Package ‘partykit’

April 8, 2015

Title A Toolkit for Recursive Partytioning
Date 2015-04-07
Version 1.0-1
Description A toolkit with infrastructure for representing, summarizing, and visualizing tree-structured regression and classification models. This unified infrastructure can be used for reading/coercing tree models from different sources (rpart, RWeka, PMML) yielding objects that share functionality for print/plot/predict methods. Furthermore, new and improved reimplementations of conditional inference trees (ctree) and model-based recursive partitioning (mob) from the party package are provided based on the new infrastructure.

Depends R (>= 3.1.0), graphics, grid
Imports stats, survival
Suggests XML, pmml, rJava, rpart, mvtnorm, Formula (>= 1.2-1), sandwich, strucchange, vcd, AER, mlbench, TH.data (>= 1.0-3), coin, RWeka (>= 0.4-19), datasets, parallel, psychotools, psychotree

LazyData yes
License GPL-2 | GPL-3

URL http://partykit.R-forge.R-project.org/partykit
Author Torsten Hothorn [aut, cre], Achim Zeileis [aut]
Maintainer Torsten Hothorn <Torsten.Hothorn@R-project.org>

NeedsCompilation yes
Repository CRAN

Date/Publication 2015-04-08 11:12:04

R topics documented:
cforest .. 2
ctree .. 6
An implementation of the random forest and bagging ensemble algorithms utilizing conditional inference trees as base learners.

Usage

cforest(formula, data, weights, subset, na.action = na.pass,
control = ctree_control(teststat = "quad",
 testtype = "Univ", mincriterion = 0, ...),
ytrafo = NULL, scores = NULL, ntree = 500L,
perturb = list(replace = FALSE, fraction = 0.632),
mtry = ceiling(sqrt(nvar)), applyfun = NULL, cores = NULL, ...)
S3 method for class 'cforest'
predict(object, newdata = NULL,
 type = c("response", "prob", "weights", "node"),
 OOB = FALSE, FUN = NULL, simplify = TRUE, ...)
Arguments

- **formula**: A symbolic description of the model to be fit.
- **data**: A data frame containing the variables in the model.
- **subset**: An optional vector specifying a subset of observations to be used in the fitting process.
- **weights**: An optional vector of weights to be used in the fitting process. Non-negative integer valued weights are allowed as well as non-negative real weights. Observations are sampled (with or without replacement) according to probabilities weights / sum(weights). The fraction of observations to be sampled (without replacement) is computed based on the sum of the weights if all weights are integer-valued and based on the number of weights greater zero else. Alternatively, weights can be a double matrix defining case weights for all ncol(weights) trees in the forest directly. This requires more storage but gives the user more control.
- **na.action**: A function which indicates what should happen when the data contain missing value.
- **control**: A list with control parameters, see `ctree_control`. The default values correspond to those of the default values used by `cforest` from the party package.
- **ytrafo**: An optional named list of functions to be applied to the response variable(s) before testing their association with the explanatory variables. Note that this transformation is only performed once for the root node and does not take weights into account. Alternatively, `ytrafo` can be a function of `data` and `weights`. In this case, the transformation is computed for every node. This feature is experimental and the user interface likely to change.
- **scores**: An optional named list of scores to be attached to ordered factors.
- **ntree**: Number of trees to grow for the forest.
- **perturb**: A list with arguments `replace` and `fraction` determining which type of resampling with `replace = TRUE` referring to the n-out-of-n bootstrap and `replace = FALSE` to sample splitting. `fraction` is the number of observations to draw without replacement.
- **mtry**: Number of input variables randomly sampled as candidates at each node for random forest like algorithms. Bagging, as special case of a random forest without random input variable sampling, can be performed by setting `mtry` either equal to `Inf` or manually equal to the number of input variables.
- **applyfun**: An optional `lapply`-style function with arguments `function(X, FUN, ...). It is used for computing the variable selection criterion. The default is to use the basic `lapply` function unless the `cores` argument is specified (see below).
- **cores**: Numeric. If set to an integer the `applyfun` is set to `mclapply` with the desired number of cores.
- **object**: An object as returned by `cforest`
- **newdata**: An optional data frame containing test data.
- **type**: A character string denoting the type of predicted value returned, ignored when argument `FUN` is given. For "response", the mean of a numeric response, the
predicted class for a categorical response or the median survival time for a censored response is returned. For "prob" the matrix of conditional class probabilities (simplify = TRUE) or a list with the conditional class probabilities for each observation (simplify = FALSE) is returned for a categorical response. For numeric and censored responses, a list with the empirical cumulative distribution functions and empirical survivor functions (Kaplan-Meier estimate) is returned when type = "prob". "weights" returns an integer vector of prediction weights. For type = "where", a list of terminal node ids for each of the trees in the forest is returned.

OOB

a logical defining out-of-bag predictions (only if newdata = NULL).

FUN

a function to compute summary statistics. Predictions for each node have to be computed based on arguments (y, w) where y is the response and w are case weights.

simplify

a logical indicating whether the resulting list of predictions should be converted to a suitable vector or matrix (if possible).

... additional arguments.

Details

This implementation of the random forest (and bagging) algorithm differs from the reference implementation in randomForest with respect to the base learners used and the aggregation scheme applied.

Conditional inference trees, see ctree, are fitted to each of the ntree perturbed samples of the learning sample. Most of the hyper parameters in ctree_control regulate the construction of the conditional inference trees.

