Package ‘rlme’

February 20, 2015

Type Package
Title Rank-based Estimation and Prediction in Random Effects Nested Models
Version 0.4
Date 2013-07-07
Author Yusuf Bilgic, Herb Susmann and Joseph McKean
Maintainer Yusuf Bilgic <bilgic@geneseo.edu>
Description Estimates robust rank-based fixed effects and predicts robust random effects in two- and three-level random effects nested models.
License GPL (>= 2)
Imports MASS, quantreg, nlme, mgcv, stringr, magic, robustbase, Rcpp
 (>= 0.11.1)
Suggests testthat
NeedsCompilation yes
LinkingTo Rcpp
Repository CRAN
Date/Publication 2014-06-10 07:02:51

R topics documented:

 rlme-package .. 2
 beta_var ... 3
 compare.fits ... 4
 dispvar ... 5
 ftdvcov ... 5
 GEER_est ... 6
 getgrstplot .. 7
 getlmesplot .. 8
 GR_est ... 8
 hbrwts_gr ... 9
 instruction ... 10
Description

An R package for rank-based robust estimation and prediction in random effects nested models

Details

Package: rlme
Type: Package
Version: 0.2
Date: 2013-07-07
License: GPL (>= 2)

Author(s)

Yusuf Bilgic <bilgic@geneseo.edu>, Herb Susmann <hps1@geneseo.edu> and Joseph McKean <joemckean@yahoo.com>

Maintainer: Yusuf Bilgic <bilgic@geneseo.edu> or <yusuf.k.bilgic@gmail.com>

See Also

rlme
beta_var

Examples

```r
library(rlme)
data(schools)
formula = y ~ 1 + sex + age + (1 | region) + (1 | region:school)
rlme.fit = rlme(formula, schools)
summary(rlme.fit)
```

beta_var

Estimate fixed-effect variance for Joint Rank Method (JR) in three-level nested design.

Description

Fixed effect variance estimation for Joint Rank Method (JR). It assumes Compound Symmetric (CS) structure of error terms. For k-level design, there are k-1 intra/inter-class parameters to place in a correlation matrix of errors.

Usage

`beta_var(x, school, tauhat, v1, v2, v3, section, mat)`

Arguments

- `x`
 Data frame of covariates.
- `school`
 A vector of cluster.
- `tauhat`
 This is obtained from Rank-based fitting.
- `v1`
 This is 1, main diagonal element for correlation matrix of observations. Correlation of an observation with itself is 1.
- `v2`
 Intra-cluster correlation coefficient.
- `v3`
 Intra-subcluster correlation coefficient.
- `section`
 A vector of subclusters, nx1.
- `mat`
 A matrix of numbers of observations in subclusters. Dimension is Ixmax(number of subclusters). Each row indicates one cluster.

Details

Correlation coefficients are obtained using Moment Estimates. See Klole et. al (2009), Bilgie (2012) and HM (2012)

Value

- `var`
 The variance of fixed estimated.
compare.fits

Author(s)

Yusuf Bilgic

References

Description

Compare two model fits. It returns tdbeta value and cfits values of two fits. The function uses the fixed effects estimates from fit 1 and fit 2 along with the covariance of the rank-based fit.

Usage

compare.fits(x, fit1, fit2)

Arguments

x Matrix of covariates
fit1 A class of type rlme.
fit2 A class of type rlme.

Value

Returns tdbeta and cfits values.

See Also

fitdvcov
Examples

data(schools)
model = y ~ 1 + sex + age + (1 | region) + (1 | region:school)

Extract covariants into matrix
cov = as.matrix(data.frame(schools[, "sex"], schools[, "age"]))

Fit the models using each method
reml.fit = rlme(model, schools, method="reml")
gr.fit = rlme(model, schools, method="gr")

compare.fits(cov, reml.fit, gr.fit)

dispvar

Rank-based dispersion estimate.

Description

This is an unbiased estimator with a correction factor for standard deviation when normal errors.

