance(..., std.lv = FALSE, strict = FALSE, quiet = FALSE)

Arguments

...  The same arguments as for any lavaan model. See cfa for more information.

std.lv  If TRUE, the fixed-factor method of scale identification is used. If FALSE, the first variable for each factor is used as marker variable.

strict  If TRUE, the sequence requires ‘strict’ invariance. See details for more information.

quiet  If TRUE, a summary is printed out containing an overview of the different models that are fitted, together with some model comparison tests.
Details

If strict = FALSE, the following four models are tested in order:

1. Model 1: configural invariance. The same factor structure is imposed on all groups.
2. Model 2: weak invariance. The factor loadings are constrained to be equal across groups.
3. Model 3: strong invariance. The factor loadings and intercepts are constrained to be equal across groups.
4. Model 4: The factor loadings, intercepts and means are constrained to be equal across groups.

Each time a more restricted model is fitted, a chi-square difference test is reported, comparing the current model with the previous one, and comparing the current model to the baseline model (Model 1). In addition, the difference in cfi is also reported (delta.cfi).

If strict = TRUE, the following five models are tested in order:

1. Model 1: configural invariance. The same factor structure is imposed on all groups.
2. Model 2: weak invariance. The factor loadings are constrained to be equal across groups.
3. Model 3: strong invariance. The factor loadings and intercepts are constrained to be equal across groups.
4. Model 4: strict invariance. The factor loadings, intercepts and residual variances are constrained to be equal across groups.
5. Model 5: The factor loadings, intercepts, residual variances and means are constrained to be equal across groups.

Note that if the chi-square test statistic is scaled (e.g., a Satorra-Bentler or Yuan-Bentler test statistic), a special version of the chi-square difference test is used as described in http://www.statmodel.com/chidiff.shtml

Value

Invisibly, all model fits in the sequence are returned as a list.

Author(s)

Yves Rosseel (Ghent University; <Yves.Rosseel@UGent.be>); Sunthud Pornprasertmanit (Texas Tech University; <sunthud.pornprasertmanit@ttu.edu>)

References


See Also

longInvariance for the measurement invariance test within person; partialInvariance for the automated function for finding partial invariance models
Examples

```r
HW.model <- ' visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9'

measurementInvarianceCat(HW.model, data=HolzingerSwineford1939, group="school")
```

---

**Measurement Invariance Tests for Categorical Items**

**Description**

Testing measurement invariance across groups using a typical sequence of model comparison tests.

**Usage**

```r
measurementInvarianceCat(..., std.lv = FALSE, strict = FALSE, quiet = FALSE)
```

**Arguments**

- `...`: The same arguments as for any lavaan model. See `cfa` for more information.
- `std.lv`: If TRUE, the fixed-factor method of scale identification is used. If FALSE, the first variable for each factor is used as marker variable.
- `strict`: If TRUE, the sequence requires ‘strict’ invariance. See details for more information.
- `quiet`: If TRUE, a summary is printed out containing an overview of the different models that are fitted, together with some model comparison tests.

**Details**

Theta parameterization is used to represent SEM for categorical items. That is, residual variances are modeled instead of the total variance of underlying normal variate for each item. Five models can be tested based on different constraints across groups.

1. **Model 1**: configural invariance. The same factor structure is imposed on all groups.
2. **Model 2**: weak invariance. The factor loadings are constrained to be equal across groups.
3. **Model 3**: strong invariance. The factor loadings and thresholds are constrained to be equal across groups.
4. **Model 4**: strict invariance. The factor loadings, thresholds and residual variances are constrained to be equal across groups. For categorical variables, all residual variances are fixed as 1.
5. **Model 5**: The factor loadings, thresholds, residual variances and means are constrained to be equal across groups.
However, if all items have two items (dichotomous), scalar invariance and weak invariance cannot be separated because thresholds need to be equal across groups for scale identification. Users can specify strict option to include the strict invariance model for the invariance testing. See the further details of scale identification and different parameterization in Millsap and Yun-Tein (2004).

Value

Invisibly, all model fits in the sequence are returned as a list.

Author(s)

Sunthud Pornprasertmanit (Texas Tech University; <sunthud.pornprasertmanit@ttu.edu>) Yves Rosseel (Ghent University; <Yves.Rosseel@UGent.be>)

References


See Also

measurementInvariance for measurement invariance for continuous variables; longInvariance For the measurement invariance test within person with continuous variables; partialInvariance for the automated function for finding partial invariance models

Examples

```r
model <- 'f1 =~ u1 + u2 + u3 + u4'

measurementInvarianceCat(model, data = datCat, group = "g", parameterization="theta", estimator="wlsmv", ordered = c("u1", "u2", "u3", "u4"))
```

---

miPowerFit Modification indices and their power approach for model fit evaluation

Description

The model fit evaluation approach using modification indices and their power proposed by Saris, Satorra, and van der Veld (2009, pp. 570-573).

Usage

miPowerFit(lavaanObj, stdLoad=0.4, cor=0.1, stdBeta=0.1, intcept=0.2, stdDelta=NULL, delta=NULL)
Arguments

- **lavaanObj**
  - The lavaan model object used to evaluate model fit
- **stdLoad**
  - The amount of standardized factor loading that one would like to be detected (rejected). The default value is 0.4, which is suggested by Saris and colleagues (2009, p. 571).
- **cor**
  - The amount of factor or error correlations that one would like to be detected (rejected). The default value is 0.1, which is suggested by Saris and colleagues (2009, p. 571).
- **stdBeta**
  - The amount of standardized regression coefficients that one would like to be detected (rejected). The default value is 0.1, which is suggested by Saris and colleagues (2009, p. 571).
- **intercept**
  - The amount of standardized intercept (similar to Cohen’s $d$) that one would like to be detected (rejected). The default value is 0.2, which is equivalent to a low effect size proposed by Cohen (1988, 1992).
- **stdDelta**
  - The vector of the standardized parameters that one would like to be detected (rejected). If this argument is specified, the value here will overwrite the other arguments above. The order of the vector must be the same as the row order from modification indices from the lavaan object. If a single value is specified, the value will be applied to all parameters.
- **delta**
  - The vector of the unstandardized parameters that one would like to be detected (rejected). If this argument is specified, the value here will overwrite the other arguments above. The order of the vector must be the same as the row order from modification indices from the lavaan object. If a single value is specified, the value will be applied to all parameters.

Details

In the lavaan object, one can inspect the modification indices and expected parameter changes. Those values can be used to evaluate model fit by the method proposed by Saris and colleagues (2009). First, one should evaluate whether the modification index of each parameter is significant. Second, one should evaluate whether the power to detect a target expected parameter change is high enough. If the modification index is not significant and the power is high, there is no misspecification. If the modification index is significant and the power is low, the fixed parameter is misspecified. If the modification index is significant and the power is high, the expected parameter change is investigated. If the expected parameter change is large (greater than the target expected parameter change), the parameter is misspecified. If the expected parameter change is low (lower than the target expected parameter change), the parameter is not misspecified. If the modification index is not significant and the power is low, the decision is inconclusive.

Value

A data frame with these variables:

1. **lhs** The left-hand side variable (with respect to the lavaan operator)
2. **op** The lavaan syntax operator: "~~" represents covariance, "=~" represents factor loading, "~" represents regression, and "~1" represents intercept.
3. rhs The right-hand side variable (with respect to the lavaan operator)
4. group The group of the parameter
5. mi The modification index of the fixed parameter
6. epc The expected parameter change if the parameter is freely estimated
7. target.epc The target expected parameter change that represents the minimum size of misspecification that one would like to be detected by the test with a high power
8. std.epc The standardized expected parameter change if the parameter is freely estimated
9. std.target.epc The standardized target expected parameter change
10. significant.mi Represents whether the modification index value is significant
11. high.power Represents whether the power is enough to detect the target expected parameter change
12. decision The decision whether the parameter is misspecified or not: "M" represents the parameter is misspecified, "NM" represents the parameter is not misspecified, "EPC:M" represents the parameter is misspecified decided by checking the expected parameter change value, "EPC:NM" represents the parameter is not misspecified decided by checking the expected parameter change value, and "I" represents the decision is inconclusive.

The row numbers matches with the results obtained from the inspect(object, "mi") function.

Author(s)
Sunthud Pornprasertmanit (Texas Tech University: <sunthud.pornprasertmanit@ttu.edu>)

References

See Also
moreFitIndices For the additional fit indices information

Examples
library(lavaan)

HS.model <- ' visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9 '

fit <- cfa(HS.model, data=HolzingerSwineford1939, group="sex", meanstructure=TRUE)
miPowerFit(fit)

model <- '
monteCarloMed

Monte Carlo Confidence Intervals to Test Complex Indirect Effects

Description

This function takes an expression for an indirect effect, the parameters and standard errors associated with the expression and returns a confidence interval based on a Monte Carlo test of mediation (MacKinnon, Lockwood, & Williams, 2004).

Usage

monteCarloMed(expression, ..., ACM=NULL, object=NULL, rep=20000, CI=95, plot=FALSE, outputValues=FALSE)

Arguments

expression A character scalar representing the computation of an indirect effect. Different parameters in the expression should have different alphanumeric values. Expressions can use either addition (+) or multiplication (*) operators.

... Parameter estimates for all parameters named in expression. The order of parameters should follow from expression (the first parameter named in expression should be the first parameter listed in ...). Alternatively ... can be a vector of parameter estimates.

ACM A matrix representing the asymptotic covariance matrix of the parameters described in expression. This matrix should be a symmetric matrix with dimensions equal to the number of parameters names in expression. Information on finding the ACOV is popular SEM software is described below.)
object: A lavaan model object fitted after running the cfa, sem, growth, or lavaan functions. The model must have parameters labelled with the same labels used in expression. When using this option do not specify values for ....or ACM

rep: The number of replications to compute. Many thousand are recommended.
CI: Width of the confidence interval computed.
plot: Should the function output a plot of simulated values of the indirect effect?
outputValues: Should the function output all simulated values of the indirect effect?

Details

This function implements the Monte Carlo test of mediation first described in MacKinnon, Lockwood, & Williams (2004) and extends it to complex cases where the indirect effect is more than a function of two parameters. The function takes an expression for the indirect effect, randomly simulated values of the indirect effect based on the values of the parameters (and the associated standard errors) comprising the indirect effect, and outputs a confidence interval of the indirect effect based on the simulated values. For further information on the Monte Carlo test of mediation see MacKinnon, Lockwood, & Williams (2004), Preacher & Selig (in press), and Selig & Preacher (2008). For a Monte Carlo test of mediation with a random effects model see Selig & Preacher (2010).

The asymptotic covariance matrix can be easily found in many popular SEM software applications.

- LISREL Including the EC option on the OU line will print the ACM to a separate file. The file contains the lower triangular elements of the ACM in free format and scientific notation
- Mplus Include the command TECH3; in the OUTPUT section. The ACM will be printed in the output.
- lavaan Use the command vcov on the fitted lavaan object to print the ACM to the screen

Value

A list with two elements. The first element is the point estimate for the indirect effect. The second element is a matrix with values for the upper and lower limits of the confidence interval generated from the Monte Carlo test of mediation. If outputValues=TRUE, output will be a list with a list with the point estimate and values for the upper and lower limits of the confidence interval as the first element and a vector of simulated values of the indirect effect as the second element.

Author(s)

Corbin Quick (University of Michigan; <corbinq@umich.edu>) Alexander M. Schoemann (East Carolina University; <schoemann@ecu.edu>) James P. Selig (University of New Mexico; <selig@unm.edu>)

References


Examples

# Simple two path mediation
# Write expression of indirect effect
med <- 'a*b'
# Parameter values from analyses
aparam <- 1
bparam <- 2
# Asymptotic covariance matrix from analyses
AC <- matrix(c(.01,.00002,
               .00002,.02), nrow=2, byrow=TRUE)
# Compute CI, include a plot
monteCarloMed(med, coef=aparam, coef=bparam, outputValues=FALSE, plot=TRUE, ACM=AC)

# Use a vector of parameter estimates as input
aparam <- c(1,2)
monteCarloMed(med, coef=aparam, outputValues=FALSE, plot=TRUE, ACM=AC)

# Complex mediation with two paths for the indirect effect
# Write expression of indirect effect
med <- 'a1*b1 + a1*b2'
# Parameter values and standard errors from analyses
aparam <- 1
blparam <- 2
b2param <- 1
# Asymptotic covariance matrix from analyses
AC <- matrix(c(1,.00002,.00003,
               .00002,1,.00002,
               .00003,.00002,1), nrow=3, byrow=TRUE)
# Compute CI do not include a plot
monteCarloMed(med, coef1=aparam, coef2=blparam, coef3=b2param, ACM=AC)

moreFitIndices

Calculate more fit indices

Description

Calculate more fit indices that are not already provided in lavaan.

Usage

moreFitIndices(object, nPrior = 1)
Arguments

object The lavaan model object provided after running the cfa, sem, growth, or lavaan functions.

nprior The sample size on which prior is based. This argument is used to compute BIC*.

Details

Gamma Hat (gammaHat; West, Taylor, & Wu, 2012) is a global fit index which can be computed by

\[
gammaHat = \frac{p}{p + 2 \times \frac{\chi^2_k - df_k}{N - 1}}
\]

where \( p \) is the number of variables in the model, \( \chi^2_k \) is the chi-square test statistic value of the target model, \( df_k \) is the degree of freedom when fitting the target model, and \( N \) is the sample size. This formula assumes equal number of indicators across groups.