Hyper parameters you might want to change are:

1. The number of randomly preselected variables mtry, which is fixed to the square root of the number of input variables.
2. The number of trees ntree. Use more trees if you have more variables.
3. The depth of the trees, regulated by mincriterion. Usually unstopped and unpruned trees are used in random forests. To grow large trees, set mincriterion to a small value.

The aggregation scheme works by averaging observation weights extracted from each of the ntree trees and NOT by averaging predictions directly as in randomForest. See Hothorn et al. (2004) and Meinshausen (2006) for a description.

Predictions can be computed using predict. For observations with zero weights, predictions are computed from the fitted tree when newdata = NULL.

Ensembles of conditional inference trees have not yet been extensively tested, so this routine is meant for the expert user only and its current state is rather experimental. However, there are some things available in cforest that can’t be done with randomForest, for example fitting forests to censored response variables (see Hothorn et al., 2004, 2006a) or to multivariate and ordered responses. Using the rich partykit infrastructure allows additional functionality in cforest, such as parallel tree growing and probabilistic forecasting (for example via quantile regression forests). Also plotting of single trees from a forest is much easier now.

Unlike cforest, cforest is entirely written in R which makes customisation much easier at the price of longer computing times. However, trees can be grown in parallel with this R only
implementation which renders speed less of an issue. Note that the default values are different from those used in package party, most importantly the default for mtry is now data-dependent. predict(), type = "node") replaces the where function and predict(), type = "prob") the treeresponse function.

Moreover, when predictors vary in their scale of measurement of number of categories, variable selection and computation of variable importance is biased in favor of variables with many potential cutpoints in randomForest, while in cforest unbiased trees and an adequate resampling scheme are used by default. See Hothorn et al. (2006b) and Strobl et al. (2007) as well as Strobl et al. (2009).

Value

An object of class cforest.

References

Examples

```r
## basic example: conditional inference forest for cars data
cf <- cforest(dist ~ speed, data = cars)

## prediction of fitted mean and visualization
nd <- data.frame(speed = 4:25)
nd$mean <- predict(cf, newdata = nd, type = "response")
plot(dist ~ speed, data = cars)
lines(mean ~ speed, data = nd)

## predict quantiles (aka quantile regression forest)
myquantile <- function(y, w) quantile(rep(y, w), probs = c(0.1, 0.5, 0.9))
p <- predict(cf, newdata = nd, type = "response", FUN = myquantile)
colnames(p) <- c("lower", "median", "upper")
nd <- cbind(nd, p)
```
visualization with conditional (on speed) prediction intervals

```r
plot(dist ~ speed, data = cars, type = "n")
with(nd, polygon(c(speed, rev(speed)), c(lower, rev(upper)),
   col = "lightgray", border = "transparent"))
points(dist ~ speed, data = cars)
lines(mean ~ speed, data = nd, lwd = 1.5)
lines(median ~ speed, data = nd, lty = 2, lwd = 1.5)
legend("topleft", c("mean", "median", "10% - 90% quantile"),
   lwd = c(1.5, 1.5, 10), lty = c(1, 2, 1),
   col = c("black", "black", "lightgray"), bty = "n")
```

we may also use predicted conditional (on speed) densities

```r
mydensity <- function(y, w) approxfun(density(y, weights = w/sum(w)))[1:2], rule = 2)
pd <- predict(cf, newdata = nd, type = "response", FUN = mydensity)
```

visualization in heatmap (instead of scatterplot)

```r
# with fitted curves as above
dist <- 1:150
dens <- t(sapply(seq_along(pd), function(i) pd[i](dist)))
image(nd$speed, dist, dens, xlab = "speed", col = rev(gray.colors(9)))
lines(mean ~ speed, data = nd, lwd = 1.5)
lines(median ~ speed, data = nd, lty = 2, lwd = 1.5)
lines(lower ~ speed, data = nd, lty = 2)
lines(upper ~ speed, data = nd, lty = 2)
```

honest (i.e., out-of-bag) cross-classification of
true vs. predicted classes

```r
data("mammoexp", package = "TH.data")
table(mammoexp$ME, predict(cf, ME ~ ., data = mammoexp, ntree = 50),
   OOB = TRUE, type = "response")
```

fit forest to censored response

```r
if (require("TH.data") & require("survival")) {

data("GBSG2", package = "TH.data")
bst <- cforest(Surv(time, cens) ~ ., data = GBSG2, ntree = 50)
```

estimate conditional Kaplan-Meier curves

```r
print(predict(bst, newdata = GBSG2[1:2,], OOB = TRUE, type = "prob"))
print(bst$nodes[1])
}
```
ctree

Description

Recursive partitioning for continuous, censored, ordered, nominal and multivariate response variables in a conditional inference framework.

Usage

```r
ctree(formula, data, weights, subset, na.action = na.pass,
       control = ctree_control(...), ytrafo = NULL, scores = NULL, ...)
```

Arguments

- `formula`: a symbolic description of the model to be fit.
- `data`: a data frame containing the variables in the model.
- `subset`: an optional vector specifying a subset of observations to be used in the fitting process.
- `weights`: an optional vector of weights to be used in the fitting process. Only non-negative integer valued weights are allowed.
- `na.action`: a function which indicates what should happen when the data contain missing value.
- `control`: a list with control parameters, see `ctree_control`.
- `ytrafo`: an optional named list of functions to be applied to the response variable(s) before testing their association with the explanatory variables. Note that this transformation is only performed once for the root node and does not take weights into account. Alternatively, `ytrafo` can be a function of `data` and `weights`. In this case, the transformation is computed for every node. This feature is experimental and the user interface likely to change.
- `scores`: an optional named list of scores to be attached to ordered factors.
- `...`: arguments passed to `ctree_control`.

