Package ‘rdd’

February 20, 2015

Maintainer Drew Dimmery <drewd@nyu.edu>
Author Drew Dimmery
Version 0.56
License Apache License (== 2.0)
Title Regression Discontinuity Estimation
Description This package provides the tools to undertake estimation in Regression Discontinuity Designs. Both sharp and fuzzy designs are supported. Estimation is accomplished using local linear regression. A provided function will utilize Imbens-Kalyanaraman optimal bandwidth calculation. A function is also included to test the assumption of no-sorting effects.
Type Package
Date 2013-10-11
Depends R (>= 2.15.0), sandwich, lmtest, AER, Formula
Collate 'kernelwts.R' 'DCdensity.R' 'IKbandwidth.R' 'RDestimate.R'
 'plot.RD.R' 'summary.RD.R' 'rdd-package.R' 'print.RD.R'
NeedsCompilation no
Repository CRAN
Date/Publication 2013-10-12 00:25:44

R topics documented:

rdd-package .. 2
DCdensity .. 2
IKbandwidth ... 4
kernelwts .. 5
plot.RD ... 6
print.RD .. 7
RDestimate .. 7
summary.RD ... 10

Index 11
rdd-package

Regression Discontinuity Estimation Package

Description

Regression discontinuity estimation package

Details

rdd supports both sharp and fuzzy RDD utilizing the *AER* package for 2SLS regression under the fuzzy design. Local linear regressions are performed to either side of the cutpoint using the Imbens-Kalyanaraman optimal bandwidth calculation, *ikbandwidth*.

Author(s)

Drew Dimmery <drewd@nyu.edu>

See Also

`rdestimate`, `dcdensity`, `ikbandwidth`, `summary.RDplot`, `RDkernelwts`

DCdensity

McCrary Sorting Test

Description

DCdensity implements the McCrary (2008) sorting test.

Usage

```r
dCdensity(runvar, cutpoint, bin = NULL, bw = NULL, verbose = FALSE, plot = TRUE, ext.out = FALSE)
```

Arguments

- **runvar**: numerical vector of the running variable
- **cutpoint**: the cutpoint (defaults to 0)
- **bin**: the binwidth (defaults to 2*sd(runvar)*length(runvar)^(-.5))
- **bw**: the bandwidth to use (by default uses bandwidth selection calculation from McCrary (2008))
- **verbose**: logical flag specifying whether to print diagnostic information to the terminal. (defaults to FALSE)
- **plot**: logical flag indicating whether to plot the histogram and density estimations (defaults to TRUE). The user may wrap this function in additional graphical options to modify the plot.
ext.out logical flag indicating whether to return extended output. When FALSE (the default) DCdensity will return only the p-value of the test. When TRUE, DCdensity will return the additional information documented below.

Value

If ext.out is FALSE, only the p value will be returned. Additional output is enabled when ext.out is TRUE. In this case, a list will be returned with the following elements:

- theta: the estimated log difference in heights at the cutpoint
- se: the standard error of theta
- z: the z statistic of the test
- p: the p-value of the test. A p-value below the significance threshold indicates that the user can reject the null hypothesis of no sorting.
- binsize: the calculated size of bins for the test
- bw: the calculated bandwidth for the test
- cutpoint: the cutpoint used
- data: a dataframe for the binning of the histogram. Columns are cellmp (the midpoints of each cell) and cellval (the normalized height of each cell)

Author(s)

Drew Dimmery <<drewd@nyu.edu>>

References

Examples

```r
#No discontinuity
x<-runif(1000,-1,1)
DCdensity(x,0)

#Discontinuity
x<-runif(1000,-1,1)
x<-x*(runif(1000,-1,1)>0)&x<0)
DCdensity(x,0)
```
IKbandwidth | *Imbens-Kalyanaraman Optimal Bandwidth Calculation*

Description

IKbandwidth calculates the Imbens-Kalyanaraman optimal bandwidth for local linear regression in Regression discontinuity designs.

Usage

```r
IKbandwidth(X, Y, cutpoint = NULL, verbose = FALSE, kernel = "triangular")
```

Arguments

- `X`
a numerical vector which is the running variable
- `Y`
a numerical vector which is the outcome variable
- `cutpoint`
the cutpoint
- `verbose`
logical flag indicating whether to print more information to the terminal. Default is `FALSE`.
- `kernel`
string indicating which kernel to use. Options are "triangular" (default and recommended), "rectangular", "epanechnikov", "quartic", "triweight", "tricube", "gaussian", and "cosine".