Adjusted Gamma Hat (adjGammaHat; West, Taylor, & Wu, 2012) is a global fit index which can be computed by

\[
adjGammaHat = \left( 1 - K \times p \times \frac{(p + 1)}{2 \times df_k} \right) \times (1 - gammaHat),
\]

where \( K \) is the number of groups (please refer to Dudgeon, 2004 for the multiple-group adjustment for agfi*).

Corrected Akaike Information Criterion (aic.smallN; Burnham & Anderson, 2003) is the corrected version of aic for small sample size:

\[
aic.smallN = f + \frac{2k(k + 1)}{N - k - 1},
\]

where \( f \) is the minimized discrepancy function, which is the product of the log likelihood and -2, and \( k \) is the number of parameters in the target model.

Corrected Bayesian Information Criterion (bic.priorN; Kuha, 2004) is similar to bic but explicitly specifying the sample size on which the prior is based (\( N_{prior} \)).

\[
bic.priorN = f + k \log \left( 1 + \frac{N}{N_{prior}} \right),
\]

Stochastic information criterion (sic; Preacher, 2006) is similar to aic or bic. This index will account for model complexity in the model’s function form, in addition to the number of free parameters. This index will be provided only when the chi-squared value is not scaled. sic can be computed by

\[
sic = \frac{1}{2} \left( f - \log \det I(\hat{\theta}) \right),
\]

where \( I(\hat{\theta}) \) is the information matrix of the parameters.
Hannan-Quinn Information Criterion (hqc; Hannan & Quinn, 1979) is used for model selection similar to aic or bic.

\[
hqc = f + 2k \log (\log N),
\]

Note that if Satorra-Bentler or Yuan-Bentler’s method is used, the fit indices using the scaled chi-square values are also provided.

See `nullRMSEA` for the further details of the computation of RMSEA of the null model.

Value

1. gammaHat Gamma Hat
2. adjGammaHat Adjusted Gamma Hat
3. baseline.rmsea RMSEA of the Baseline (Null) Model
4. aic.smallN Corrected (for small sample size) Akaike Information Criterion
5. bic.priorN Bayesian Information Criterion with specifying the prior sample size
6. sic Stochastic Information Criterion
7. hqc Hannan-Quinn Information Criterion
8. gammaHat.scaled Gamma Hat using Scaled Chi-square
9. adjGammaHat.scaled Adjusted Gamma Hat using Scaled Chi-square
10. baseline.rmsea.scaled RMSEA of the Baseline (Null) Model using Scaled Chi-square

Author(s)

Sunthud Pornprasertmanit (Texas Tech University; <sunthud.pornprasertmanit@ttu.edu>) Aaron Boulton (University of North Carolina, Chapel Hill; <aboulton@email.unc.edu>) Ruben Arslan (Humboldt-University of Berlin, <rubenarslan@gmail.com>) Terrence Jorgensen (University of Kansas; <TJorgensen314@gmail.com>)

References


See Also

- `miPowerFit` For the modification indices and their power approach for model fit evaluation
- `nullRMSEA` For RMSEA of the null model
mvrnonnorm

Examples

```r
HS.model <- ' visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9 '

fit <- cfa(HS.model, data=HolzingerSwineford1939)
moreFitIndices(fit)

fit2 <- cfa(HS.model, data=HolzingerSwineford1939, estimator="mlr")
moreFitIndices(fit2)
```

mvrnonnorm

Generate Non-normal Data using Vale and Maurelli (1983) method

Description

Generate Non-normal Data using Vale and Maurelli (1983) method. The function is designed to be as similar as the popular mvrnorm function in the MASS package. The codes are copied from mvrnorm function in the MASS package for argument checking and lavaan package for data generation using Vale and Maurelli (1983) method.

Usage

```r
mvrnonnorm(n, mu, Sigma, skewness = NULL, kurtosis = NULL, empirical = FALSE)
```

Arguments

- **n**: Sample size
- **mu**: A mean vector
- **Sigma**: A positive-definite symmetric matrix specifying the covariance matrix of the variables
- **skewness**: A vector of skewness of the variables
- **kurtosis**: A vector of excessive kurtosis of the variables
- **empirical**: If TRUE, mu and Sigma specify the empirical not population mean and covariance matrix

Value

A data matrix

Author(s)

The original function is the simulateData function written by Yves Rosseel in the lavaan package. The function is adjusted for a convenient usage by Sunthud Pornprasertmanit (Texas Tech University; <sunthud.pornprasertmanit@ttu.edu>)
References


Examples

```r
mvrnonnorm(100, c(1, 2), matrix(c(10, 2, 2, 5), 2, 2),
 skewness = c(5, 2), kurtosis = c(3, 3))
```

---

**Description**

This test examines whether models are nested or equivalent based on Bentler and Satorra’s (2010) procedure.

**Usage**

```r
net(..., crit = .0001)
```

**Arguments**

- `...` The lavaan objects used for test of nesting and equivalence
- `crit` The upper-bound criterion for testing the equivalence of models. Models are considered nested (or equivalent) if the difference between their chi-squared fit statistics is less than this criterion.

**Details**

The concept of nesting/equivalence should be the same regardless of estimation method. However, the particular method of testing nesting/equivalence (as described in Bentler & Satorra, 2010) employed by the net function is based on a limited-information estimator (analyzing model-implied means and covariance matrices, not raw data). In the case of robust methods like MLR, the raw data is only utilized for the robust adjustment to SE and chi-sq, and the net function only checks the unadjusted chi-sq for the purposes of testing nesting/equivalence. However, the WLS and DWLS estimators for categorical data need to estimate thresholds from raw data, not from summary information. After fitting a model with thresholds constrained to equality across groups, those thresholds could not be fed to lavaan as data (along with polychoric correlation matrix and weight matrix) to see whether it is nested within a less constrained model in which thresholds can differ between groups – the thresholds could not be estimated from the prespecified thresholds of the more constrained model. To check whether the covariance structure parts of categorical-data models are nested, use ML estimation (although the point and SE estimates should not be trusted, the net function can still test parametric nesting). In most situations, logic should suffice to determine whether the models are also nested in terms of the threshold parameters.
**Value**

The **Net** object representing the outputs for nesting and equivalent testing, including a logical matrix of test results and a vector of degrees of freedom for each model.

**Author(s)**

Terrence D. Jorgensen (University of Kansas; <TJorgensen314@gmail.com>)

**References**


**Examples**

```r
m1 <- ' visual = - x1 + x2 + x3
textual = - x4 + x5 + x6
speed = - x7 + x8 + x9

m2 <- ' f1 = - x1 + x2 + x3 + x4
f2 = - x5 + x6 + x7 + x8 + x9

m3 <- ' visual = - x1 + x2 + x3
textual = - eq*x4 + eq*x5 + eq*x6
speed = - x7 + x8 + x9

fit1 <- cfa(m1, data = HolzingerSwineford1939)
fit1a <- cfa(m1, data = HolzingerSwineford1939, std.lv = TRUE) # Equivalent to fit1
fit2 <- cfa(m2, data = HolzingerSwineford1939) # Not equivalent to or nested in fit1
fit3 <- cfa(m3, data = HolzingerSwineford1939) # Nested in fit1 and fit1a

tests <- net(fit1, fit1a, fit2, fit3)
tests
summary(tests)
```

---

**Net-class**

*Class For the Result of Nesting and Equivalence Testing*

**Description**

This class contains the results of nesting and equivalence testing among multiple models.

**Objects from the Class**

Objects can be created via the `net` function.
Slots
  test: Logical matrix of results of nesting and equivalence testing across models
df: The degrees of freedom of tested models

methods
  • summary The summary function is used to provide the results in narrative.

Author(s)
Terrence D. Jorgensen (University of Kansas; <TJorgensen314@gmail.com>)

See Also
net

Examples
  # See the example in the net function.

nullMx Analyzing data using a null model

Description
Analyzing data using a null model by full-information maximum likelihood. In the null model, all
means and covariances are free if items are continuous. All covariances are fixed to 0. For ordinal
variables, their means are fixed as 0 and their variances are fixed as 1 where their thresholds are
estimated. In multiple-group model, all means are variances are separately estimated.

Usage
nullMx(data, groupLab = NULL)

Arguments
data The target data frame
groupLab The name of grouping variable

Value
The MxModel object which contains the analysis result of the null model.

Author(s)
Sunthud Pornprasertmanit (Texas Tech University; <sunthud.pornprasertmanit@ttu.edu>)
nullRMSEA

See Also

saturateMx, fitMeasuresMx, standardizeMx

Examples

## Not run:
library(OpenMx)
data(demoOneFactor)
nullModel <- nullMx(demoOneFactor)

## End(Not run)

---

nullRMSEA

*Calculate the RMSEA of the null model*

**Description**

Calculate the RMSEA of the null (baseline) model

**Usage**

```
nullRMSEA(object, scaled = FALSE, silent=FALSE)
```

**Arguments**

- `object`: The lavaan model object provided after running the `cfa`, `sem`, `growth`, or `lavaan` functions.
- `scaled`: If `TRUE`, calculate the null model from the scaled test.
- `silent`: If `TRUE`, do not print anything on the screen.

**Details**

RMSEA of the null model is calculated similar to the formula provided in the lavaan package. The standard formula of RMSEA is

\[
RMSEA = \sqrt{\frac{\chi^2}{N \times df}} - \frac{1}{N} \times \sqrt{G}
\]

where \(\chi^2\) is the chi-square test statistic value of the target model, \(N\) is the total sample size, \(df\) is the degree of freedom of the hypothesized model, \(G\) is the number of groups. Kenny proposed in his website that "A reasonable rule of thumb is to examine the RMSEA for the null model and make sure that is no smaller than 0.158. An RMSEA for the model of 0.05 and a TLI of .90, implies that the RMSEA of the null model is 0.158. If the RMSEA for the null model is less than 0.158, an incremental measure of fit may not be that informative."

See [http://davidakenny.net/cm/fit.htm](http://davidakenny.net/cm/fit.htm).
Value

A value of RMSEA of the null model. This value is hidden. Users may be assigned the output of this function to any object for further usage.

Author(s)

Ruben Arslan (Humboldt-University of Berlin, <rubenarslan@gmail.com>)

References


See Also

- `miPowerFit` For the modification indices and their power approach for model fit evaluation
- `moreFitIndices` For other fit indices

Examples

```r
HS.model <- ' visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9 '

fit <- cfa(HS.model, data=HolzingerSwineford1939)
nullRMSEA(fit)
```

Description

This function generates a given number of randomly generated item-to-parcel allocations, fits a model to each allocation, and provides averaged results over all allocations.

Usage

```r
parcelAllocation(nPerPar, facPlc, nAlloc=100, syntax, dataset, names='default', leaveout=0, ...)
```

Arguments

- `nPerPar` A list in which each element is a vector corresponding to each factor indicating sizes of parcels. If variables are left out of parceling, they should not be accounted for here (there should NOT be parcels of size "1").
- `facPlc` A list of vectors, each corresponding to a factor, specifying the variables in that factor (whether included in parceling or not). Either variable names or column numbers. Variables not listed will not be modeled or included in output datasets.
parcelAllocation

nAlloc  The number of random allocations of items to parcels to generate.
syntax lavaan syntax. If substituted with a file name, parcelAllocation will print output data sets to a specified folder rather than analyzing using lavaan (note for Windows users: file path must be specified using forward slashes).
dataset Data set. Can be file path or R object (matrix or dataframe). If the data has missing values multiple imputation before parceling is recommended.
names (Optional) A character vector containing the names of parceled variables.
leaveout A vector of variables to be left out of randomized parceling. Either variable names or column numbers are allowed.
... Additional arguments to be passed to lavaan

Details

This function implements the random item to parcel allocation procedure described in Sterba (2011) and Sterba and McCullum (2010). The function takes a single data set with item level data, randomly assigns items to parcels, fits a structural equation model to the parceled data (using lavaan), and repeats this process for a user specified number of random allocations. Results from all fitted models are summarized and output. For further details on the benefits of the random allocation of items to parcels see Sterba (2011) and Sterba and McCullum (2010).

Value

Estimates A data frame containing results related to parameter estimates with columns corresponding to parameter names, average parameter estimates across allocations, the standard deviation of parameter estimates across allocations, the minimum parameter estimate across allocations, the maximum parameter estimate across allocations, the range of parameter estimates across allocations, and the proportions of allocations in which the parameter estimate is significant.

SE A data frame containing results related to standard errors with columns corresponding to parameter names, average standard errors across allocations, the standard deviation of standard errors across allocations, the minimum standard error across allocations, the maximum standard error across allocations, and the range of standard errors across allocations.

Fit A data frame containing results related to model fit with columns corresponding to fit index names, the average of each index across allocations, the standard deviation of each fit index across allocations, the minimum of each fit index across allocations, the maximum of each fit index across allocations, and the range of each fit index across allocations.