Usage

dispvar(x, score = 1)

Arguments

x
score

References

fitdvcov

Fitdvcov

Description

Obtains measurement for the fits based on estimates beta1, beta2 and covariance matrix from a rank based methods.

Usage

fitdvcov(x1, beta1, beta2, vcw)
Arguments

x1
beta1
beta2
vcw

See Also

compareNfits

Examples

Compare GR and JR methods
data(schools)
model = y ~ 1 + sex + age + (1 | region) + (1 | region:school)
Extract covariants into matrix
cov = as.matrix(data.frame(schools[,"sex"], schools[,"age"]))
Fit the models using each method
jr.fit = rlme(model, schools, method="jr")
gr.fit = rlme(model, schools, method="gr")
Extract beta estimates, ignoring the intercept
jr.beta = jr.fit$fixed effects$Estimate[c(2, 3)]
gr.beta = gr.fit$fixed effects$Estimate[c(2, 3)]
Extract beta variance matrix
var.b = jr.fit$var.b
fitdvcov(cov, jr.beta, gr.beta, var.b)

GEER_est

GEER: General Estimating Equation Rank-Based Estimation Method

Description

The package rlme calls this function for gee method, one of the methods proposed in Bilgic’s study (2012). Also see Kloke et al. (2013).

Usage

GEER_est(x, y, I, sec, mat, school, section, weight, rprpair, verbose=FALSE)
getgrstplot

Arguments

- **x**: Design matrix, pxn, without intercept.
- **y**: Response vector of nx1.
- **I**: Number of clusters.
- **sec**: A vector of subcluster numbers in clusters.
- **mat**: A matrix of numbers of observations in subclusters. Dimension is Ixmax(number ofsubclusters). Each row indicates one cluster.
- **school**: A vector of clusters, nx1.
- **section**: A vector of subclusters, nx1.
- **weight**: When weight="hbr", it uses hbr weights in GEE weights. By default, ="wil", it uses Wilcoxon weights. See the theory in the references.
- **rprpair**: By default, it uses "hl-disp" in the random prediction procedure (RPP). Also, "med-mad" would be an alternative.
- **verbose**: Boolean indicating whether to print out diagnostic messages.

Author(s)

Yusuf K. Bilgic, yekabe@hotmail.com

References

See Also

rlme, GR_est, JR_est, rprmeddisp

Examples

See the rlme function.

```r
getgrstplot(rlme.fit)
```

Description

It gets Q-Q Plot and Standardized Residual Plot of residuals.

Usage

getgrstplot(rlme.fit)
Arguments

rlme.fit

Details

The fit is obtained from rlme()

See Also

rlme

getlmestplot

Q-Q Plot and Standardized Residual Plot for the REML or ML fit.

Description

It gets Q-Q Plot and Standardized Residual Plot of residuals.

Usage

getlmestplot(rlme.fit)

Arguments

rlme.fit The fit is obtained from rlme()

See Also

rlme

GR_est

GR Method

Description

Fits a model using the GR method

Usage

GR_est(x, y, I, sec, mat, school, section, rprpair = 'hl-disp', verbose=FALSE)
Arguments

- **x**: Covariate matrix or data frame.
- **y**: Response matrix or data frame.
- **I**: Number of clusters
- **sec**: A vector of subcluster numbers in clusters.
- **mat**: A matrix of numbers of observations in subclusters. Dimension is I x max(number of subclusters). Each row indicates one cluster.
- **school**: A vector of clusters, nx1.
- **section**: A vector of subclusters, nx1.
- **rprpair**: By default, it uses "hl-disp" in the random prediction procedure (RPP). Also, "med-mad" would be an alternative.
- **verbose**: Boolean indicating whether to print out messages from the algorithm.

Value

- **theta**: Fixed effect estimates.
- **ses**: Standard error for the fixed estimates.
- **sigma**: Variances of cluster, subcluster, and residual.
- **ehat**: Raw error.
- **ehats**: Independence error from last weighted step.
- **effect_sch**: Cluster random error.
- **effect_sec**: Subcluster random error.
- **effect_err**: Epsilon error.