Value

The optimal bandwidth

Author(s)

Drew Dimmerly <drewd@nyu.edu>

References

Kernel Weighting Function

Description

This function will calculate the appropriate kernel weights for a vector. This is useful when, for instance, one wishes to perform local regression.

Usage

```r
kernelwts(x, center, bw, kernel = "triangular")
```

Arguments

- **x**: input x values. This variable represents the axis along which kernel weighting should be performed.
- **center**: the point from which distances should be calculated.
- **bw**: the bandwidth.
- **kernel**: a string indicating the kernel to use. Options are "triangular" (the default), "epanechnikov", "quartic", "triweight", "tricube", "gaussian", and "cosine".

Value

A vector of weights with length equal to that of the x input (one weight per element of x).

Author(s)

Drew Dimmery <<drewd@nyu.edu>>

Examples

```r
require(graphics)

x <- seq(-1, 1, .01)
triang.wts <- kernelwts(x, 0, 1, kernel = "triangular")
plot(x, triang.wts, type = "l")

cos.wts <- kernelwts(x, 0, 1, kernel = "cosine")
plot(x, cos.wts, type = "l")
```
Plot of the Regression Discontinuity

Description

Plot the relationship between the running variable and the outcome

Usage

```r
## S3 method for class 'RD'
plot(x, gran = 400, bins = 100, which = 1,
     range, ...)
```

Arguments

- `x`: rd object, typically the result of `RDestimate`
- `gran`: the granularity of the plot. This specifies the number of points to either side of the cutpoint for which the estimate is calculated.
- `bins`: if the dependent variable is binary, include the number of bins within which to average
- `which`: identifies which of the available plots to display. For a sharp design, the only possibility is 1, the plot of the running variable against the outcome variable. For a fuzzy design, an additional plot, 2, may also be displayed, showing the relationship between the running variable and the treatment variable. Both plots may be displayed with `which=c(1,2)`.
- `range`: the range of values of the running variable for which to plot. This should be a vector of length two of the format `c(min,max)`. To plot from the minimum to the maximum value, simply enter `c("min","max")`. The default is a window 20 times wider than the first listed bandwidth from the `rd` object, truncated by the min/max values of the running variable from the data.
- `...`: unused

Details

It is important to note that this function will only plot the discontinuity using the bandwidth which is first in the vector of bandwidths passed to `RDestimate`

Author(s)

Drew Dimmery <drewd@nyu.edu>
print.RD

Print the Regression Discontinuity

Description

Print a very basic summary of the regression discontinuity

Usage

```r
## S3 method for class 'RD'
print(x,
     digits = max(3,getOption("digits") - 3), ...)
```

Arguments

- **x**: rd object, typically the result of `RDestimate`
- **digits**: number of digits to print
- **...**: unused

Author(s)

Drew Dimmery <drewd@nyu.edu>

RDestimate

Regression Discontinuity Estimation

Description

RDestimate supports both sharp and fuzzy RDD utilizing the AER package for 2SLS regression under the fuzzy design. Local linear regressions are performed to either side of the cutpoint using the Imbens-Kalyanaraman optimal bandwidth calculation, \texttt{ikbandwidth}.