Author(s)

Corbin Quick (University of Michigan; <corbinq@umich.edu>) Alexander M. Schoemann (East Carolina University; <schoemanna@ecu.edu>)
References


Examples

```r
#Fit 3 factor CFA to simulated data.
#Each factor has 9 indicators that are randomly parceled into 3 parcels
#Lavaan syntax for the model to be fit to parceled data
library(lavaan)

syntax <- 'La =~ V1 + V2 + V3
 Lb =~ V4 + V5 + V6

#Parcel and fit data 20 times. The actual parcel number should be higher than 20 times.
name1 <- colnames(simParcel)[1:9]
name2 <- colnames(simParcel)[10:18]
parcelAllocation(list(c(3,3,3),c(3,3,3)), list(name1, name2), nAlloc=20, syntax=syntax, dataset=simParcel)

partialInvariance

partialInvarianceCat

Description

This test will provide partial invariance testing by (a) freeing a parameter one-by-one from nested model and compare with the original nested model or (b) fixing (or constraining) a parameter one-by-one from the parent model and compare with the original parent model. This function only works with congeneric models. The `partialInvariance` is used for continuous variable. The `partialInvarianceCat` is used for categorical variables.

Usage

```r
partialInvariance(fit, type, free = NULL, fix = NULL, refgroup = 1, poolvar = TRUE, p.adjust = "none", fbound = 2, return.fit = FALSE)
partialInvarianceCat(fit, type, free = NULL, fix = NULL, refgroup = 1, poolvar = TRUE, p.adjust = "none", return.fit = FALSE)
```

Arguments

- **fit**: A list of models for invariance testing. Each model should be assigned by appropriate names (see details). The result from `measurementInvariance` or `measurementInvarianceCat` could be used in this argument directly.
- **type**: The types of invariance testing: "metric", "scalar", "strict", or "means"
free
A vector of variable names that are free across groups in advance. If partial mean invariance is tested, this argument represents a vector of factor names that are free across groups.

fix
A vector of variable names that are constrained to be equal across groups in advance. If partial mean invariance is tested, this argument represents a vector of factor names that are fixed across groups.

refgroup
The reference group used to make the effect size comparison with the other groups.

poolvar
If TRUE, the variances are pooled across group for standardization. Otherwise, the variances of the reference group are used for standardization.

p.adjust
The method used to adjust p values. See p.adjust for the options for adjusting p values. The default is to not use any corrections.

fbound
The z-scores of factor that is used to calculate the effect size of the loading difference proposed by Millsap and Olivera-Aguilar (2012).

return.fit
Return the submodels fitted by this function

Details
There are four types of partial invariance testing:

- Partial weak invariance. The model named 'fit.configural' from the list of models is compared with the model named 'fit.loadings'. Each loading will be freed or fixed from the metric and configural invariance models respectively. The modified models are compared with the original model. Note that the objects in the list of models must have the names of "fit.configural" and "fit.loadings". Users may use "metric", "weak", "loading", or "loadings" in the type argument. Note that, for testing invariance on marker variables, other variables will be assigned as marker variables automatically.

- Partial strong invariance. The model named 'fit.loadings' from the list of models is compared with the model named either 'fit.intercepts' or 'fit.thresholds'. Each intercept will be freed or fixed from the scalar and metric invariance models respectively. The modified models are compared with the original model. Note that the objects in the list of models must have the names of "fit.loadings" and either "fit.intercepts" or "fit.thresholds". Users may use "scalar", "strong", "intercept", "intercepts", "threshold", or "thresholds" in the type argument. Note that, for testing invariance on marker variables, other variables will be assigned as marker variables automatically. Note that if all variables are dichotomous, scalar invariance testing is not available.

- Partial strict invariance. The model named either 'fit.intercepts' or 'fit.thresholds' (or 'fit.loadings') from the list of models is compared with the model named 'fit.residuals'. Each residual variance will be freed or fixed from the strict and scalar (or metric) invariance models respectively. The modified models are compared with the original model. Note that the objects in the list of models must have the names of "fit.residuals" and either "fit.intercepts", "fit.thresholds", or "fit.loadings". Users may use "strict", "residual", "residuals", "error", or "errors" in the type argument.

- Partial mean invariance. The model named either 'fit.intercepts' or 'fit.thresholds' (or 'fit.residuals' or 'fit.loadings') from the list of models is compared with the model named 'fit.means'. Each factor mean will be freed or fixed from the means and scalar (or strict or metric) invariance
models respectively. The modified models are compared with the original model. Note that the objects in the list of models must have the names of "fit.means" and either "fit.residuals", "fit.intercepts", "fit.thresholds", or "fit.loadings". Users may use "means" or "mean" in the type argument.

Two types of comparisons are used in this function:

1. free: The nested model is used as a template. Then, one parameter indicating the differences between two models is free. The new model is compared with the nested model. This process is repeated for all differences between two models. The likelihood-ratio test and the difference in CFI are provided.

2. fix: The parent model is used as a template. Then, one parameter indicating the differences between two models is fixed or constrained to be equal to other parameters. The new model is then compared with the parent model. This process is repeated for all differences between two models. The likelihood-ratio test and the difference in CFI are provided.

3. wald: This method is similar to the fix method. However, instead of building a new model and compare them with likelihood-ratio test, multivariate wald test is used to compare equality between parameter estimates. See wald for further details. Note that if any rows of the contrast cannot be summed to 0, the Wald test is not provided, such as comparing two means where one of the means is fixed as 0. This test statistic is not as accurate as likelihood-ratio test provided in fix. I provide it here in case that likelihood-ratio test fails to converge.

Note that this function does not adjust for the inflated Type I error rate from multiple tests. The degree of freedom of all tests would be the number of groups minus 1.

The details of standardized estimates and the effect size used for each parameters are provided in the vignettes by running vignette("partialInvarianceBi").

Value

A list of results are provided. The list will consists of at least two elements:

1. estimates: The results of parameter estimates including pooled estimates (poolest), the estimates for each group, standardized estimates for each group (std), the difference in standardized values, and the effect size statistic (q for factor loading difference and h for error variance difference). See the details of this effect size statistic by running vignette("partialInvariance"). In the partialInvariance function, the additional effect statistics proposed by Millsap and Olivera-Aguilar (2012) are provided. For factor loading, the additional outputs are the observed mean difference (diff_mean), the mean difference if factor scores are low (low_fscore), and the mean difference if factor scores are high (high_fscore). The low factor score is calculated by (a) finding the factor scores that its z-score equals -bound (the default is -2) from all groups and (b) picking the minimum value among the factor scores. The high factor score is calculated by (a) finding the factor scores that its z-score equals bound (the default is 2) from all groups and (b) picking the maximum value among the factor scores. For measurement intercepts, the additional outputs are the observed means difference (diff_mean) and the proportion of the differences in the intercepts over the observed means differences (propdiff). For error variances, the additional outputs are the proportion of the difference in error variances over the difference in observed variances (propdiff).

2. results: Statistical tests as well as the change in CFI are provided. Chi-square and p-value are provided for all methods.
3. models: The submodels used in the free and fix methods, as well as the nested and parent models. The nested and parent models will be changed from the original models if free or fit arguments are specified.

Author(s)

Sunthud Pornprasertmanit (Texas Tech University; <sunthud.pornprasertmanit@ttu.edu>)

References

See Also

measurementInvariance for measurement invariance for continuous variables; measurementInvarianceCat for measurement invariance for categorical variables; wald for multivariate Wald test

Examples

Conduct weak invariance testing manually by using fixed-factor
method of scale identification

library(lavaan)

conf <- "
f1 =- NA*x1 + x2 + x3
f2 =- NA*x4 + x5 + x6
f1 ~~ c(1, 1)*f1
f2 ~~ c(1, 1)*f2
"

weak <- "
f1 =- NA*x1 + x2 + x3
f2 =- NA*x4 + x5 + x6
f1 ~~ c(1, NA)*f1
f2 ~~ c(1, NA)*f2
"

configural <- cfa(conf, data = HolzingerSwineford1939, std.lv = TRUE, group="school")
weak <- cfa(weak, data = HolzingerSwineford1939, group="school", group.equal="loadings")
models <- list(fit.configural = configural, fit.loadings = weak)
partialInvariance(models, "metric")

Not run:
partialInvariance(models, "metric", free = "x5") # "x5" is free across groups in advance
partialInvariance(models, "metric", fix = "x4") # "x4" is fixed across groups in advance

Use the result from the measurementInvariance function
HW.model <- ` visual =- x1 + x2 + x3
textual =- x4 + x5 + x6

```r
speed <- x7 + x8 + x9

models2 <- measurementInvariance(HK.model, data=HolzingerSwineford1939, group="school")
partialInvariance(models2, "scalar")

# Conduct weak invariance testing manually by using fixed-factor
# method of scale identification for dichotomous variables
f <- rnorm(1000, 0, 1)
u1 <- 0.9*f + rnorm(1000, 1, sqrt(0.19))
u2 <- 0.8*f + rnorm(1000, 1, sqrt(0.36))
u3 <- 0.6*f + rnorm(1000, 1, sqrt(0.64))
u4 <- 0.7*f + rnorm(1000, 1, sqrt(0.51))
u1 <- as.numeric(cut(u1, breaks = c(-Inf, 0, Inf)))
u2 <- as.numeric(cut(u2, breaks = c(-Inf, 0.5, Inf)))
u3 <- as.numeric(cut(u3, breaks = c(-Inf, 0, Inf)))
u4 <- as.numeric(cut(u4, breaks = c(-Inf, -0.5, Inf)))
g <- rep(c(1, 2), 500)

dat2 <- data.frame(u1, u2, u3, u4, g)

configural2 <- "
f1 <- NA*u1 + u2 + u3 + u4
t1 | c(t11, t11)*t1
t2 | c(t21, t21)*t1
t3 | c(t31, t31)*t1
f1 ~ c(1, 1)*f1
f1 ~ c(0, NA)*1

weak2 <- "
f1 <- NA*u1 + c(f11, f11)*u1 + c(f21, f21)*u2 + c(f31, f31)*u3 + c(f41, f41)*u4
u1 | c(t11, t11)*t1
t2 | c(t21, t21)*t1
t3 | c(t31, t31)*t1
f1 ~ c(1, NA)*f1
f1 ~ c(0, NA)*1

outConfigural2 <- cfa(configural2, data = dat2, group = "g", parameterization="theta", estimator="wlsmv", ordered = c("u1", "u2", "u3", "u4"))

outWeak2 <- cfa(weak2, data = dat2, group = "g", parameterization="theta", estimator="wlsmv", ordered = c("u1", "u2", "u3", "u4"))
```
modelsCat <- list(configural = outConfigural2, metric = outWeak2)

partialInvarianceCat(modelsCat, type = "metric")

partialInvarianceCat(modelsCat, type = "metric", free = "u2")
partialInvarianceCat(modelsCat, type = "metric", fix = "u3")

Use the result from the measurementInvarianceCat function
model <- ' f1 <- u1 + u2 + u3 + u4
f2 <- u5 + u6 + u7 + u8'

modelsCat2 <- measurementInvarianceCat(model, data = datCat, group = "g",
parameterization="theta", estimator="wlsmv", strict = TRUE)

partialInvarianceCat(modelsCat2, type = "scalar")

End(Not run)

plotProbes \hspace{1em} **Plot the graphs for probing latent interaction**

Description

This function will plot the line graphs representing the simple effect of the independent variable given the values of the moderator.

Usage

```r
plotProbes(object, xlim, xlab="Indepedent Variable", ylab="Dependent Variable", ...)
```

Arguments

- `object` The result of probing latent interaction obtained from `probe2WayMC`, `probe2WayRC`, `probe3WayMC`, or `probe3WayRC` function.
- `xlim` The vector of two numbers: the minimum and maximum values of the independent variable
- `xlab` The label of the x-axis
- `ylab` The label of the y-axis
- `...` Any addition argument for the `plot` function

Value

None. This function will plot the simple main effect only.

Author(s)

Sunthud Pornprasertmanit (Texas Tech University; <sunthud.pornprasertmanit@ttu.edu>)
See Also

- `indProd` For creating the indicator products with no centering, mean centering, double-mean centering, or residual centering.
- `probe2WayMC` For probing the two-way latent interaction when the results are obtained from mean-centering, or double-mean centering.
- `probe3WayMC` For probing the three-way latent interaction when the results are obtained from mean-centering, or double-mean centering.
- `probe2WayRC` For probing the two-way latent interaction when the results are obtained from residual-centering approach.
- `probe3WayRC` For probing the two-way latent interaction when the results are obtained from residual-centering approach.

Examples

library(lavaan)

dat2wayMC <- indProd(dat2way, 1:3, 4:6)

model1 <- "
f1 <- x1 + x2 + x3
f2 <- x4 + x5 + x6
f12 <- x1.x4 + x2.x5 + x3.x6
f3 <- x7 + x8 + x9
f3 ~ f1 + f2 + f12
f12 ~~ 0*f1
f12 ~~ 0*f2
x1 ~ 0*x1
x4 ~ 0*x1
x1.x4 ~ 0*x1
x7 ~ 0*x1
f1 ~ NA*x1
f2 ~ NA*x1
f12 ~ NA*x1
f3 ~ NA*x1
"

fitMC2way <- sem(model1, data=dat2wayMC, meanstructure=TRUE, std.lv=FALSE)
result2wayMC <- probe2WayMC(fitMC2way, c("f1", "f2", "f12"), "f3", "f2", c(-1, 0, 1))
plotProbe(result2wayMC, xlim=c(-2, 2))

dat3wayMC <- indProd(dat3way, 1:3, 4:6, 7:9)

model3 <- "
f1 <- x1 + x2 + x3
f2 <- x4 + x5 + x6
f3 <- x7 + x8 + x9
f12 <- x1.x4 + x2.x5 + x3.x6
f13 <- x1.x7 + x2.x8 + x3.x9
f23 <- x4.x7 + x5.x8 + x6.x9
"
plotRMSEAdist

Plot the sampling distributions of RMSEA

Description

Plots the sampling distributions of RMSEA based on the noncentral chi-square distributions

Usage

plotRMSEAdist(rmse, n, df, ptile=NULL, caption=NULL, rmseaScale = TRUE, group=1)