Details

Function `partykit::ctree` is a reimplementation of (most of) `party::ctree` employing the new `party` infrastructure of the `partykit` infrastructure. Although the new code was already extensively tested, it is not yet as mature as the old code. If you notice differences in the structure/predictions of the resulting trees, please contact the package maintainers. See also vignette("ctree", package = "partykit") for some remarks about the internals of the different implementations.

Conditional inference trees estimate a regression relationship by binary recursive partitioning in a conditional inference framework. Roughly, the algorithm works as follows: 1) Test the global null hypothesis of independence between any of the input variables and the response (which may be multivariate as well). Stop if this hypothesis cannot be rejected. Otherwise select the input variable with strongest association to the response. This association is measured by a p-value corresponding to a test for the partial null hypothesis of a single input variable and the response. 2) Implement a binary split in the selected input variable. 3) Recursively repeat steps 1) and 2).

The implementation utilizes a unified framework for conditional inference, or permutation tests, developed by Strasser and Weber (1999). The stop criterion in step 1) is either based on multiplicity adjusted p-values (`testtype = "Bonferroni"` in `ctree_control`) or on the univariate
p-values (testtype = "Univariate"). In both cases, the criterion is maximized, i.e., $1 - p$-value is used. A split is implemented when the criterion exceeds the value given by mincriterion as specified in ctree.control. For example, when mincriterion = 0.95, the p-value must be smaller than 0.05 in order to split this node. This statistical approach ensures that the right-sized tree is grown without additional (post-)pruning or cross-validation. The level of mincriterion can either be specified to be appropriate for the size of the data set (and 0.95 is typically appropriate for small to moderately-sized data sets) or could potentially be treated like a hyperparameter (see Section 3.4 in Hothorn, Hornik and Zeileis, 2006). The selection of the input variable to split in is based on the univariate p-values avoiding a variable selection bias towards input variables with many possible cutpoints. The test statistics in each of the nodes can be extracted with the sctest method. (Note that the generic is in the strucchange package so this either needs to be loaded or sctest.constparty has to be called directly.) In cases where splitting stops due to the sample size (e.g., minsplit or minbucket etc.), the test results may be empty.

Predictions can be computed using predict, which returns predicted means, predicted classes or median predicted survival times and more information about the conditional distribution of the response, i.e., class probabilities or predicted Kaplan-Meier curves. For observations with zero weights, predictions are computed from the fitted tree when newdata = NULL.

By default, the scores for each ordinal factor x are 1:length(x), this may be changed for variables in the formula using scores = list($x = c(1, 5, 6)$), for example.

Value

An object of class party.

References

Examples

```r
### regression
airq <- subset(airquality, !is.na(Ozone))
airct <- ctree(Ozone ~ ., data = airq)
airct
plot(airct)
mean((airq$Ozone - predict(airct))^2)

### classification
irisct <- ctree(Species ~ ., data = iris)
irisct
plot(irisct)
table(predict(irisct), iris$Species)
```
ctree_control

Control for Conditional Inference Trees

Description

Various parameters that control aspects of the ‘ctree’ fit.

Usage

```r
ctree_control(teststat = c("quad", "max"),
              testtype = c("Bonferroni", "Univariate", "Teststatistic"),
              mincriterion = 0.95, minsplit = 20L, minbucket = 7L,
              minprob = 0.01, stump = FALSE, maxsurrogate = 0L, mtry = Inf,
              maxdepth = Inf, multiway = FALSE, splittry = 2L, majority = FALSE,
              applyfun = NULL, cores = NULL)
```
Arguments

- **teststat**: a character specifying the type of the test statistic to be applied.
- **testtype**: a character specifying how to compute the distribution of the test statistic.
- **mincriterion**: the value of the test statistic or \(1 - p\)-value that must be exceeded in order to implement a split.
- **minsplit**: the minimum sum of weights in a node in order to be considered for splitting.
- **minbucket**: the minimum sum of weights in a terminal node.
- **minprob**: proportion of observations needed to establish a terminal node.
- **stump**: a logical determining whether a stump (a tree with three nodes only) is to be computed.
- **maxsurrogate**: number of surrogate splits to evaluate. Note the currently only surrogate splits in ordered covariables are implemented.
- **mtry**: number of input variables randomly sampled as candidates at each node for random forest like algorithms. The default \(mtry = \infty\) means that no random selection takes place.
- **maxdepth**: maximum depth of the tree. The default \(maxdepth = \infty\) means that no restrictions are applied to tree sizes.
- **multiway**: a logical indicating if multiway splits for all factor levels are implemented for unordered factors.
- **splittry**: number of variables that are inspected for admissible splits if the best split doesn’t meet the sample size constraints.
- **majority**: if \(FALSE\), observations which can’t be classified to a daughter node because of missing information are randomly assigned (following the node distribution). If \(FALSE\), they go with the majority (the default in \(ctree\)).
- **applyfun**: an optional \(lapply\)-style function with arguments \(function(x, \text{FUN}, \ldots)\). It is used for computing the variable selection criterion. The default is to use the basic \(lapply\) function unless the \(cores\) argument is specified (see below).
- **cores**: numeric. If set to an integer the \(applyfun\) is set to \(mclapply\) with the desired number of cores.