Author(s)

Yusuf Bilgic

Examples

See rlme function

<table>
<thead>
<tr>
<th>hbrwts_gr</th>
<th>HBR Weight</th>
</tr>
</thead>
</table>

Description

Calculates hbr weights for the GEER method. This turns a vector of weights for a vector of errors. Used to make factor space more robust, up to 50% breakdown. See HM (2012) and Terpstra and McKean (2005) for details. The ww package produces this weights as well.
Usage

hbrwts_gr(xmat, y, percent = 0.95, intest = ltsreg(xmat, y)$coef)

Arguments

xmat Design matrix, pxn, without intercept.
y Response vector in nx1.
percent This is 0.95.
intest This is obtained from myltsreg(xmat, y)$coef

Details

The ww pack explains how it is obtained.

Author(s)

J. W. McKean

References

See Also

GEER_est

instruction

<table>
<thead>
<tr>
<th>instruction</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Description

A data frame on school instruction results.

Usage

data(instruction)
Format

A data frame with 1190 observations on the following 13 variables.

\[
\begin{align*}
X & \text{ a numeric vector} \\
girl & \text{ a numeric vector} \\
minority & \text{ a numeric vector} \\
mathkind & \text{ a numeric vector} \\
mathgain & \text{ a numeric vector} \\
\text{ses} & \text{ a numeric vector} \\
\text{yearstea} & \text{ a numeric vector} \\
\text{mathknow} & \text{ a numeric vector} \\
\text{housepov} & \text{ a numeric vector} \\
\text{mathprep} & \text{ a numeric vector} \\
\text{classid} & \text{ a numeric vector identifying the class within school} \\
\text{schoolid} & \text{ a numeric vector identifying the school} \\
\text{childid} & \text{ a numeric vector}
\end{align*}
\]

Source

Examples

The following code takes a few minutes to run.
In the interest of saving CRAN's example testing time,
it has been commented out. If you want to use it,
just uncomment and run.

data(instruction)
attach(instruction)

data = data.frame(
y = mathgain,
mathkind = mathkind,
girl = girl,
minority = minority,
ses = ses,
school = factor(schoolid),
section = factor(classid))

fit.rlme = rlme(y ~ 1 + mathkind + girl + minority + ses + (1 | school) + (1 | school:section),
data = data,
method = "gr")

summary(fit.rlme)
Description

Fit a model using the JR method

Usage

```r
JR_est(x, y, I, sec, mat, school, section, rprpair = 'hl-disp', verbose=FALSE)
```

Arguments

- `x`: Covariate matrix or data frame
- `y`: Response matrix or data frame
- `I`: Number of clusters.
- `sec`: A vector of subcluster numbers in clusters.
- `mat`: A matrix of numbers of observations in subclusters. Dimension is Ixmax(number of subclusters). Each row indicates one cluster.
- `school`: A vector of clusters, nx1.
- `section`: A vector of subclusters, nx1.
- `rprpair`: By default, it uses "hl-disp" in the random prediction procedure (RPP). Also, "med-mad" would be an alternative.
- `verbose`: Boolean indicating whether to print out diagnostic messages.

Value

- `theta`: Fixed effect estimates.
- `ses`: Standard error for the fixed estimates.
- `sigma`: Covariate variance estimates using RPP (Groggel and Dubnicka’s procedure).
- `ehat`: Raw error.
- `effect_sch`: Cluster random error.
- `effect_sec`: Subcluster random error.
- `effect_err`: Epsilon error.

Author(s)

Yusuf Bilgic

See Also

`rlme`
Description
Computes rank based regression estimates for fixed effect models.

Usage
```r
lmr(f, data, se=FALSE, method='L-BFGS-B')
```

Arguments
- `f`: A model formula
- `data`: Data to use for model fitting
- `se`: Boolean indicating whether or not to calculate standard errors for intercept and slope estimates
- `method`: Optimization method to use. Will accept any method usable by optim, e.g. one of c("Nelder-Mead", "BFGS", "CG", "L-BFGS-B", "SANN", "Brent"). "BFGS" or "L-BFGS-B" are recommended. "L-BFGS-B" should be used for large datasets to conserve memory.