```r
f123 <- x1.x4.x7 + x2.x5.x8 + x3.x6.x9
f4 <- x10 + x11 + x12
f4 ~ f1 + f2 + f3 + f12 + f13 + f23 + f123
f1 ~ 0*f12
f1 ~ 0*f13
f1 ~ 0*f123
f2 ~ 0*f12
f2 ~ 0*f23
f2 ~ 0*f123
f3 ~ 0*f13
f3 ~ 0*f23
f3 ~ 0*f123
f12 ~ 0*f123
f13 ~ 0*f123
f23 ~ 0*f123
x1 ~ 0*x1
x4 ~ 0*x1
x7 ~ 0*x1
x10 ~ 0*x1
x1.x4 ~ 0*x1
x1.x7 ~ 0*x1
x4.x7 ~ 0*x1
x1.x4.x7 ~ 0*x1
f1 ~ NA*x1
f2 ~ NA*x1
f3 ~ NA*x1
f12 ~ NA*x1
f13 ~ NA*x1
f23 ~ NA*x1
f123 ~ NA*x1
f4 ~ NA*x1

fitMC3way <- sem(model3, data=dat3wayMC, meanstructure=TRUE, std.lv=FALSE)
result3wayMC <- probe3WayMC(fitMC3way, c("f1", "f2", "f3", "f12", "f13", "f23", "f123"),
                         "f4", c("f1", "f2"), c(-1, 0, 1), c(-1, 0, 1))
plotProbe(result3wayMC, xlim=c(-2, 2))
```
Arguments

- **rmsea**: The vector of RMSEA values to be plotted
- **n**: Sample size of a dataset
- **df**: Model degrees of freedom
- **ptile**: The percentile rank of the distribution of the first RMSEA that users wish to plot a vertical line in the resulting graph
- **caption**: The name vector of each element of rmsea
- **rmseaScale**: If TRUE, the RMSEA scale is used in the x-axis. If FALSE, the chi-square scale is used in the x-axis.
- **group**: The number of group that is used to calculate RMSEA.

Details

This function creates overlapping plots of the sampling distribution of RMSEA based on non-central chi-square distribution (MacCallum, Browne, & Sugawara, 1996). First, the noncentrality parameter (λ) is calculated from RMSEA (Steiger, 1998; Dudgeon, 2004) by

$$\lambda = (N - 1) \frac{d\varepsilon^2}{K},$$

where \(N \) is sample size, \(d \) is the model degree of freedom, \(K \) is the number of group and \(\varepsilon \) is the population RMSEA. Next, the noncentral chi-square distribution with a specified degree of freedom and noncentrality parameter is plotted. Thus, the x-axis represent the sample chi-square value. The sample chi-square value can be transformed to the sample RMSEA scale (\(\hat{\varepsilon} \)) by

$$\hat{\varepsilon} = \sqrt{K} \sqrt{\frac{\chi^2 - d}{(N - 1)d}},$$

where \(\chi^2 \) is the chi-square value obtained from the noncentral chi-square distribution.

Author(s)

Sunthud Pornprasertmanit (Texas Tech University; <sunthud.pornprasertmanit@ttu.edu>)

References

See Also

- `plotRMSEApower` to plot the statistical power based on population RMSEA given the sample size
- `findRMSEApower` to find the statistical power based on population RMSEA given a sample size
- `findRMSEAsamplesize` to find the minimum sample size for a given statistical power based on population RMSEA

Examples

```r
plotRMSEAdist(rmseA=c(0.05, 0.08), n=200, df=20, ptile=0.95, rmseaScale = TRUE)
plotRMSEAdist(rmseA=c(0.05, 0.01), n=200, df=20, ptile=0.05, rmseaScale = FALSE)
```

plotRMSEApower

Plot power curves for RMSEA

Description

Plots power of RMSEA over a range of sample sizes

Usage

```r
plotRMSEApower(rmse0, rmseaA, df, nlow, nhigh, steps=1, alpha=.05, group=1, ...)
```

Arguments

- `rmsea0`: Null RMSEA
- `rmseaA`: Alternative RMSEA
- `df`: Model degrees of freedom
- `nlow`: Lower sample size
- `nhigh`: Upper sample size
- `steps`: Increase in sample size for each iteration. Smaller values of steps will lead to more precise plots. However, smaller step sizes means a longer run time.
- `alpha`: Alpha level used in power calculations
- `group`: The number of group that is used to calculate RMSEA.
- `...`: The additional arguments for the plot function.

Details

This function creates plot of power for RMSEA against a range of sample sizes. The plot places sample size on the horizontal axis and power on the vertical axis. The user should indicate the lower and upper values for sample size and the sample size between each estimate ("step size") We strongly urge the user to read the sources below (see References) before proceeding. A web version of this function is available at: http://quantpsy.org/rmsea/rmseaplot.htm.
plotRMSEApower

Value

1. plot Plot of power for RMSEA against a range of sample sizes

Author(s)

Alexander M. Schoemann (East Carolina University; <schoemanna@ecu.edu>) Kristopher J. Preacher (Vanderbilt University; <kris.preacher@vanderbilt.edu>) Donna L. Coffman (Pennsylvania State University; <dlc3@psu.edu>)

References

See Also

- plotRMSEAdist to visualize the RMSEA distributions
- findRMSEApower to find the statistical power based on population RMSEA given a sample size
- findRMSEAsamplesize to find the minimum sample size for a given statistical power based on population RMSEA

Examples

plotRMSEApower(.025, .075, 23, 100, 500, 10)
plotRMSEApowernested
Plot power of nested model RMSEA

Description
Plot power of nested model RMSEA over a range of possible sample sizes.

Usage
```r
plotRMSEApowernested(rmsea0A = NULL, rmsea0B = NULL, rmsea1A, rmsea1B = NULL, dfA, dfB, nlow, nhigh, steps=1, alpha=.05, group=1, ...)
```

Arguments
- `rmsea0A`: The H0 baseline RMSEA.
- `rmsea0B`: The H0 alternative RMSEA (trivial misfit).
- `rmsea1A`: The H1 baseline RMSEA.
- `rmsea1B`: The H1 alternative RMSEA (target misfit to be rejected).
- `dfA`: degree of freedom of the more-restricted model.
- `dfB`: degree of freedom of the less-restricted model.
- `nlow`: Lower bound of sample size.
- `nhigh`: Upper bound of sample size.
- `steps`: Step size.
- `alpha`: The alpha level.
- `group`: The number of group in calculating RMSEA.
- `...`: The additional arguments for the plot function.

Author(s)
Bell Clinton (University of Kansas; <clintonbell@ku.edu>); Pavel Panko (Texas Tech University; <pavel.panko@ttu.edu>); Sunthud Pornprasertmanit (Texas Tech University; <sunthud.pornprasertmanit@ttu.edu>)

References

See Also
- `findRMSEApowernested` to find the power for a given sample size in nested model comparison based on population RMSEA
- `findRMSEAamplesizenested` to find the minimum sample size for a given statistical power in nested model comparison based on population RMSEA
Examples

plotRMSEApowernested(rmsea0A = 0, rmsea0B = 0, rmsea1A = 0.06, rmsea1B = 0.05,
dfA=22, dfB=20, nlow=50, nhigh=500, steps=1, alpha=.05, group=1)

probe2WayMC Probing two-way interaction on the residual-centered latent interaction

Description

Probing interaction for simple intercept and simple slope for the no-centered or mean-centered latent two-way interaction

Usage

probe2WayMC(fit, nameX, nameY, modVar, valProbe)

Arguments

fit The lavaan model object used to evaluate model fit
nameX The vector of the factor names used as the predictors. The first-order factor will be listed first. The last name must be the name representing the interaction term.
nameY The name of factor that is used as the dependent variable.
modVar The name of factor that is used as a moderator. The effect of the other independent factor on each moderator variable value will be probed.
valProbe The values of the moderator that will be used to probe the effect of the other independent factor.

Details

Before using this function, researchers need to make the products of the indicators between the first-order factors using mean centering (Marsh, Wen, & Hau, 2004). Note that the double-mean centering may not be appropriate for probing interaction if researchers are interested in simple intercepts. The mean or double-mean centering can be done by the indProd function. The indicator products can be made for all possible combination or matched-pair approach (Marsh et al., 2004). Next, the hypothesized model with the regression with latent interaction will be used to fit all original indicators and the product terms. See the example for how to fit the product term below. Once the lavaan result is obtained, this function will be used to probe the interaction.

Let that the latent interaction model regressing the dependent variable (Y) on the independent variable (X) and the moderator (Z) be

\[Y = b_0 + b_1 X + b_2 Z + b_3 XZ + r, \]

where \(b_0 \) is the estimated intercept or the expected value of \(Y \) when both \(X \) and \(Z \) are 0, \(b_1 \) is the effect of \(X \) when \(Z \) is 0, \(b_2 \) is the effect of \(Z \) when \(X \) is 0, \(b_3 \) is the interaction effect between \(X \) and \(Z \), and \(r \) is the residual term.
For probing two-way interaction, the simple intercept of the independent variable at each value of the moderator (Aiken & West, 1991; Cohen, Cohen, West, & Aiken, 2003; Preacher, Curran, & Bauer, 2006) can be obtained by

\[b_{0|X=0,Z} = b_0 + b_2Z. \]

The simple slope of the independent variable at each value of the moderator can be obtained by

\[b_{X|Z} = b_1 + b_3Z. \]

The variance of the simple intercept formula is

\[Var (b_{0|X=0,Z}) = Var (b_0) + 2ZCov (b_0, b_2) + Z^2Var (b_2) \]

where \(Var \) denotes the variance of a parameter estimate and \(Cov \) denotes the covariance of two parameter estimates.

The variance of the simple slope formula is

\[Var (b_{X|Z}) = Var (b_1) + 2ZCov (b_1, b_3) + Z^2Var (b_3) \]

Wald statistic is used for test statistic.

Value

A list with two elements:

1. **SimpleIntercept** The intercepts given each value of the moderator. This element will be shown only if the factor intercept is estimated (e.g., not fixed as 0).
2. **SimpleSlope** The slopes given each value of the moderator.

In each element, the first column represents the values of the moderators specified in the `valProbe` argument. The second column is the simple intercept or simple slope. The third column is the standard error of the simple intercept or simple slope. The fourth column is the Wald (z) statistic. The fifth column is the \(p \)-value testing whether the simple intercepts or slopes are different from 0.

Author(s)

Sunthud Pornprasertmanit (Texas Tech University; <sunthud.pornprasertmanit@ttu.edu>)

References

See Also

- `indprod` For creating the indicator products with no centering, mean centering, double-mean centering, or residual centering.
- `probe3WayMC` For probing the three-way latent interaction when the results are obtained from mean-centering, or double-mean centering.
- `probe2WayRC` For probing the two-way latent interaction when the results are obtained from residual-centering approach.
- `probe3WayRC` For probing the two-way latent interaction when the results are obtained from residual-centering approach.
- `plotProbe` Plot the simple intercepts and slopes of the latent interaction.

Examples

```r
library(lavaan)

dat2wayMC <- indProd(dat2way, 1:3, 4:6)

model1 <- "
  f1 =~ x1 + x2 + x3
  f2 =~ x4 + x5 + x6
  f12 =~ x1.x4 + x2.x5 + x3.x6
  f3 =~ x7 + x8 + x9
  f3 ~ f1 + f2 + f12
  f12 ~~ 0*f1
  f12 ~~ 0*f2
  x1 ~ 0*1
  x4 ~ 0*1
  x1.x4 ~ 0*1
  x7 ~ 0*1
  f1 ~ NA*1
  f2 ~ NA*1
  f12 ~ NA*1
  f3 ~ NA*1
"

fitMC2way <- sem(model1, data=dat2wayMC, meanstructure=TRUE, std.lv=FALSE)
summary(fitMC2way)