Details

The arguments \(teststat\), \(testtype\) and \(mincriterion\) determine how the global null hypothesis of independence between all input variables and the response is tested (see \(ctree\)). The variable with most extreme \(p\)-value or test statistic is selected for splitting. If this isn’t possible due to sample size constraints explained in the next paragraph, up to \(splittry\) other variables are inspected for possible splits.

A split is established when all of the following criteria are met: 1) the sum of the weights in the current node is larger than \(minsplit\), 2) a fraction of the sum of weights of more than \(minprob\) will be contained in all daughter nodes, 3) the sum of the weights in all daughter nodes exceeds \(minbucket\), and 4) the depth of the tree is smaller than \(maxdepth\). This avoids pathological splits deep down the tree. When \(stump = \text{TRUE}\), a tree with at most two terminal nodes is computed.

The argument \(mtry > 0\) means that a random forest like ‘variable selection’, i.e., a random selection of \(mtry\) input variables, is performed in each node.
In each inner node, maxsurrogate surrogate splits are computed (regardless of any missing values in the learning sample). Factors in test samples whose levels were empty in the learning sample are treated as missing when computing predictions (in contrast to ctree. Note also the different behaviour of majority in the two implementations.

Value

A list.

glmtree

Generalized Linear Model Trees

Description

Model-based recursive partitioning based on generalized linear models.

Usage

```
glmtree(formula, data, subset, na.action, weights, offset, cluster, family = gaussian, epsilon = 1e-8, maxit = 25, ...)
```

Arguments

- `formula`: symbolic description of the model (of type \(y \sim z_1 \pm \ldots \pm z_l \) or \(y \sim x_1 \pm \ldots \pm x_k | z_1 \pm \ldots \pm z_l \); for details see below).
- `data`, `subset`, `na.action`: arguments controlling formula processing via `model.frame`.
- `weights`: optional numeric vector of weights. By default these are treated as case weights but the default can be changed in mob_control.
- `offset`: optional numeric vector with an a priori known component to be included in the model \(y \sim x_1 \pm \ldots \pm x_k \) (i.e., only when \(x \) variables are specified).
- `cluster`: optional vector (typically numeric or factor) with a cluster ID to be employed for clustered covariances in the parameter stability tests.
- `family`: specification of a family for glm.
- `epsilon`, `maxit`: control parameters passed to glm.control.
- `...`: optional control parameters passed to mob_control.

Details

Convenience interface for fitting MOBs (model-based recursive partitions) via the mob function. glmtree internally sets up a model fit function for mob, using glm.fit. Then mob is called using the negative log-likelihood as the objective function.

Compared to calling mob by hand, the implementation tries to avoid unnecessary computations while growing the tree. Also, it provides a more elaborate plotting function.
Value
An object of class glmtree inheriting from modelparty. The info element of the overall party and the individual nodes contain various informations about the models.

References

See Also
mob, mob_control, lmtree

Examples
if(require("mlbench")) {

 ## Pima Indians diabetes data
data("PimaIndiansDiabetes", package = "mlbench")

 ## recursive partitioning of a logistic regression model
 pid_tree2 <- glmtree(diabetes ~ glucose | pregnant + pressure + triceps + insulin + mass + pedigree + age,
data = PimaIndiansDiabetes, family = binomial)

 ## printing whole tree or individual nodes
 print(pid_tree2)
 print(pid_tree2, node = 1)

 ## visualization
 plot(pid_tree2)
 plot(pid_tree2, tp_args = list(cdpplot = TRUE))
 plot(pid_tree2, terminal_panel = NULL)

 ## estimated parameters
 coef(pid_tree2)
 coef(pid_tree2, node = 5)
 summary(pid_tree2, node = 5)

 ## deviance, log-likelihood and information criteria
 deviance(pid_tree2)
 logLik(pid_tree2)
 AIC(pid_tree2)
 BIC(pid_tree2)

 ## different types of predictions
 pid <- head(PimaIndiansDiabetes)
predict(pid_tree2, newdata = pid, type = "node")
predict(pid_tree2, newdata = pid, type = "response")
predict(pid_tree2, newdata = pid, type = "link")
}
HuntingSpiders

Description
Abundances for 12 species of hunting spiders along with environmental predictors, all rated on a 0–9 scale.

Usage
data("HuntingSpiders")

Format
A data frame containing 28 observations on 18 variables (12 species abundances and 6 environmental predictors).

- **arct.lute** numeric. Abundance of species *Arctosa lutetiana* (on a scale 0–9).
- **pard.lugu** numeric. Abundance of species *Pardosa lugubris* (on a scale 0–9).
- **zora.spin** numeric. Abundance of species *Zora spinimana* (on a scale 0–9).
- **pard.nigr** numeric. Abundance of species *Pardosa nigriceps* (on a scale 0–9).
- **pard.pull** numeric. Abundance of species *Pardosa pullata* (on a scale 0–9).
- **aulo.albi** numeric. Abundance of species *Aulonia albimana* (on a scale 0–9).
- **troc.terr** numeric. Abundance of species *Trochosa terricola* (on a scale 0–9).
- **alop.cune** numeric. Abundance of species *Alopecosa cuneata* (on a scale 0–9).
- **pard.mont** numeric. Abundance of species *Pardosa monticola* (on a scale 0–9).
- **alop.acce** numeric. Abundance of species *Alopecosa accentuata* (on a scale 0–9).
- **alop.fabr** numeric. Abundance of species *Alopecosa fabrilis* (on a scale 0–9).
- **arct.peri** numeric. Abundance of species *Arctosa perita* (on a scale 0–9).
- **water** numeric. Environmental predictor on a scale 0–9.
- **sand** numeric. Environmental predictor on a scale 0–9.
- **moss** numeric. Environmental predictor on a scale 0–9.
- **reft** numeric. Environmental predictor on a scale 0–9.
- **twigs** numeric. Environmental predictor on a scale 0–9.
- **herbs** numeric. Environmental predictor on a scale 0–9.