Value
- `fixed.effects`: Fixed effect estimates
- `ehat`: Residuals from model

Author(s)
Herb Susmann

See Also
- `rlme`
- `optim`

Examples
```r
# load schools data
data(schools)

# Fit fixed effects model with lmr
lmr.fit = lmr(y ~ age + sex, data=schools)
summary(lmr.fit)

# Fit with lmr and calculate standard errors
lmr.fit = lmr(y ~ age + sex, data=schools, se=TRUE)
summary(lmr.fit)
```
LM_est

Linear Model Estimation using the nlme package.

Description

This gets the REML or ML estimates and predictions of random effects from the nlme package.

Usage

```r
LM_est(x, y, dat, method = "REML")
```

Arguments

- `x` Design matrix, (p+1)xn, with intercept.
- `y` Response vector of nx1.
- `dat` Data frame
- `method` Character string indicating method to use, either "ML" or "REML" (defaults to REML).

Value

- `theta` Fixed effects estimates.
- `ses` Standard error for fixed effects.
- `varb` Variances.
- `sigma` Error.
- `ehat` Raw residuals
- `standr.lme` Standardized residual
- `effect_sch` Cluster random error.
- `effect_sec` Subcluster random error.
- `effect_err` Epsilon error.

Author(s)

Yusuf Bilgic

References

See Also

- `rlme`
minimize_dispersion

Minimize Dispersion Function

Description

Uses optim to find regression estimates which minimize dispersion function on X and Y input matrices

Usage

minimize Dispersion(X, Y, method = "BFGS", init.guess = "quantreg",
verbose = FALSE, se = TRUE)

Arguments

X Input matrix
Y Response vector
method Method optim should use - one of "Nelder-Mead", "BFGS", "CG", "L-BFGS-B", "SANN", or "Brent".
init.guess How to calculate the first regression estimate. Defaults to using quantile regression.
verbose Whether to print out verbose messages.
se Whether or not to calculate standard errors of regression estimates.

Value

theta Regression parameter estimates
ehat Regression residuals

Author(s)

Herb Susmann

plot.rlme

Plot rlme Fit

Description

Generates Normal Q-Q plot of residuals from rlme fit

Usage

S3 method for class 'rlme'
plot(x, ...)

Arguments

x A list of class rlme. Store as fit.rlme.
...

Examples

data(schools)
rlme.fit = rlme(y ~ 1 + sex + age + (1 | region) + (1 | region:school), schools, method="gr")
plot(rlme.fit)

\begin{verbatim}
 rhosch
 Cluster Correlation Coefficient Estimate
\end{verbatim}

Description

Moment estimate version of correlation coefficient in a cluster in a three-level nested design.

Usage

rhosch(ahat, school, section)

Arguments

ahat A vector of scores. Wilcoxon scores are used in the package.
school A vector of clusters.
section A vector of subclusters.

References

\begin{verbatim}
 rhosect
 Subcluster Correlation Coefficient Estimate
\end{verbatim}

Description

Moment estimate version of correlation coefficient in a subcluster in a three-level nested design.

Usage

rhosect(ahat, school, section)
Arguments

- `ahat`: A vector of scores. Wilcoxon scores are used in the package.
- `school`: A vector of clusters.
- `section`: A vector of subclusters.

References

Description

This function estimates fixed effects and predicts random effects in two- and three-level random effects nested models using three rank-based fittings (GR, GEER, JR) via the prediction method algorithm RPP.

The iterative methods GR and GEER can be quite slow for large datasets; try JR for faster analysis. If you want to use the GR method, try using `rprpair='med-mad'`. This method avoids building a NxN covariance matrix which can quickly become unwieldy with large data.