result2wayMC <- probe2WayMC(fitMC2way, c("f1", "f2", "f12", "f3", "f2", c(-1, 0, 1))
result2wayMC
```

probe2WayRC

Probing two-way interaction on the residual-centered latent interaction

Description

Probing interaction for simple intercept and simple slope for the residual-centered latent two-way interaction (Pornprasertmanit, Schoemann, Geldhof, & Little, submitted)
Usage

probe2WayRC(fit, nameX, nameY, modVar, valProbe)

Arguments

fit The lavaan model object used to evaluate model fit
nameX The vector of the factor names used as the predictors. The first-order factor will
 be listed first. The last name must be the name representing the interaction term.
nameY The name of factor that is used as the dependent variable.
modVar The name of factor that is used as a moderator. The effect of the other indepen-
 dent factor on each moderator variable value will be probed.
valProbe The values of the moderator that will be used to probe the effect of the other
 independent factor.

Details

Before using this function, researchers need to make the products of the indicators between the first-
order factors and residualize the products by the original indicators (Lance, 1988; Little, Bovaird,
& Widaman, 2006). The process can be automated by the indProd function. Note that the indicator
products can be made for all possible combination or matched-pair approach (Marsh et al., 2004).
Next, the hypothesized model with the regression with latent interaction will be used to fit all
original indicators and the product terms. To use this function the model must be fit with a mean
structure. See the example for how to fit the product term below. Once the lavaan result is obtained,
this function will be used to probe the interaction.

The probing process on residual-centered latent interaction is based on transforming the residual-
centered result into the no-centered result. See Pornprasertmanit, Schoemann, Geldhof, and Little
(submitted) for further details. Note that this approach based on a strong assumption that the first-
order latent variables are normally distributed. The probing process is applied after the no-centered
result (parameter estimates and their covariance matrix among parameter estimates) has been com-
puted. See the probe2WayMC for further details.

Value

A list with two elements:

1. SimpleIntercept The intercepts given each value of the moderator. This element will be shown
 only if the factor intercept is estimated (e.g., not fixed as 0).
2. SimpleSlope The slopes given each value of the moderator.

In each element, the first column represents the values of the moderators specified in the valProbe
argument. The second column is the simple intercept or simple slope. The third column is the
standard error of the simple intercept or simple slope. The fourth column is the Wald (z) statistic.
The fifth column is the p-value testing whether the simple intercepts or slopes are different from 0.

Author(s)

Sunthud Pornprasertmanit (Texas Tech University; <sunthud.pornprasertmanit@ttu.edu>)
References

See Also

• indProd For creating the indicator products with no centering, mean centering, double-mean centering, or residual centering.
• probe2WayMC For probing the two-way latent interaction when the results are obtained from mean-centering, or double-mean centering.
• probe3WayMC For probing the three-way latent interaction when the results are obtained from mean-centering, or double-mean centering.
• probe3WayRC For probing the two-way latent interaction when the results are obtained from residual-centering approach.
• plotProbe Plot the simple intercepts and slopes of the latent interaction.

Examples

library(lavaan)

dat2wayRC <- orthogonalize(dat2way, 1:3, 4:6)

model1 <- "
f1 <- x1 + x2 + x3
f2 <- x4 + x5 + x6
f12 <- x1.x4 + x2.x5 + x3.x6
f3 <- x7 + x8 + x9
f3 ~ f1 + f2 + f12
f12 ~ 0*f1
f12 ~ 0*f2
x1 ~ 0*x1
x4 ~ 0*x1
x1.x4 ~ 0*x1
x7 ~ 0*x1
f1 ~ NA*x1
f2 ~ NA*x1
f12 ~ NA*x1
f3 ~ NA*x1
"
Description

Probing interaction for simple intercept and simple slope for the no-centered or mean-centered latent two-way interaction.

Usage

```r
probe3WayMC(fit, nameX, nameY, modVar, valProbe1, valProbe2)
```

Arguments

- `fit`:
The lavaan model object used to evaluate model fit.
- `nameX`:
The vector of the factor names used as the predictors. The three first-order factors will be listed first. Then the second-order factors will be listed. The last element of the name will represent the three-way interaction. Note that the fourth element must be the interaction between the first and the second variables. The fifth element must be the interaction between the first and the third variables. The sixth element must be the interaction between the second and the third variables.
- `nameY`:
The name of factor that is used as the dependent variable.
- `modVar`:
The name of two factors that are used as the moderators. The effect of the independent factor on each combination of the moderator variable values will be probed.
- `valProbe1`:
The values of the first moderator that will be used to probe the effect of the independent factor.
- `valProbe2`:
The values of the second moderator that will be used to probe the effect of the independent factor.

Details

Before using this function, researchers need to make the products of the indicators between the first-order factors using mean centering (Marsh, Wen, & Hau, 2004). Note that the double-mean centering may not be appropriate for probing interaction if researchers are interested in simple intercepts. The mean or double-mean centering can be done by the `indProd` function. The indicator products can be made for all possible combination or matched-pair approach (Marsh et al., 2004).
Next, the hypothesized model with the regression with latent interaction will be used to fit all original indicators and the product terms. See the example for how to fit the product term below. Once the lavaan result is obtained, this function will be used to probe the interaction.

Let that the latent interaction model regressing the dependent variable \(Y \) on the independent variable \((X) \) and two moderators \((Z \) and \(W)\) be

\[
Y = b_0 + b_1 X + b_2 Z + b_3 W + b_4 XZ + b_5 XW + b_6 ZW + b_7 XZW + r,
\]

where \(b_0 \) is the estimated intercept or the expected value of \(Y \) when \(X, Z, \) and \(W \) are 0, \(b_1 \) is the effect of \(X \) when \(Z \) and \(W \) are 0, \(b_2 \) is the effect of \(Z \) when \(X \) and \(W \) is 0, \(b_3 \) is the effect of \(W \) when \(X \) and \(Z \) are 0, \(b_4 \) is the interaction effect between \(X \) and \(Z \) when \(W \) is 0, \(b_5 \) is the interaction effect between \(X \) and \(W \) when \(Z \) is 0, \(b_6 \) is the interaction effect between \(Z \) and \(W \) when \(X \) is 0, \(b_7 \) is the three-way interaction effect between \(X, Z, \) and \(W, \) and \(r \) is the residual term.

For probing three-way interaction, the simple intercept of the independent variable at the specific values of the moderators (Aiken & West, 1991) can be obtained by

\[
b_{0|X=0,Z,W} = b_0 + b_2 Z + b_3 W + b_6 ZW.
\]

The simple slope of the independent variable at the specific values of the moderators can be obtained by

\[
b_{X|Z,W} = b_1 + b_3 Z + b_4 W + b_7 ZW.
\]

The variance of the simple intercept formula is

\[
Var \left(b_{0|X=0,Z,W} \right) = Var \left(b_0 \right) + Z^2 Var \left(b_2 \right) + W^2 Var \left(b_3 \right) + Z^2 W^2 Var \left(b_6 \right) + 2 Z Cov \left(b_0, b_2 \right) + 2 W Cov \left(b_0, b_3 \right) + 2 ZW Cov \left(b_6, \right)
\]

where \(Var \) denotes the variance of a parameter estimate and \(Cov \) denotes the covariance of two parameter estimates.

The variance of the simple slope formula is

\[
Var \left(b_{X|Z,W} \right) = Var \left(b_1 \right) + Z^2 Var \left(b_4 \right) + W^2 Var \left(b_5 \right) + Z^2 W^2 Var \left(b_7 \right) + 2 Z Cov \left(b_1, b_4 \right) + 2 W Cov \left(b_1, b_5 \right) + 2 ZW Cov \left(b_4, b_5 \right)
\]

Wald statistic is used for test statistic.

Value

A list with two elements:

1. **SimpleIntercept** The intercepts given each value of the moderator. This element will be shown only if the factor intercept is estimated (e.g., not fixed as 0).
2. **SimpleSlope** The slopes given each value of the moderator.

In each element, the first column represents the values of the first moderator specified in the `val1Probe1` argument. The second column represents the values of the second moderator specified in the `val1Probe2` argument. The third column is the simple intercept or simple slope. The fourth column is the standard error of the simple intercept or simple slope. The fifth column is the Wald (\(z \)) statistic. The sixth column is the \(p \)-value testing whether the simple intercepts or slopes are different from 0.
Author(s)

Sunthud Pornprasertmanit (Texas Tech University; <sunthud.pornprasertmanit@ttu.edu>)

References

See Also

- `indProd` For creating the indicator products with no centering, mean centering, double-mean centering, or residual centering.
- `probe2WayMC` For probing the two-way latent interaction when the results are obtained from mean-centering, or double-mean centering.
- `probe2WayRC` For probing the two-way latent interaction when the results are obtained from residual-centering approach.
- `probe3WayRC` For probing the two-way latent interaction when the results are obtained from residual-centering approach.
- `plotProbe` Plot the simple intercepts and slopes of the latent interaction.

Examples

```r
library(lavaan)

dat3wayMC <- indProd(dat3way, 1:3, 4:6, 7:9)

model3 <- "
f1 ~ x1 + x2 + x3
f2 ~ x4 + x5 + x6
f3 ~ x7 + x8 + x9
f12 ~ x1.x4 + x2.x5 + x3.x6
f13 ~ x1.x7 + x2.x8 + x3.x9
f23 ~ x4.x7 + x5.x8 + x6.x9
f123 ~ x1.x4.x7 + x2.x5.x8 + x3.x6.x9
f4 ~ x10 + x11 + x12
f4 ~ f1 + f2 + f3 + f12 + f13 + f23 + f123
f1 ~ 0*f12
f1 ~ 0*f13
f1 ~ 0*f123
f2 ~ 0*f12
f2 ~ 0*f23
f2 ~ 0*f123
f3 ~ 0*f13
f3 ~ 0*f23
f3 ~ 0*f123
f12 ~ 0*f123
"
```
probe3WayRC

Probing three-way interaction on the residual-centered latent interaction

Description

Probing interaction for simple intercept and simple slope for the residual-centered latent three-way interaction (Pornprasertmanit, Schoemann, Geldhof, & Little, submitted)

Usage

probe3WayRC(fit, nameX, nameY, modVar, valProbe1, valProbe2)

Arguments

fit

The lavaan model object used to evaluate model fit

nameX

The vector of the factor names used as the predictors. The three first-order factors will be listed first. Then the second-order factors will be listed. The last element of the name will represent the three-way interaction. Note that the fourth element must be the interaction between the first and the second variables. The fifth element must be the interaction between the first and the third variables. The sixth element must be the interaction between the second and the third variables.
probesWayRC

The name of factor that is used as the dependent variable.

modVar
The name of two factors that are used as the moderators. The effect of the independent factor on each combination of the moderator variable values will be probed.

valProbe1
The values of the first moderator that will be used to probe the effect of the independent factor.

valProbe2
The values of the second moderator that will be used to probe the effect of the independent factor.

Details

Before using this function, researchers need to make the products of the indicators between the first-order factors and residualize the products by the original indicators (Lance, 1988; Little, Bovaird, & Widaman, 2006). The process can be automated by the `indProd` function. Note that the indicator products can be made for all possible combination or matched-pair approach (Marsh et al., 2004). Next, the hypothesized model with the regression with latent interaction will be used to fit all original indicators and the product terms (Geldhof, Pornprasertmanit, Schoemann, & Little, in press). To use this function the model must be fit with a mean structure. See the example for how to fit the product term below. Once the lavaan result is obtained, this function will be used to probe the interaction.

The probing process on residual-centered latent interaction is based on transforming the residual-centered result into the no-centered result. See Pornprasertmanit, Schoemann, Geldhof, and Little (submitted) for further details. Note that this approach based on a strong assumption that the first-order latent variables are normally distributed. The probing process is applied after the no-centered result (parameter estimates and their covariance matrix among parameter estimates) has been computed. See the `probe3WayMC` for further details.

Value

A list with two elements:

1. **SimpleIntercept** The intercepts given each value of the moderator. This element will be shown only if the factor intercept is estimated (e.g., not fixed as 0).

2. **SimpleSlope** The slopes given each value of the moderator.

In each element, the first column represents the values of the first moderator specified in the `valProbe1` argument. The second column represents the values of the second moderator specified in the `valProbe2` argument. The third column is the simple intercept or simple slope. The fourth column is the standard error of the simple intercept or simple slope. The fifth column is the Wald (z) statistic. The sixth column is the p-value testing whether the simple intercepts or slopes are different from 0.

Author(s)

Sunthud Pornprasertmanit (Texas Tech University; <sunthud.pornprasertmanit@ttu.edu>)
References

See Also

- `indProd` For creating the indicator products with no centering, mean centering, double-mean centering, or residual centering.
- `probe2WayMC` For probing the two-way latent interaction when the results are obtained from mean-centering, or double-mean centering.
- `probe3WayMC` For probing the three-way latent interaction when the results are obtained from mean-centering, or double-mean centering.
- `probe2WayRC` For probing the two-way latent interaction when the results are obtained from residual-centering approach.
- `plotProbe` Plot the simple intercepts and slopes of the latent interaction.

Examples

```r
library(lavaan)

data3wayRC <- orthogonalize(data3way, 1:3, 4:6, 7:9)

model3 <- 
  f1 =~ x1 + x2 + x3
  f2 =~ x4 + x5 + x6
  f3 =~ x7 + x8 + x9
  f12 =~ x1.x4 + x2.x5 + x3.x6
  f13 =~ x1.x7 + x2.x8 + x3.x9
  f23 =~ x4.x7 + x5.x8 + x6.x9
  f123 =~ x1.x4.x7 + x2.x5.x8 + x3.x6.x9
  f4 =~ x10 + x11 + x12
  f4 ~ f1 + f2 + f3 + f12 + f13 + f23 + f123
  f1 <- 0*f12
  f1 <- 0*f1
  f1 <- 0*f123
```
The `quark` function provides researchers with the ability to calculate and include component scores calculated by taking into account the variance in the original dataset and all of the interaction and polynomial effects of the data in the dataset.

Usage

```r
quark(data, id, order = 1, silent = FALSE)
```

R Code Example

```r
f2 <- 0*f12
f3 <- 0*f13
f12 <- 0*f123
f13 <- 0*f123
f23 <- 0*f123
x1 ~ 0*x1
x4 ~ 0*x1
x7 ~ 0*x1
x10 ~ 0*x1
x1.x4 ~ 0*x1
x1.x7 ~ 0*x1
x4.x7 ~ 0*x1
x1.x4.x7 ~ 0*x1
f1 ~ NA*x1
f2 ~ NA*x1
f3 ~ NA*x1
f12 ~ NA*x1
f13 ~ NA*x1
f23 ~ NA*x1
f123 ~ NA*x1
f4 ~ NA*x1
```