Details
The data were originally analyzed by Van der Aart and Smeenk-Enserink (1975). De’ath (2002) transformed all variables to the 0–9 scale and employed multivariate regression trees.
Source
Package mvpart (currently archived, see http://CRAN.R-project.org/package=mvpart).

References

Examples
load data
data("HuntingSpiders", package = "partykit")

fit multivariate tree for 12-dimensional species abundance
sptree <- ctree(arct.lute + pard.lugu + zora.spin + pard.nigr + pard.pull + aulo.albi + troc.terr + alop.cune + pard.mont + alop.acce + alop.fabr + arct.peri - herbs + reft + moss + sand + twigs + water, data = HuntingSpiders,
teststat = "max", msplit = 5)
plot(sptree, terminal_panel = node_barplot)

lmtree

Linear Model Trees

Description
Model-based recursive partitioning based on least squares regression.

Usage
lmtree(formula, data, subset, na.action, weights, offset, cluster, ...)

Arguments

formula symbolic description of the model (of type y ~ z1 + ... + zl or y ~ x1 + ... + xk | z1 + ... + zl; for details see below).
data, subset, na.action arguments controlling formula processing via model.frame.
weights optional numeric vector of weights. By default these are treated as case weights but the default can be changed in mob_control.
offset optional numeric vector with an a priori known component to be included in the model y ~ x1 + ... + xk (i.e., only when x variables are specified).
cluster optional vector (typically numeric or factor) with a cluster ID to be employed for clustered covariances in the parameter stability tests.
... optional control parameters passed to mob_control.
Details

Convenience interface for fitting MOBs (model-based recursive partitions) via the `mob` function. `lmtree` internally sets up a model fit function for `mob`, using either `lm.fit` or `lm.wfit` (depending on whether weights are used or not). Then `mob` is called using the residual sum of squares as the objective function.

Compared to calling `mob` by hand, the implementation tries to avoid unnecessary computations while growing the tree. Also, it provides a more elaborate plotting function.

Value

An object of class `lmtree` inheriting from `modelparty`. The `info` element of the overall party and the individual nodes contain various informations about the models.

References

See Also

`mob`, `mob_control`, `glmtree`

Examples

```r
if(require("mlbench")) {

## Boston housing data
data("BostonHousing", package = "mlbench")
BostonHousing <- transform(BostonHousing,
    chas = factor(chas, levels = 0:1, labels = c("no", "yes")),
    rad = factor(rad, ordered = TRUE))

## linear model tree
bh_tree <- lmtree(medv ~ log(lstat) + I(rm^2) | zn +
    indus + chas + nox + age + dis + rad + tax + crim + b + ptratio,
data = BostonHousing, minsize = 40)

## printing whole tree or individual nodes
print(bh_tree)
print(bh_tree, node = 7)

## plotting
plot(bh_tree)
plot(bh_tree, tp_args = list(which = "log(lstat)"))
plot(bh_tree, terminal_panel = NULL)

## estimated parameters
coef(bh_tree)
coef(bh_tree, node = 9)
summary(bh_tree, node = 9)
```
Various ways for computing the mean squared error (on the training data)

```r
mean((BostonHousing$medv - fitted(bh_tree))^2)
mean(residuals(bh_tree)^2)
deviance(bh_tree)/sum(weights(bh_tree))
deviance(bh_tree)/nobs(bh_tree)
```

Log-likelihood and information criteria

```r
logLik(bh_tree)
AIC(bh_tree)
BIC(bh_tree)
```

(Note that this penalizes estimation of error variances, which were treated as nuisance parameters in the fitting process.)

Different types of predictions

```r
bh <- BostonHousing[c(1, 10, 50), ]
predict(bh_tree, newdata = bh, type = "node")
predict(bh_tree, newdata = bh, type = "response")
predict(bh_tree, newdata = bh, type = function(object) summary(object)$r.squared)
```

Demand for economics journals data

```r
data("Journals", package = "AER")
journals <- transform(Journals,
  age = 2000 - foundingyear,
  chars = charpp * pages)
```

Linear regression tree (OLS)

```r
j_tree <- lmtree(log(subs) ~ log(price/citations) | price + citations + age + chars + society, data = journals, minsize = 10, verbose = TRUE)
```

Printing and plotting

```r
j_tree
plot(j_tree)
```

Coefficients and summary

```r
coef(j_tree, node = 1:3)
summary(j_tree, node = 1:3)
```

Beauty and teaching ratings data

```r
data("TeachingRatings", package = "AER")
```

Linear regression (WLS)

```r
# Null model
tr_null <- lm(eval ~ 1, data = TeachingRatings, weights = students,
```
mob

Model-based Recursive Partitioning

Description

MOB is an algorithm for model-based recursive partitioning yielding a tree with fitted models associated with each terminal node.

Usage

mob(formula, data, subset, na.action, weights, offset, cluster,
fit, control = mob_control(), ...)