Usage

```r
rlme(f, data, method = "gr", print = FALSE, 
na.omit = TRUE, weight="wil", 
rprpair="hl-disp", verbose=FALSE)
```

Arguments

- `f`: An object of class formula describing the mixed effects model. The syntax is same as in the lme4 package. Example: `y ~ 1 + sex + age + (1 | region) + (1 | region:school)` - sex and age are the fixed effects, region and school are the nested random effects, school is nested within region.
- `data`: The dataframe to analyze. Data should be cleaned prior to analysis: cluster and subcluster columns are expected to be integers and in order (e.g. all clusters and subclusters).
- `method`: string indicating the method to use (one of "gr", "jr", "reml", and "geer"). defaults to "gr".
- `print`: Whether or not to print a summary of results. Defaults to false.
- `na.omit`: Whether or not to omit rows containing NA values. Defaults to true.
- `weight`: When weight="hbr", it uses hbr weights in GEE weights. By default, ="wil", it uses Wilcoxon weights. See the theory in the references.
- `rprpair`: By default, it uses "hl-disp" in the random prediction procedure (RPP). Also, "med-mad" would be an alternative.
- `verbose`: Boolean indicating whether to print out diagnostic messages.
Value

The function returns a list of class "rlme". Use `summary.rlme` to see a summary of the fit.

- **formula**: The model formula.
- **method**: The method used.
- **fixed.effects**: Estimate of fixed effects.
- **random.effects**: Estimate of random effects.
- **standard.residual**: Residuals.
- **intra.class.correlations**: Intra/inter-class correlation estimates obtained from RPP.
- **t.value**: t-values.
- **p.value**: p-values.
- **location**: Location.
- **scale**: Scale.
- **y**: The response variable y.
- **num.obs**: Number of observations in provided dataset.
- **num.clusters**: The number of clusters.
- **num.subclusters**: The number of subclusters.
- **effect.err**: Effect from error.
- **effect.cluster**: Effect from cluster.
- **effect.subcluster**: Effect from subcluster.
- **var.b**: Variances of fixed effects estimate (Beta estimates).
- **xstar**: Weighted design matrix with error covariance matrix.
- **ystar**: Weighted response vector with its covariance matrix.
- **ehat**: The raw residual.
- **ehats**: The raw residual after weighted step. Scaled residual.

Author(s)

Yusuf Bilgic <yekabe@hotmail.com> and Herb Susmann <hps1@geneseo.edu>

References

See Also

`summary.rlme plot.rlme compare.fits`
Examples

data(schools)

rlme.fit = rlme(y ~ 1 + sex + age + (1 | region) + (1 | region:school), schools, method="gr")
summary(rlme.fit)

rpr

Cluster and Subcluster effects

Description

Partitions model residuals into cluster and subcluster effects using RPP algorithm.

Usage

rpr(f, resd, data, rprpair='hl-disp')

Arguments

f A model formula which specifices the random effects (see example)
resd The residuals from the fitted model
data The data the model was fitted on
rprpair Character string indicating the location and scale parameters to use. Default to "hl-disp", but may also be "med-mad". See Bilgic (2012).

Value

siga2 Variance from cluster
sigw2 Variance from subcluster
sigmae2 Remaining variance not accounted for by variance of cluster and subcluster

Author(s)

J. W. McKean and Y. K. Bilgic

References

rprmeddis

Description

Robust rank-based prediction algorithm that gets predictions for random errors in three-level nested design. It needs one location and scale estimators. Hodges-Lehmann location estimate and dispersion functional estimate pair is called with rprpair="hl-disp" -by default- ; median and MAD pair is called with rprpair="med-mad" in rlme().

The rprmeddisp() function yields predictions of random effects and errors vectors along with scale estimates in each level. This function was designed for three-level nested design. See rprmedisp2() in the package, this is for two-level nested design.

Usage

rprmeddis(I, sec, mat, ehat, location, scale, rprpair = 'hl-disp')

Arguments

I Number of clusters.
sec A vector of subcluster numbers in clusters.
mat A matrix of numbers of observations in subclusters. Dimension is Ixmax(number ofsubclusters). Each row indicates one cluster.
ehat The residuals that inherits random effects and error effect to be predicted.
location If location = scale = 1 then use Median and MAD in RPP If location = scale = 2 then use HL & Dispvar in RPP Note: this is deprecated. You should specify the location & scale parameters by using the rprpair parameter.
The data in Program for International Assessment (PISA) on academic proficiency in schools around the world.