```r
fitRC3way <- sem(model3, data=dat3wayRC, meanstructure=TRUE, std.lv=FALSE)
summary(fitRC3way)

result3wayRC <- probe3WayRC(fitRC3way, c("f1", "f2", "f3", "f12", "f13", "f23", "f123"),
"f4", c("f1", "f2"), c(-1, 0, 1), c(-1, 0, 1))
result3wayRC
```
Arguments

data The data frame is a required component for quark. In order for quark to process a data frame, it must not contain any factors or text-based variables. All variables must be in numeric format. Identifiers and dates can be left in the data; however, they will need to be identified under the id argument.

id Identifiers and dates within the dataset will need to be acknowledged as quark cannot process these. Be acknowledging the the identifiers and dates as a vector of column numbers or variable names, quark will remove them from the data temporarily to complete its main processes. Among many potential issues of not acknowledging identifiers and dates are issues involved with imputation, product and polynomial effects, and principal component analysis.

order Order is an optional argument provided by quark that can be used when the imputation procedures in mice fails. Under some circumstances, mice cannot calculate missing values due to issues with extreme missingness. Should an error present itself stating a failure due to not having any columns selected, incorporate the argument order=2 into the quark function in order to reorder the imputation method procedure. Otherwise, the order is defaulted to 1. Example to rerun quark after imputation failure, quark.list <- quark(data=yourdataframe,id=vectorofIDs,order=2).

silent If FALSE, the details of the quark process are printed.

Details

The quark function calculates these component scores by first filling in the data via means of multiple imputation methods and then expanding the dataset by aggregating the non-overlapping interaction effects between variables by calculating the mean of the interactions and polynomial effects. The multiple imputation methods include one of iterative sampling and group mean substitution and multiple imputation using a polytomous regression algorithm (mice). During the expansion process, the dataset is expanded to three times its normal size (in width). The first third of the dataset contains all of the original data post imputation, the second third contains the means of the polynomial effects (squares and cubes), and the final third contains the means of the non-overlapping interaction effects. A full principal component analysis is conducted and the individual components are retained. The subsequent combinequark function provides researchers the control in determining how many components to extract and retain. The function returns the dataset as submitted (with missing values) and the component scores as requested for a more accurate multiple imputation in subsequent steps.

Value

The output value from using the quark function is a list. It will return a list with 7 components.

ID Columns Is a vector of the identifier columns entered when running quark.
ID Variables Is a subset of the dataset that contains the identifiers as acknowledged when running quark.
Used Data Is a matrix / dataframe of the data provided by user as the basis for quark to process.
Imputed Data Is a matrix / dataframe of the data after the multiple method imputation process.
Big Matrix Is the expanded product and polynomial matrix.
Principal Components

Is the entire dataframe of principal components for the dataset. This dataset will have the same number of rows of the big matrix, but will have 1 less column (as is the case with principal component analyses).

Percent Variance Explained

Is a vector of the percent variance explained with each column of principal components.

Author(s)

Steven R. Chesnut (Texas Tech University; <steven.chesnut@ttu.edu>), Danny Squire (Texas Tech University). The PCA code is copied and modified from the FactoMineR package. The function to print correlation matrix is copied from the psych package.

References

See Also

combinequark

Examples

```r
set.seed(123321)
library(lavaan)

dat <- HolzingerSwineford1939[,7:15]
misspat <- matrix(runif(nrow(dat) * 9) < .3, nrow(dat))
dat[misspat] <- NA
dat <- cbind(HolzingerSwineford1939[,1:3], dat)

quark.list <- quark(data = dat, id = c(1, 2))

final.data <- combinequark(quark = quark.list, percent = 80)
```

reliability

Calculate reliability values of factors

Description

Calculate reliability values of factors by coefficient omega

Usage

```
reliability(object)
```
Arguments

object The lavaan model object provided after running the cfa, sem, growth, or lavaan functions.

Details

The coefficient alpha (Cronbach, 1951) can be calculated by

$$\alpha = \frac{k}{k-1} \left(1 - \frac{\sum_{i=1}^{k} \sigma_{ii}}{\sum_{i=1}^{k} \sigma_{ii} + 2 \sum_{i<j} \sigma_{ij}}\right),$$

where k is the number of items in a factor, σ_{ii} is the item i observed variances, σ_{ij} is the observed covariance of items i and j.

The coefficient omega (Raykov, 2001) can be calculated by

$$\omega_1 = \frac{\left(\sum_{i=1}^{k} \lambda_i\right)^2 \text{Var}(\psi)}{\left(\sum_{i=1}^{k} \lambda_i\right)^2 \text{Var}(\psi) + \sum_{i=1}^{k} \theta_{ii} + 2 \sum_{i<j} \theta_{ij}},$$

where λ_i is the factor loading of item i, ψ is the factor variance, θ_{ii} is the variance of measurement errors of item i, and θ_{ij} is the covariance of measurement errors from item i and j.

The second coefficient omega (Bentler, 1972, 2009) can be calculated by

$$\omega_2 = 1 - \frac{\text{1}^\prime \Theta \text{1}}{\text{1}^\prime \hat{\Sigma} \text{1}},$$

where Θ is the measurement error covariance matrix, $\hat{\Sigma}$ is the model-implied covariance matrix, and 1 is the k-dimensional vector of 1. The first and the second coefficients omega will have different values if there are dual loadings (or the existence of method factors). The first coefficient omega can be viewed as the reliability controlling for the other factors. The second coefficient omega can be viewed as the unconditional reliability.

The third coefficient omega (McDonald, 1999), which is sometimes referred to hierarchical omega, can be calculated by

$$\omega_3 = \frac{\left(\sum_{i=1}^{k} \lambda_i\right)^2 \text{Var}(\psi)}{\text{1}^\prime \Sigma \text{1}},$$

where Σ is the observed covariance matrix. If the model fits the data well, the third coefficient omega will be similar to the other two. Note that if there is a directional effect in the model, all coefficients omega will use the total factor variances, which is calculated by the \text{impliedFactorCov} function.

In conclusion, ω_1, ω_2, and ω_3 are different in the denominator. The denominator of the first formula assumes that a model is congeneric factor model where measurement errors are not correlated. The second formula is accounted for correlated measurement errors. However, these two formulas
assume that the model-implied covariance matrix explains item relationships perfectly. The residuals are subject to sampling error. The third formula use observed covariance matrix instead of model-implied covariance matrix to calculate the observed total variance. This formula is the most conservative method in calculating coefficient omega.

The average variance extracted (AVE) can be calculated by

\[
AVE = \frac{1'(\text{diag})(\Lambda\Psi\Lambda')1}{1'(\text{diag})(\hat{\Sigma})1},
\]

Note that this formula is modified from Fornell & Larcker (1981) in the case that factor variances are not 1.

Regarding to categorical items, coefficient alpha and AVE are calculated based on polychoric correlations. The coefficient alpha from this function may be not the same as the standard alpha calculation for categorical items. Researchers may check the \texttt{alpha} function in the \texttt{psych} package for the standard coefficient alpha calculation.

Item thresholds are not accounted for. Coefficient omega for categorical items, however, is calculated by accounting for both item covariances and item thresholds using Green and Yang’s (2009, formula 21) approach. Three types of coefficient omega indicate different methods to calculate item total variances. The original formula from Green and Yang is equivalent to \(\omega_3\) in this function.

\section*{Value}

Reliability values (coefficient alpha, coefficients omega, average variance extracted) of each factor in each group

\section*{Author(s)}

Sunthud Pornprasertmanit (Texas Tech University; <sunthud.pornprasertmanit@ttu.edu>); Yves Rosseel (Ghent University; <Yves.Rosseel@UGent.be>)

\section*{References}

Bentler, P. M. (1972). A lower-bound method for the dimension-free measurement of internal consistency. \textit{Social Science Research, 1}, 343-357.

See Also

reliabilityL2 for reliability value of a desired second-order factor, maximalRelia for the maximal reliability of weighted composite

Examples

library(lavaan)

HS.model <- ' visual =~ x1 + x2 + x3
 textual =~ x4 + x5 + x6
 speed =~ x7 + x8 + x9'

fit <- cfa(HS.model, data=HolzingerSwineford1939)
reliability(fit)

reliabilityL2

Calculate the reliability values of a second-order factor

Description

Calculate the reliability values (coefficient omega) of a second-order factor

Usage

reliabilityL2(object, secondFactor)

Arguments

object The lavaan model object provided after running the cfa, sem, growth, or lavaan functions that has a second-order factor
secondFactor The name of the second-order factor

Details

The first formula of the coefficient omega (in the reliability) will be mainly used in the calculation. The model-implied covariance matrix of a second-order factor model can be separated into three sources: the second-order factor, the uniqueness of the first-order factor, and the measurement error of indicators:

\[\hat{\Sigma} = \Lambda B \Phi_2 B' \Lambda' + \Lambda \Psi_u \Lambda' + \Theta, \]

where \(\hat{\Sigma} \) is the model-implied covariance matrix, \(\Lambda \) is the first-order factor loading, \(B \) is the second-order factor loading, \(\Phi_2 \) is the covariance matrix of the second-order factors, \(\Psi_u \) is the covariance matrix of the unique scores from first-order factors, and \(\Theta \) is the covariance matrix of the measurement errors from indicators. Thus, the proportion of the second-order factor explaining the total score, or the coefficient omega at Level 1, can be calculated:
\[\omega_{L1} = \frac{1' \Lambda \Phi_2 B' \Lambda' 1}{1' \Lambda B \Phi_2 B' \Lambda' 1 + 1' \Lambda \Psi_u \Lambda' 1 + 1' \Theta 1}, \]

where \(1 \) is the \(k \)-dimensional vector of 1 and \(k \) is the number of observed variables. When model-implied covariance matrix among first-order factors (\(\Phi_1 \)) can be calculated:

\[\Phi_1 = B \Phi_2 B' + \Psi_u, \]

Thus, the proportion of the second-order factor explaining the variance at first-order factor level, or the coefficient omega at Level 2, can be calculated:

\[\omega_{L2} = \frac{1' _F B \Phi_2 B' _F}{1' _F B \Phi_2 B' _F + 1' _F \Psi_u _F}, \]

where \(1_F \) is the \(F \)-dimensional vector of 1 and \(F \) is the number of first-order factors.

The partial coefficient omega at Level 1, or the proportion of observed variance explained by the second-order factor after partialling the uniqueness from the first-order factor, can be calculated:

\[\omega_{L1} = \frac{1' \Lambda \Phi_2 B' \Lambda' 1}{1' \Lambda B \Phi_2 B' \Lambda' 1 + 1' \Theta 1}. \]

Note that if the second-order factor has a direct factor loading on some observed variables, the observed variables will be counted as first-order factors.

Value

Reliability values at Levels 1 and 2 of the second-order factor, as well as the partial reliability value at Level 1

Author(s)

Sunthud Pornprasertmanit (Texas Tech University; <sunthud.pornprasertmanit@ttu.edu>)

See Also

reliability for the reliability of the first-order factors.

Examples

```r
library(lavaan)

HS.model3 <- ' visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9
higher =~ visual + textual + speed'