Usage

```r
RDestimate(formula, data, subset = NULL, cutpoint = NULL, bw = NULL, kernel = "triangular", se.type = "HC1", cluster = NULL, verbose = FALSE, model = FALSE, frame = FALSE)
```
Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>formula</td>
<td>the formula of the RDD. This is supplied in the format of y ~ x for a simple sharp RDD, or y ~ x</td>
</tr>
<tr>
<td>data</td>
<td>an optional data frame</td>
</tr>
<tr>
<td>subset</td>
<td>an optional vector specifying a subset of observations to be used</td>
</tr>
<tr>
<td>cutpoint</td>
<td>the cutpoint. If omitted, it is assumed to be 0.</td>
</tr>
<tr>
<td>bw</td>
<td>a numeric vector specifying the bandwidths at which to estimate the RD. If omitted, the bandwidth is calculated using the Imbens-Kalyanaraman method, and then estimated with that bandwidth, half that bandwidth, and twice that bandwidth. If only a single value is passed into the function, the RD will similarly be estimated at that bandwidth, half that bandwidth, and twice that bandwidth.</td>
</tr>
<tr>
<td>kernel</td>
<td>a string specifying the kernel to be used in the local linear fitting. "triangular" kernel is the default and is the "correct" theoretical kernel to be used for edge estimation as in RDD (Lee and Lemieux 2010). Other options are "rectangular", "epanechnikov", "quartic", "triweight", "tricube", "gaussian" and "cosine".</td>
</tr>
<tr>
<td>se.type</td>
<td>this specifies the robust SE calculation method to use. Options are, as in vcovHC, "HC3", "const", "HC", "HC0", "HC1", "HC2", "HC4", "HC4m", "HC5". This option is overridden by cluster.</td>
</tr>
<tr>
<td>cluster</td>
<td>an optional vector specifying clusters within which the errors are assumed to be correlated. This will result in reporting cluster robust SEs. This option overrides anything specified in se.type. It is suggested that data with a discrete running variable be clustered by each unique value of the running variable (Lee and Card 2008).</td>
</tr>
<tr>
<td>verbose</td>
<td>will provide some additional information printed to the terminal.</td>
</tr>
<tr>
<td>frame</td>
<td>logical. If TRUE, the data frame used in model fitting will be returned.</td>
</tr>
<tr>
<td>model</td>
<td>logical. If TRUE, the model object will be returned.</td>
</tr>
</tbody>
</table>

Value

RDestimate returns an object of class "RD". The functions summary and plot are used to obtain and print a summary and plot of the estimated regression discontinuity. The object of class RD is a list containing the following components:

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>type</td>
<td>a string denoting either "sharp" or "fuzzy" RDD.</td>
</tr>
<tr>
<td>est</td>
<td>numeric vector of the estimate of the discontinuity in the outcome under a sharp design, or the Wald estimator in the fuzzy design for each corresponding bandwidth</td>
</tr>
<tr>
<td>se</td>
<td>numeric vector of the standard error for each corresponding bandwidth</td>
</tr>
<tr>
<td>z</td>
<td>numeric vector of the z statistic for each corresponding bandwidth</td>
</tr>
<tr>
<td>p</td>
<td>numeric vector of the p value for each corresponding bandwidth</td>
</tr>
</tbody>
</table>
rdestimate

- ci: the matrix of the 95% CI ("CI Lower Bound","CI Upper Bound") for each corresponding bandwidth.
- bw: numeric vector of each bandwidth used in estimation.
- obs: vector of the number of observations within the corresponding bandwidth.
- call: the matched call.
- na.action: the observations removed from fitting due to missingness.
- model: (if requested) For a sharp design, a list of the \texttt{lm} objects is returned. For a fuzzy design, a list of lists is returned, each with two elements: firststage, the first stage \texttt{lm} object, and iv, the \texttt{ivreg} object. A model is returned for each corresponding bandwidth.
- frame: (if requested) Returns the model frame used in fitting.

Author(s)

Drew Dimmery <<drewd@nyu.edu>>

References

http://dx.doi.org/10.1016/j.jeconom.2007.05.001

http://dx.doi.org/10.1016/j.jeconom.2007.05.003

See Also

\texttt{summary.RD, plot.RD, DCdensity.Kbandwidth, kernelwts, vcovHC, ivreg.lm}

Examples

```r
x <- runif(1000,-1,1)
cov <- rnorm(1000)
y <- 3+2*x+3*cov+10*(x>=0)+rnorm(1000)
RDestimate(y=x)
# Efficiency gains can be made by including covariates
RDestimate(y=x|cov)
```

Description

summary method for class "RD"

Usage

```r
## S3 method for class 'RD'
summary(object,
    digits = max(3,getOption("digits") - 3), ...)
```

Arguments

- `object`: an object of class "RD", usually a result of a call to `RDeestimate`
- `digits`: number of digits to display
- `...`: unused

Value

`summary.RD` returns an object of class "summary.RD" which has the following components:

- `coefficients`: A matrix containing bandwidths, number of observations, estimates, SEs, z-values and p-values for each estimated bandwidth.
- `fstat`: A global F-test of the corresponding model

Author(s)

Drew Dimmery <<drewd@nyu.edu>>
Index

class, 8, 10
DCdensity, 2, 2, 9
IKbandwidth, 2, 4, 7, 9
ivreg, 9
kernelwts, 2, 5, 9
lm, 9
plot.RD, 2, 6, 9
print.RD, 7
rdd (rdd-package), 2
rdd-package, 2
RDEstimate, 2, 6, 7, 7, 10
summary.RD, 2, 9, 10
vcovHC, 8, 9