Arguments

- formula: symbolic description of the model (of type y \sim z_1 + \ldots + z_l or y \sim x_1 + \ldots + x_k | z_1 + \ldots + z_l; for details see below).
- data, subset, na.action: arguments controlling formula processing via model.frame.
- weights: optional numeric vector of weights. By default these are treated as case weights but the default can be changed in mob_control.
- offset: optional numeric vector with an a priori known component to be included in the model y \sim x_1 + \ldots + x_k (i.e., only when x variables are specified).
- cluster: optional vector (typically numeric or factor) with a cluster ID to be passed on to the fit function and employed for clustered covariances in the parameter stability tests.
fit function. A function for fitting the model within each node. For details see below.

control A list with control parameters as returned by \texttt{mob_control}.

... Additional arguments passed to the \texttt{fit} function.

Details

Model-based partitioning fits a model tree using two groups of variables: (1) The model variables which can be just a (set of) response(s) y or additionally include regressors x_1, \ldots, x_k. These are used for estimating the model parameters. (2) Partitioning variables z_1, \ldots, z_l, which are used for recursively partitioning the data. The two groups of variables are either specified as $y \sim z_1 + \ldots + z_l$ (when there are no regressors) or $y \sim x_1 + \ldots + x_k \mid z_1 + \ldots + z_l$ (when the model part contains regressors). Both sets of variables may in principle be overlapping.

To fit a tree model the following algorithm is used.

1. \texttt{fit} a model to the y or y and x variables using the observations in the current node
2. Assess the stability of the model parameters with respect to each of the partitioning variables z_1, \ldots, z_l. If there is some overall instability, choose the variable z associated with the smallest p value for partitioning, otherwise stop.
3. Search for the locally optimal split in z by minimizing the objective function of the model. Typically, this will be something like \texttt{deviance} or the negative \texttt{logLik}.
4. Refit the model in both kid subsamples and repeat from step 2.

More details on the conceptual design of the algorithm can be found in Zeileis, Hothorn, Hornik (2008) and some illustrations are provided in \texttt{vignette("MOB")}. For specifying the \texttt{fit} function two approaches are possible:

(1) It can be a function \texttt{fit(y, x = NULL, start = NULL, weights = NULL, offset = NULL, \ldots)}. The arguments y, x, weights, offset will be set to the corresponding elements in the current node of the tree. Additionally, starting values will sometimes be supplied via \texttt{start}. Of course, the \texttt{fit} function can choose to ignore any arguments that are not applicable, e.g., if the are no regressors x in the model or if starting values or not supported. The returned object needs to have a class that has associated \texttt{coef}, \texttt{logLik}, and \texttt{estfun} methods for extracting the estimated parameters, the maximized log-likelihood, and the empirical estimating function (i.e., score or gradient contributions), respectively.

(2) It can be a function \texttt{fit(y, x = NULL, start = NULL, weights = NULL, offset = NULL, \ldots, estfun = FALSE, object = \texttt{FALSE})}. The arguments have the same meaning as above but the returned object needs to have a different structure. It needs to be a list with elements \texttt{coefficients} (containing the estimated parameters), \texttt{objfun} (containing the minimized objective function), \texttt{estfun} (the empirical estimating functions), and \texttt{object} (the fitted model object). The elements \texttt{estfun}, or \texttt{object} should be \texttt{NULL} if the corresponding argument is set to \texttt{FALSE}.

Internally, a function of type (2) is set up by \texttt{mob()} in case a function of type (1) is supplied. However, to save computation time, a function of type (2) may also be specified directly.

For the fitted MOB tree, several standard methods are provided such as \texttt{print}, \texttt{predict}, \texttt{residuals}, \texttt{logLik}, \texttt{deviance}, \texttt{weights}, \texttt{coef} and \texttt{summary}. Some of these rely on reusing the corresponding methods for the individual model objects in the terminal nodes. Functions such as \texttt{coef}, \texttt{print}, \texttt{summary} also take a node argument that can specify the node IDs to be queried. Some examples are given below.
More details can be found in vignette("mob", package = "partykit").

Value

An object of class modelparty inheriting from party. The info element of the overall party and the individual nodes contain various informations about the models.

References

See Also

mob_control, lmtree, glm.tree

Examples

if(require("mlbench")) {

Pima Indians diabetes data
data("PimaIndiansDiabetes", package = "mlbench")

a simple basic fitting function (of type 1) for a logistic regression
logit <- function(y, x, start = NULL, weights = NULL, offset = NULL, ...) {
 glm(y ~ 0 + x, family = binomial, start = start, ...)
}

set up a logistic regression tree
pid_tree <- mob(diabetes ~ glucose | pregnant + pressure + triceps + insulin +
 mass + pedigree + age, data = PimaIndiansDiabetes, fit = logit)
see lmtree() and glm.tree() for interfaces with more efficient fitting functions

print tree
print(pid_tree)

print information about (some) nodes
print(pid_tree, node = 3:4)

visualization
plot(pid_tree)

coefficients and summary
coef(pid_tree)
coef(pid_tree, node = 1)
summary(pid_tree, node = 1)

average deviance computed in different ways
mean(residuals(pid_tree)^2)
deviance(pid_tree)/sum(weights(pid_tree))
deviance(pid_tree)/nobs(pid_tree)
mob_control

Control Parameters for Model-Based Partitioning

Description

Various parameters that control aspects the fitting algorithm for recursively partitioned mob models.