fit6 <- cfa(HS.model3, data=HolzingerSwineford1939)
reliability(fit6) # Should provide a warning for the endogenous variable
reliabilityL2(fit6, "higher")
```
residualCovariate

Residual centered all target indicators by covariates

Description

This function will regress target variables on the covariate and replace the target variables by the residual of the regression analysis. This procedure is useful to control the covariate from the analysis model (Geldhof, Pornprasertmanit, Schoemann, & Little, in press).

Usage

residualCovariate(data, targetVar, covVar)

Arguments

data The desired data to be transformed.
targetVar Variable names or the position of indicators that users wish to be residual centered (as dependent variables)
covVar Covariate names or the position of the covariates using for residual centering (as independent variables) onto target variables

Value

The data that the target variables replaced by the residuals

Author(s)

Sunthud Pornprasertmanit (Texas Tech University; <sunthud.pornprasertmanit@ttu.edu>)

References

See Also

indProd For creating the indicator products with no centering, mean centering, double-mean centering, or residual centering.

Examples

dat <- residualCovariate(attitude, 2:7, 1)
Implement orthogonal or oblique rotation

Description

These functions will implement orthogonal or oblique rotation on standardized factor loadings from a lavaan output.

Usage

orthRotate(object, method="varimax", ...)
oblqRotate(object, method="quartimin", ...)
funRotate(object, fun, ...)

Arguments

object A lavaan output

method The method of rotations, such as "varimax", "quartimax", "geomin", "oblimin", or any gradient projection algorithms listed in the GPA function in the GPArotation package.

fun The name of the function that users wish to rotate the standardized solution. The functions must take the first argument as the standardized loading matrix and return the GPArotation object. Check this page for available functions: rotations.

... Additional arguments for the GPForth function (for orthRotate), the GPFoblq function (for blqRotate), or the function that users provide in the fun argument.

Details

These functions will rotate the unrotated standardized factor loadings by orthogonal rotation using the GPForth function or oblique rotation using the GPFoblq function the GPArotation package. The resulting rotation matrix will be used to calculate standard errors of the rotated standardized factor loading by delta method by numerically computing the Jacobian matrix by the lavJacobianD function in the lavaan package.

Value

An linksS4class{EFA} object that saves the rotated EFA solution.

Author(s)

Sunthud Pornprasertmanit (Texas Tech University; <sunthud.pornprasertmanit@ttu.edu>)
Examples

library(lavaan)

unrotated <- efaUnrotate(HolzingerSwineford1939, nf=3, varList=paste0("x", 1:9), estimator="mle")

Orthogonal varimax
out.varimax <- orthRotate(unrotated, method="varimax")
summary(out.varimax, sort=FALSE, suppress=0.3)

Orthogonal Quartimin
orthRotate(unrotated, method="quartimin")

Oblique Quartimin
obloqRotate(unrotated, method="quartimin")

Geomin
obloqRotate(unrotated, method="geomin")

Not run:
Target rotation
library(GPArotation)
target <- matrix(0, 9, 3)
target[1:3, 1] <- NA
target[4:6, 2] <- NA
target[7:9, 3] <- NA
colnames(target) <- c("factor1", "factor2", "factor3")
This function works with GPArotation version 2012.3-1
funRotate(unrotated, fun="targetQ", Target=target)

End(Not run)

runMI

Multiply impute and analyze data using lavaan

Description

This function takes data with missing observations, multiple imputes the data, runs a SEM using lavaan and combines the results using Rubin’s rules. Note that parameter estimates and standard errors are pooled by the Rubin’s (1987) rule. The chi-square statistics and the related fit indices are pooled by the method described in “chi” argument. SRMR is calculated based on the average model-implied means and covariance matrices across imputations.

Usage

runMI(model, data, m, miArgs=list(), chi="all", miPackage="Amelia", seed=12345, fun, ...)
cfa.mi(model, data, m, miArgs=list(), miPackage="Amelia", chi="all", seed=12345, ...)
sem.mi(model, data, m, miArgs=list(), miPackage="Amelia", chi="all", ...)

runMI
seed=12345, ...)
 growth.mi(model, data, m, miArgs=list(), miPackage="Amelia", chi="all",
 seed=12345, ...)
 lavaan.mi(model, data, m, miArgs=list(), miPackage="Amelia", chi="all",
 seed=12345, ...)

Arguments

 model lavaan syntax for the model to be analyzed.
 data Data frame with missing observations or a list of data frames where each data
 frame is one imputed data set (for imputed data generated outside of the func-
 tion). If a list of data frames is supplied, then other options can be left at the
 default.
 m Number of imputations wanted.
 miArgs Addition arguments for the multiple-imputation function. The arguments should
 be put in a list (see example below).
 miPackage Package to be used for imputation. Currently these functions only support
 "Amelia" or "mice" for imputation.
 chi The method to combine the chi-square. Can be one of the following: "mr" for
 the method proposed for Meng & Rubin (1992), "mplus" for the method used
 in Mplus (Asparouhov & Muthen, 2010), "mrr" for the method proposed by
 Li, Meng, Raghunathan, & Rubin (1991), "all" to show the three methods in
 the output, and "none" to not pool any chi-square values. The default is "all".
 seed Random number seed to be used in imputations.
 fun The character of the function name used in running lavaan model ("cfa", "sem",
 "growth", "lavaan").
 ... Other arguments to be passed to the specified lavaan function ("cfa", "sem",
 "growth", "lavaan").

Value

 The lavaanStar object which contains the original lavaan object (where the appropriate parameter
 estimates, appropriate standard errors, and chi-squares are filled), the additional fit-index values of
 the null model, which need to be adjusted to multiple datasets, and the information from pooling
 multiple results.

Author(s)

 Alexander M. Schoemann (East Carolina University; <schoemanna@ecu.edu>) Patrick Miller (Uni-
 versity of Notre Dame; <pmille13@nd.edu>) Sunthud Pornprasertmanit (Texas Tech University;
 <sunthud.pornprasertmanit@ttu.edu>) Mijke Rhemtulla (University of Amsterdam; <M.T.Rhemtulla@uva.nl>)
 Alexander Robitzsch (Federal Institute for Education Research, Innovation, and Development of
 the Austrian School System, Salzburg, Austria; <a.robitzsch@bifie.at>) Craig Enders (Arizona
 State University; <Craig.Enders@asu.edu>) Mauricio Garnier Villarreal (University of Kansas;
 <mgv@ku.edu>) Yves Rosseel (Ghent University; <Yves.Rosseel@UGent.be>)
References

Examples

```r
library(lavaan)

HS.model <- ' visual = x1 + x2 + x3
textual = x4 + x5 + x6
speed = x7 + x8 + x9 '

HSMiss <- HolzingerSwineford1939[,paste("x", 1:9, sep="" )]
randomMiss <- rbinom(prod(dim(HSMiss)), 1, 0.1)
randomMiss <- matrix(as.logical(randomMiss), nrow=nrow(HSMiss))
HSMiss[randomMiss] <- NA

out <- cfa.mi(HS.model, data=HSMiss, m = 3, chi="all")
summary(out)
inspect(out, "fit")
inspect(out, "impute")

## Not run:
##Multiple group example
HSMiss2 <- cbind(HSMiss, school = HolzingerSwineford1939[,"school"])
out2 <- cfa.mi(HS.model, data=HSMiss2, m = 3, miArgs=list(noms="school"), chi="MR", group="school")
summary(out2)
inspect(out2, "fit")
inspect(out2, "impute")

##Example using previously imputed data with runMI
library(Amelia)

modsim <- '
f1 = 0.7*y1+0.7*y2+0.7*y3
f2 = 0.7*y4+0.7*y5+0.7*y6
f3 = 0.7*y7+0.7*y8+0.7*y9

mod <- '
f1 = y1+y2+y3
f2 = y4+y5+y6
f3 = y7+y8+y9

datsim <- simulateData(modsim, model.type="cfa", meancstructure=TRUE,
std.lv=TRUE, sample.nobs=c(200,200))
randomMiss2 <- rbinom(prod(dim(datsim)), 1, 0.1)
```
saturateMx

Analyzing data using a saturate model

Description

Analyzing data using a saturate model by full-information maximum likelihood. In the saturate model, all means and covariances are free if items are continuous. For ordinal variables, their means are fixed as 0 and their variances are fixed as 1—their covariances and thresholds are estimated. In multiple-group model, all means are variances are separately estimated.

Usage

`saturateMx(data, groupLab = NULL)`

Arguments

data: The target data frame

groupLab: The name of grouping variable

Value

The `mxModel` object which contains the analysis result of the saturate model.

Author(s)

Sunthud Pornprasertmanit (Texas Tech University; <sunthud.pornprasertmanit@ttu.edu>)
See Also

nullMx, fitMeasuresMx, standardizeMx

Examples

```r
## Not run:
library(OpenMx)
data(demoOneFactor)
satModel <- saturateMx(demoOneFactor)

## End(Not run)
```

simParcel
Simulated Data set to Demonstrate Random Allocations of Parcels

Description

A simulated data set with 2 factors with 9 indicators for each factor.

Usage

```r
data(simParcel)
```

Format

A data frame with 800 observations of 18 variables.

- `f1item1` Item 1 loading on factor 1
- `f1item2` Item 2 loading on factor 1
- `f1item3` Item 3 loading on factor 1
- `f1item4` Item 4 loading on factor 1
- `f1item5` Item 5 loading on factor 1
- `f1item6` Item 6 loading on factor 1
- `f1item7` Item 7 loading on factor 1
- `f1item8` Item 8 loading on factor 1
- `f1item9` Item 9 loading on factor 1
- `f2item1` Item 1 loading on factor 2
- `f2item2` Item 2 loading on factor 2
- `f2item3` Item 3 loading on factor 2
- `f2item4` Item 4 loading on factor 2
- `f2item5` Item 5 loading on factor 2
- `f2item6` Item 6 loading on factor 2
- `f2item7` Item 7 loading on factor 2
- `f2item8` Item 8 loading on factor 2
- `f2item9` Item 9 loading on factor 2
Source

Data was generated using the simsem package.

Examples

head(simParcel)

singleParamTest Single Parameter Test Divided from Nested Model Comparison

Description

In comparing two nested models, chi-square test may indicate that two models are different. However, like other omnibus tests, researchers do not know which fixed parameters or constraints make these two models different. This function will help researchers identify the significant parameter.

Usage

singleParamTest(model1, model2, mi = TRUE, return.fit = FALSE)

Arguments

- model1: Model 1.
- model2: Model 2. Note that two models must be nested models. Further, the order of parameters in their parameter tables are the same. That is, nested models with different scale identifications may not be able to test by this function.
- mi: Provide the results from modification indices of the nested model
- return.fit: Return the submodels fitted by this function

Details

This function first identify the differences between these two models. The model with more free parameters is referred to as parent model and the model with less free parameters is referred to as nested model. Three tests are implemented here:

1. free: The nested model is used as a template. Then, one parameter indicating the differences between two models is free. The new model is compared with the nested model. This process is repeated for all differences between two models.
2. fix: The parent model is used as a template. Then, one parameter indicating the differences between two models is fixed or constrained to be equal to other parameters. The new model is then compared with the parent model. This process is repeated for all differences between two models.
3. mi: Modification indices of the differences between two models from the nested model are provided. The expected parameter changes are also provided, as well as standardized forms. sepc.lv = latent variables are standardized. sepc.all = latent variables and exogenous and endogenous observed variables are standardized. sepc.nox = latent variables and endogenous observed variables.
Note that this function does not adjust for the inflated Type I error rate from multiple tests.

Value

If `return.fit = FALSE`, the result tables are provided. Chi-square and p-value are provided for all methods. Note that the chi-square is all based on 1 degree of freedom. Expected parameter changes and their standardized forms are also provided.

If `return.fit = TRUE`, a list with two elements are provided. The first element is the tabular result. The second element is the submodels used in the `free` and `fix` methods.

Author(s)

Sunthud Pornprasertmanit (Texas Tech University; <sunthud.pornprasertmanit@ttu.edu>)

Examples

```r
library(lavaan)

# Nested model comparison by hand
HS.model1 <- ' visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6'
HS.model2 <- ' visual =~ a*x1 + a*x2 + a*x3
textual =~ b*x4 + b*x5 + b*x6'

m1 <- cfa(HS.model1, data = HolzingerSwineford1939, std.lv=TRUE, estimator="MLR")
m2 <- cfa(HS.model2, data = HolzingerSwineford1939, std.lv=TRUE, estimator="MLR")
anova(m1, m2)
singleParamTest(m1, m2)

# Nested model comparison from the measurementInvariance function
HW.model <- ' visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9 '

models <- measurementInvariance(HW.model, data=HolzingerSwineford1939, group="school")
singleParamTest(models[[1]], models[[2]])

# Note that the comparison between weak (Model 2) and scalar invariance (Model 3) cannot be done
# by this function # because the weak invariance model fixes factor means as 0 in Group 2 but
# the strong invariance model frees the factor means in Group 2. Users may try to compare
# strong (Model 3) and means invariance models by this function.
```

Finding skewness

Description

Finding skewness (g1) of an object
Usage

skew(object, population=FALSE)

Arguments

object A vector used to find a skewness
population TRUE to compute the parameter formula. FALSE to compute the sample statistic formula.

Details

The skewness computed is g1. The parameter skewness γ_2 formula is

$$\gamma_2 = \frac{\mu_3}{\mu_2^{3/2}},$$

where μ_i denotes the i order central moment.

The excessive kurtosis formula for sample statistic g_2 is

$$g_2 = \frac{k_3}{k_2^2},$$

where k_i are the i order k-statistic.

The standard error of the skewness is

$$Var(\hat{g}_2) = \frac{6}{N}$$

where N is the sample size.

Value

A value of a skewness with a test statistic if the population is specified as FALSE

Author(s)

Sunthud Pornprasertmanit (Texas Tech University; <sunthud.pornprasertmanit@ttu.edu>)

References

See Also

- **kurtosis** Find the univariate excessive kurtosis of a variable
- **mardiaSkew** Find the Mardia’s multivariate skewness of a set of variables
- **mardiaKurtosis** Find the Mardia’s multivariate kurtosis of a set of variables
splitSample

Examples

```r
skew(1:5)
```

splitSample

Randomly Split a Data Set into Halves

Description

This function randomly splits a data set into two halves, and saves the resulting data sets to the same folder as the original.

Usage

```r
splitSample(dataset,path="default", div=2, type="default", name="splitSample")
```

Arguments

- **dataset**: The original data set to be divided. Can be a file path to a .csv or .dat file (headers will automatically be detected) or an R object (matrix or dataframe). (Windows users: file path must be specified using FORWARD SLASHES ONLY.)
- **path**: File path to folder for output data sets. NOT REQUIRED if dataset is a filename. Specify ONLY if dataset is an R object, or desired output folder is not that of original data set. If path is specified as "object", output data sets will be returned as a list, and not saved to hard drive.
- **div**: Number of output data sets. NOT REQUIRED if default, 2 halves.
- **type**: Output file format ("dat" or "csv"). NOT REQUIRED unless desired output formatting differs from that of input, or dataset is an R object and csv formatting is desired.
- **name**: Output file name. NOT REQUIRED unless desired output name differs from that of input, or input dataset is an R object. (If input is an R object and name is not specified, name will be "splitSample".)

Details

This function randomly orders the rows of a data set, divides the data set into two halves, and saves the halves to the same folder as the original data set, preserving the original formatting. Data set type (.csv or .dat) and formatting (headers) are automatically detected, and output data sets will preserve input type and formatting unless specified otherwise. Input can be in the form of a file path (.dat or .csv), or an R object (matrix or dataframe). If input is an R object and path is default, output data sets will be returned as a list object.

Value

- **dataL**: List of output data sets. ONLY IF dataset is an R object and path is default. Otherwise, output will saved to hard drive with the same formatting as input.
Author(s)
Corbin Quick (University of Michigan; <corbinq@umich.edu>)

Examples

Input is .dat file
```r
#splitSample("C:/Users/Default/Desktop/MYDATA.dat")
#### Output saved to "C:/Users/Default/Desktop/" in .dat format
#### Names are "MYDATA_s1.dat" and "MYDATA_s2.dat"