Usage

```r
data(schools)
```

Format

A data frame with 334 observations on the following 6 variables.

- `y` a numeric vector indicating student literacy
- `socio` a numeric vector
- `sex` a numeric vector
- `age` a numeric vector
- `region` a numeric vector indicating four regions
- `school` a numeric vector indicating the schools within region

References

Examples

```r
# The example takes a few seconds to run, so in order to
# save CRAN's testing time it has been commented out.
# To run, simply uncomment and execute.
#
#
# data(schools)
# rlme.fit = rlme(y ~ 1 + sex + age + (1 | region) + (1 | region:school),
# schools, method="gr")
# summary(rlme.fit)
```

stanresidgr
Calculate Standard Residuals

Description

Standardizes the residuals obtained from the GR fitting.

Usage

`stanresidgr(x, y, resid, delta = 0.8, param = 2, conf = 0.95)`

Arguments

- `x` Design matrix.
- `y` Response vector.
- `resid` Residuals obtained from the rank-based fitting.
- `delta` See HM (2012).
- `param` See HM (2012).
- `conf` See HM (2012).

Author(s)

J. W. McKean

References

summary.rlme

Description
Summarizes a model fit from the `rmle` function

Usage
```r
## S3 method for class 'rlme'
summary(object, ...)
```

Arguments
- `object` A list of class `rlme`
 ...

Author(s)
Herb Susmann <hps1@geneseo.edu>

See Also
- `rlme`
- `plot.rlme`

wilonestep

Description
This function gets weighted rank based fittings.

Usage
```r
wilonestep(y, x)
```

Arguments
- `y` Response vector of nx1.
- `x` Design matrix, pxn, without intercept.

References
wilstep Wilcoxon One Step Rank-based Estimate in GR Method

Description

Gets weighted rank based fittings for nested designs.

Usage

```r
wilstep(I, sec, mat, init = F, y, x, sigmaa2 = 1,
       sigmaw2 = 1, sigmae2 = 1, thetaold = c(0),
       eps = 1e-04, iflag2 = 0, rprpair = 'hl-disp')
```

Arguments

- `I` Number of clusters.
- `sec` A vector of subcluster numbers in clusters.
- `mat` A matrix of numbers of observations in subclusters. Dimension is Ixmax(number of subclusters). Each row indicates one cluster.
- `init` Response vector of nx1.
- `y` Design matrix, pxn, without intercept.
- `sigmaa2` Initial sigma for cluster in three-level design.
- `sigmaw2` Initial sigma for subcluster in three-level design.
- `sigmae2` Initial sigma for error in three-level design.
- `thetaold` Initial input.
- `eps` Epsilon value
- `iflag2` y or n
- `rprpair` Either 'hl-disp' or 'med-mad'

Details

Initial inputs are from the independent model.

Author(s)

J. W. McKean and Y. K. Bilgic

References

Index

*Topic **datasets**

- instruction, 10
- schools, 21

*Topic **models**

- compare.fits, 4
- GEER_est, 6
- GR_est, 8
- LM_est, 14
- rlme, 17
- rlme-package, 2

*Topic **package**

- rlme-package, 2

beta_var, 3

compare.fits, 4, 6, 18

dispvar, 5, 20, 21

fitdvcov, 4, 5

GEER_est, 6

getgrstplot, 7

getlmestplot, 8

GR_est, 8

hbrwts_gr, 9

instruction, 10

JR_est, 12

LM_est, 14

lmr, 13

minimizeDispersion, 15

optim, 13

plot.rlme, 15, 18, 23

rhosch, 16

rhosect, 16

rlme, 2, 12–14, 17, 23

rlme-package, 2

rpr, 19, 21

rprmeddis, 20, 20

schools, 21

stanresidgr, 22

summary.rlme, 18, 23

wilonestep, 23

wilstep, 24