Usage

mob_control(alpha = 0.05, bonferroni = TRUE, minsize = NULL, maxdepth = Inf,
mtry = Inf, trim = 0.1, breakties = FALSE, parm = NULL, dfsplit = TRUE, prune = NULL,
restart = TRUE, verbose = FALSE, caseweights = TRUE, ytype = "vector", xtype = "matrix",
terminal = "object", inner = terminal, model = TRUE, nmsplit = "left",
catsplit = "binary", vcov = "opg", ordinal = "chisq", nrep = 10000,
minsplit = minsize, minbucket = minsize, applyfun = NULL, cores = NULL)

Arguments

alpha numeric significance level. A node is splitted when the (possibly Bonferroni-corrected) p value for any parameter stability test in that node falls below alpha (and the stopping criteria minsize and maxdepth are not fulfilled).

bonferroni logical. Should p values be Bonferroni corrected?

minsize, msplit, minbucket

integer. The minimum number of observations in a node. If NULL, the default is to use 10 times the number of parameters to be estimated (divided by the number of responses per observation if that is greater than 1). minsize is the recommended name and msplit/minbucket are only included for backward compatibility with previous versions of mob and compatibility with ctree, respectively.

maxdepth integer. The maximum depth of the tree.

mtry integer. The number of partitioning variables randomly sampled as candidates in each node for forest-style algorithms. If mtry is greater than the number of partitioning variables, no random selection is performed. (Thus, by default all available partitioning variables are considered.)

trim numeric. This specifies the trimming in the parameter instability test for the numerical variables. If smaller than 1, it is interpreted as the fraction relative to the current node size.

logLik(pid_tree)
AIC(pid_tree)
BIC(pid_tree)

predict(pid_tree, newdata = head(PimaIndiansDiabetes, 6), type = "node")

other types of predictions are possible using lmtree() and gmtree()
breakties logical. Should ties in numeric variables be broken randomly for computing the associated parameter instability test?

parm numeric or character. Number or name of model parameters included in the parameter instability tests (by default all parameters are included).

dfsplit logical or numeric. \texttt{as.integer(dfsplit)} is the degrees of freedom per selected split employed when computing information criteria etc.

prune character, numeric, or function for specifying post-pruning rule. If prune is \texttt{NULL} (the default), no post-pruning is performed. For likelihood-based \texttt{mob()} trees, prune can be set to "AIC" or "BIC" for post-pruning based on the corresponding information criteria. More general rules (also in scenarios that are not likelihood-based), can be specified by function arguments to prune, for details see below.

restart logical. When determining the optimal split point in a numerical variable: Should model estimation be restarted with \texttt{NULL} starting values for each split? The default is \texttt{TRUE}. If \texttt{FALSE}, then the parameter estimates from the previous split point are used as starting values for the next split point (because in practice the difference are often not huge). (Note that in that case a for loop is used instead of the \texttt{applyfun} for fitting models across sample splits.)

verbose logical. Should information about the fitting process of \texttt{mob} (such as test statistics, \textit{p} values, selected splitting variables and split points) be printed to the screen?

caseweights logical. Should weights be interpreted as case weights? If \texttt{TRUE}, the number of observations is \texttt{sum(weights)}, otherwise it is \texttt{sum(weights > 0)}.

ytype, xtype character. Specification of how \texttt{mob} should preprocess \textit{y} and \textit{x} variables. Possible choice are: "vector" (for \textit{y} only), i.e., only one variable; "matrix", i.e., the model matrix of all variables; "data.frame", i.e., a data frame of all variables.

terminal, inner character. Specification of which additional information ("estfun", "object", or both) should be stored in each node. If \texttt{NULL}, no additional information is stored.

model logical. Should the full model frame be stored in the resulting object?

numsplit character indicating how splits for numeric variables should be justified. Because any splitpoint in the interval between the last observation from the left child segment and the first observation from the right child segment leads to the same observed split, two options are available in \texttt{mob_control}: Either, the split is "left"-justified (the default for backward compatibility) or "center"-justified using the midpoint of the possible interval.

catsplit character indicating how (unordered) categorical variables should be splitted. By default the best "binary" split is searched (by minimizing the objective function). Alternatively, if set to "multiway", the node is simply splitted into all levels of the categorical variable.

vcov character indicating which type of covariance matrix estimator should be employed in the parameter instability tests. The default is the outer product of gradients ("opg"). Alternatively, \texttt{vcov} = "info" employs the information matrix and \texttt{vcov} = "sandwich" the sandwich matrix (both of which are only sensible for maximum likelihood estimation).
model.frame.rpart

character indicating which type of parameter instability test should be employed for ordinal partitioning variables (i.e., ordered factors). This can be "chisq", "max", or "L2". If "chisq" then the variable is treated as unordered and a chi-squared test is performed. If "L2", then a maxLM-type test as for numeric variables is carried out but correcting for ties. This requires simulation of p-values via catLM and requires some computation time. For "max" a weighted double maximum test is used that computes p-values via pmvnorm.

numeric. Number of replications in the simulation of p-values for the ordinal "L2" statistic (if used).

an optional lapply-style function with arguments function(X, FUN, ...). It is used for refitting the model across potential sample splits. The default is to use the basic lapply function unless the cores argument is specified (see below).

numeric. If set to an integer the applyfun is set to mclapply with the desired number of cores.

See mob for more details and references.

For post-pruning, prune can be set to a function(objfun, df, nobs) which either returns TRUE to signal that a current node can be pruned or FALSE. All supplied arguments are of length two: objfun is the sum of objective function values in the current node and its child nodes, respectively. df is the degrees of freedom in the current node and its child nodes, respectively. nobs is vector with the number of observations in the current node and the total number of observations in the dataset, respectively.