#### Input is R object
#Split CO2 dataset from the datasets package
library(datasets)
mydata <- splitSample(CO2, path="object")
summary(mydata[[1]])
summary(mydata[[2]])
#### Output object mydata becomes list of output data sets

#### Input is .dat file in "C:" folder
#splitSample("C:/testdata.dat", path = "C:/Users/Default/Desktop/", type = "csv")
#### Output saved to "C:/Users/Default/Desktop/" in .csv format
#### Names are "testdata_s1.csv" and "testdata_s2.csv"

#### Input is R object
#splitSample(myData, path = "C:/Users/Default/Desktop/", name = "splitdata")
#### Output saved to "C:/Users/Default/Desktop/" in .dat format
#### Names are "splitdata_s1.dat" and "splitdata_s2.dat"
```

SSpower

Power for model parameters

Description
Determines power for model parameters using the Satorra & Sarris (1985) method

Usage
```r
SSpower(popModel, n, powerModel, fun = "cfa", nparam = 1, alpha = .05, ...)
```

Arguments
- **popModel**: lavaan syntax for the population model. This model should specify population values for all parameters in the model.
- **n**: Sample size used in power calculation
- **powerModel**: lavaan syntax for the model to be analyzed. This syntax should have the parameter(s) of interest fixed to 0 (or some other number).
- **fun**: The character of the function name used in running lavaan model ("cfa", "sem", "growth", "lavaan")
npars The number of parameters one is constrained in `powerModel`.
alpha The Type I error rate used to assess power.
... Other arguments to be passed to the specified lavaan function ("cfa", "sem", "growth", "lavaan").

Author(s)
Alexander M. Schoemann (East Carolina University; <schoemanna@ecu.edu>)

References

Examples
library(lavaan)

#Specify population values. Note every parameter has a fixed value
modelP <- 'f1 =~ .7*V1 + .7*V2 + .7*V3 + .7*V4
f2 =~ .7*V5 + .7*V6 + .7*V7 + .7*V8
f1 ~~ .3*f2
f1 ~~ 1*f1
f2 ~~ 1*f2
V1 ~~ .51*V1
V2 ~~ .51*V2
V3 ~~ .51*V3
V4 ~~ .51*V4
V5 ~~ .51*V5
V6 ~~ .51*V6
V7 ~~ .51*V7
V8 ~~ .51*V8
',

#Specify model to be analyzed. Note parameter of interest f1--f2 is fixed to 0.
modelA <- 'f1 =~ V1 + V2 + V3 + V4
f2 =~ V5 + V6 + V7 + V8
f1 ~~ 0*f2
',

SSpower(modelP, 150, modelA, std.lv=TRUE)

#Get power for a range of values
standardizeMx

Find standardized estimates for OpenMx output

Description
Find standardized estimates for OpenMx output. This function is applicable for the \texttt{mxRAMObjective} only.

Usage
\begin{verbatim}
standardizeMx(object, free = TRUE)
\end{verbatim}

Arguments
\begin{itemize}
 \item \texttt{object} Target OpenMx output using \texttt{mxRAMObjective}
 \item \texttt{free} If \texttt{TRUE}, the function will show only standardized values of free parameters. If \texttt{FALSE}, the function will show the results for fixed and free parameters.
\end{itemize}

Value
A vector of standardized estimates

Author(s)
Sunthud Pornprasertmanit (Texas Tech University; <sunthud.pornprasertmanit@ttu.edu>)

See Also
\begin{verbatim}
saturateMx, nullMx, fitMeasuresMx
\end{verbatim}

Examples
\begin{verbatim}
Not run:
library(OpenMx)
data(myFADataRaw)
myFADataRaw <- myFADataRaw[,c("x1","x2","x3","x4","x5","x6")]
oneFactorModel <- mxModel("Common Factor Model Path Specification",
type="RAM",
xData(
observed=myFADataRaw,
type="raw"
)
\end{verbatim}
manifestVars=c("x1","x2","x3","x4","x5","x6"),
latentVars="F1",
mxPath(from=c("x1","x2","x3","x4","x5","x6"),
arrows=2,
free=TRUE,
values=c(1,1,1,1,1,1),
labels=c("e1","e2","e3","e4","e5","e6")
),
residual variances

mxPath(from="F1",
arrows=2,
free=TRUE,
values=1,
labels ="varF1"
),
latent variance

mxPath(from="F1",
to=c("x1","x2","x3","x4","x5","x6"),
arrows=1,
free=c(FALSE,TRUE,TRUE,TRUE,TRUE,TRUE),
values=c(1,1,1,1,1,1),
labels =c("11","12","13","14","15","16")
),
factor loadings

mxPath(from="one",
to=c("x1","x2","x3","x4","x5","x6","F1"),
arrows=1,
free=c(TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,FALSE),
values=c(1,1,1,1,1,1,0),
labels =c("meanx1","meanx2","meanx3","meanx4","meanx5","meanx6",NA)
)
means

) # close model
Create an MxModel object

oneFactorFit <- mxRun(oneFactorModel)
standardizeMx(oneFactorFit)

Compare with lavaan
library(lavaan)
script <- "f1 =~ x1 + x2 + x3 + x4 + x5 + x6"
fit <- cfa(script, data=myFADataram, meanstructure=TRUE)
standardize(fit)

End(Not run)
Description

This function computes Tukey’s WSD post-hoc test of means when variances and sample sizes are not equal across groups. It can be used as a post-hoc test when comparing latent means in multiple group SEM.

Usage

tukeySEM(m1, m2, var1, var2, n1, n2, ng)

Arguments

m1 Mean of group 1.
m2 Mean of group 2.
var1 Variance of group 1.
var2 Variance of group 2.
n1 Sample size of group 1.
n2 Sample size of group 2.
ng Total number of groups to be compared (i.e., the number of groups compared in the omnibus test).

Details

After conducting an omnibus test of means across three or more groups, researchers often wish to know which sets of means differ at a particular Type I error rate. Tukey’s WSD test holds the error rate stable across multiple comparisons of means. This function implements an adaptation of Tukey’s WSD test from Maxwell & Delaney (2004), that allows variances and sample sizes to differ across groups.

Value

A vector with three elements:

1. q The q statistic
2. df The degrees of freedom for the q statistic
3. p A p value based on the q statistic, degrees of freedom and the total number of groups to be compared

Author(s)

Alexander M. Schoemann (East Carolina University; <schoemanna@ecu.edu>)
wald

 Calculate multivariate Wald statistics

Description

Calculate multivariate Wald statistics based on linear combinations of model parameters

Usage

wald(object, syntax)

Arguments

object

An output from lavaan

syntax

Syntax that each line represents one linear constraint. A plus or minus sign is used to separate between each coefficient. An asterisk is used to separate between coefficients and parameters. The coefficient can have a forward slash to represent a division. The parameter names must be matched with the names of lavaan parameters investigated by running the coef function on a lavaan output. Lines can be separated by semi-colon. A pound sign is allowed for comments. Note that the defined parameters (created by ":=\) do not work with this function.
Details

The formula for multivariate Wald test is

$$
\chi^2 = (C\hat{b})' \left[C\hat{V}C' \right]^{-1} (C\hat{b}),
$$

where C is the contrast matrix, \hat{b} is the estimated fixed effect, \hat{V} is the asymptotic covariance matrix among fixed effects.

Value

Chi-square value with p value.

Author(s)

Sunthud Pornprasertmanit (Texas Tech University; <sunthud.pornprasertmanit@ttu.edu>)

Examples

Test the difference in factor loadings
library(lavaan)
HS.model <- ' visual =~ x1 + con1*x2 + con1*x3
textual =~ x4 + x5 + x6
speed =~ x7 + con2*x8 + con2*x9 '
fit <- cfa(HS.model, data=HolzingerSwineford1939)
wald(fit, "con2 - con1")

Simultaneously test the difference in the influences
of x1 and x2 on intercept and slope
model.syntax <- ' i =~ 1*t1 + 1*t2 + 1*t3 + 1*t4
s =~ 0*t1 + 1*t2 + 2*t3 + 3*t4
i ~ x1 + x2
s ~ x1 + x2
t1 ~ c1
t2 ~ c2
t3 ~ c3
t4 ~ c4 '

fit2 <- growth(model.syntax, data=Demo.growth)
wald.syntax <- ' i=x1 - 1*x2
1/2*s-x1 - 1/2*s=x2
'
wald(fit2, wald.syntax)

Mplus example of MODEL TEST
model3 <- ' f1 =~ x1 + p2*x2 + p3*x3 + p4*x4 + p5*x5 + p6*x6
p4 == 2*p2'
fit3 <- cfa(model3, data=HolzingerSwineford1939)
wald(fit3, "p3; p6 - 0.5*p5")
Index

auxiliary, 3, 36, 37

BootMiss, 8
BootMiss-class, 6
bsBootMiss, 6, 7
cfa, 17, 46, 48
cfa.auxiliary (auxiliary), 3
cfa.mi (runMI), 96
clipboard, 12, 24
clipboard (clipboard_saveFile), 9
clipboard_saveFile, 9
combinequark, 11, 88, 89
compareFit, 12, 23, 24
dat2way, 13
dat3way, 14
datCat, 15

EFA-class, 16
efaUnrotate, 16, 17
exLong, 18

factanal, 17
findRMSEapower, 19, 21, 22, 73, 74
findRMSEapowernested, 20, 23, 75
findRMSEAsamplesize, 20, 21, 73, 74
findRMSEAsamplesizenested, 21, 22, 75
FitDiff, 9, 12
FitDiff-class, 23
fitMeasures, 23
fitMeasuresMx, 24, 61, 100, 107
fmi, 25
funRotate (rotate), 95

GPA, 95
GPFobiq, 95
GForth, 95
growth.auxiliary (auxiliary), 3
growth.mi (runMI), 96

hist, BootMiss-method (BootMiss-class), 6
impliedFactorCov, 90
impliedFactorCov (impliedFactorStat), 27
impliedFactorMean (impliedFactorStat), 27
impliedFactorStat, 27
imposeStart, 28
indProd, 31, 70, 76, 78–81, 83, 85, 86, 94
inspect, lavaanStar-method (lavaanStar-class), 36

kd, 33
kurtosis, 35, 43, 44, 103

lavaan, 4, 8, 37, 38, 40, 41, 63
lavaan-class, 9
lavaan.auxiliary (auxiliary), 3
lavaan.mi (runMI), 96
lavaanStar, 4, 97
lavaanStar-class, 36
lsem12lavaan, 37
loadingFromAlpha, 39
longInvariance, 40, 47, 49

mardiaKurtosis, 36, 42, 44, 103
mardiaSkew, 36, 43, 43, 103
maximalRelia, 44, 92
measurementInvariance, 46, 49, 64, 67
measurementInvariance, 42
measurementInvariance
(measurementInvariance), 46
measurementInvarianceCat, 48, 64, 67
miPowerFit, 9, 49, 56, 62
monteCarloMed, 52
moreFitIndices, 51, 54, 62
mvrnonnorm, 57
mvrnorm, 13, 14

Net, 59
net, 58, 59, 60
Net-class, 59
nullMx, 25, 60, 100, 107
nullRMSEA, 56, 61
oblqRotate, 16, 17
orthogonalize (indProd), 31
orthRotate, 16, 17
orthrotate, 16, 17
p.adjust, 65
partialInvariance, 64
partialInvarianceCat
plot, 69
plotProbes, 32, 69, 78, 80, 83, 86
plotRMSEAdist, 20, 22, 71, 74
plotRMSEApower, 20, 22, 73, 75
plotRMSEApowerNested, 21, 23, 75
probe2WayMC, 32, 69, 70, 76, 79, 80, 83, 86
probe2WayRC, 32, 69, 70, 78, 79, 83, 86
probe3WayMC, 32, 69, 70, 78, 80, 81, 85, 86
probe3WayRC, 32, 69, 70, 78, 80, 83, 84
quark, 11, 87
reliability, 46, 89, 92, 93
reliabilityL2, 92, 92
residualCovariate, 94
rotate, 95
rotations, 95
runMI, 36, 37, 96
saturateMx, 25, 61, 99, 107
saveFile (clipboard_saveFile), 9
sem.auxiliary (auxiliary), 3
sem.mi (runMI), 96
show, BootMiss-method (BootMiss-class), 6
show, EFA-method (EFA-class), 16
show, FitDiff-method (FitDiff-class), 23
show, Net-method (Net-class), 59
simParcel, 100
singleParamTest, 101
skew, 36, 43, 44, 102
splitSample, 104
SSpower, 105
standardizeMx, 25, 61, 100, 107
summary, BootMiss-method (BootMiss-class), 6
summary, EFA-method (EFA-class), 16
summary, FitDiff-method (FitDiff-class), 23
summary, lavaanStar-method (lavaanStar-class), 36
summary, Net-method (Net-class), 59
tukeySEM, 109
wald, 66, 67, 110
write.table, 8