If the objective function employed in the mob() call is the negative log-likelihood, then a suitable function is set up on the fly by comparing (2 * objfun + penalty * df) in the current and the daughter nodes. The penalty can then be set via a numeric or character value for prune: AIC is used if prune = "AIC" or prune = 2 and BIC if prune = "BIC" or prune = log(n).

A list of class mob_control containing the control parameters.

See Also

mob

model.frame.rpart

Model Frame Method for rpart

A model.frame method for rpart objects.
nodeapply

Usage

```r
## S3 method for class 'rpart'
model.frame(formula, ...)
```

Arguments

- `formula`: an object of class `rpart`.
- `...`: additional arguments.

Details

A `model.frame` method for `rpart` objects.

Value

A model frame.

nodeapply

Apply Functions Over Nodes

Description

Returns a list of values obtained by applying a function to `party` or `partynode` objects.

Usage

```r
nodeapply(obj, ids = 1, FUN = NULL, ...)
```

Arguments

- `obj`: an object of class `partynode` or `party`.
- `ids`: integer vector of node identifiers to apply over.
- `FUN`: a function to be applied to nodes. By default, the node itself is returned.
- `by_node`: a logical indicating if `FUN` is applied to subsets of `party` objects or `partynode` objects (default).
- `...`: additional arguments.

Details

Function `FUN` is applied to all nodes with node identifiers in `ids` for a `partynode` object. The method for `party` by default calls the `nodeapply` method on it’s node slot. If `by_node` is `FALSE`, it is applied to a `party` object with root node `ids`.
Value

A list of results of length `length(ids)`.

Examples

```r
## a tree as flat list structure
nodelist <- list(
  # root node
  list(id = 1L, split = partysplit(varid = 4L, breaks = 1.9),
       kids = 2:3),
  # V4 <= 1.9, terminal node
  list(id = 2L, info = "terminal A"),
  # V4 > 1.9
  list(id = 3L, split = partysplit(varid = 5L, breaks = 1.7),
       kids = c(4L, 7L)),
  # V5 <= 1.7
  list(id = 4L, split = partysplit(varid = 4L, breaks = 4.8),
       kids = 5:6),
  # V4 <= 4.8, terminal node
  list(id = 5L, info = "terminal B"),
  # V4 > 4.8, terminal node
  list(id = 6L, info = "terminal C"),
  # V5 > 1.7, terminal node
  list(id = 7L, info = "terminal D")
)

## convert to a recursive structure
node <- as.party(node(nodelist))

## return root node
nodeapply(node)

## return info slots of terminal nodes
nodeapply(node, ids = nodeids(node, terminal = TRUE),
           FUN = function(x) info_node(x))

## fit tree using rpart
library("rpart")
rp <- rpart(Kyphosis ~ Age + Number + Start, data = kyphosis)

## coerce to `constparty`
rpk <- as.party(rp)

## extract nodeids
nodeids(rpk)
unlist(nodeapply(node_party(rpk), ids = nodeids(rpk),
                FUN = id_node))
unlist(nodeapply(rpk, ids = nodeids(rpk), FUN = id_node))

## but root nodes of party objects always have id = 1
unlist(nodeapply(rpk, ids = nodeids(rpk), FUN = function(x)
               id_node(x))
```

nodeids

id_node(node_party(x), by_node = FALSE)

nodeids Extract Node Identifiers

Description
Extract unique identifiers from inner and terminals nodes of a party node object.

Usage
nodeids(obj, ...)
 ## S3 method for class 'partynode'
nodeids(obj, from = NULL, terminal = FALSE, ...)
 ## S3 method for class 'party'
nodeids(obj, from = NULL, terminal = FALSE, ...)

Arguments
 obj an object of class partynode or party.
 from an integer specifying node to start from.
 terminal logical specifying if only node identifiers of terminal nodes are returned.
 ... additional arguments.

Details
The identifiers of each node are extracted.

Value
A vector of node identifiers.

Examples
 ## a tree as flat list structure
 nodelist <- list(
 # root node
 list(id = 1L, split = partysplit(varid = 4L, breaks = 1.9),
 kids = 2:3),
 # V4 <= 1.9, terminal node
 list(id = 2L),
 # V4 > 1.9
 list(id = 3L, split = partysplit(varid = 1L, breaks = 1.7),
 kids = c(4L, 7L)),
 # V1 <= 1.7
 list(id = 4L, split = partysplit(varid = 4L, breaks = 4.8),
 kids = 5:6),
 # V5 <= 6.5
 list(id = 5L, split = partysplit(varid = 5L, breaks = 5.9),
 kids = 6:7),
 # V7 <= 1.5
 list(id = 7L, split = partysplit(varid = 7L, breaks = 1.5),
 kids = c(8L, 9L)),
 # V8 <= 9.1
 list(id = 8L, split = partysplit(varid = 8L, breaks = 9.1),
 kids = 10:11),
 # V10 <= 8.8
 list(id = 10L, split = partysplit(varid = 10L, breaks = 8.8),
 kids = 11:12),
 # V12 <= 11.9
 list(id = 12L, split = partysplit(varid = 12L, breaks = 11.9),
 kids = 13:14),
 # V14 <= 14.2
 list(id = 14L, split = partysplit(varid = 14L, breaks = 14.2),
 kids = 15:16),
 # V16 <= 16.7
 list(id = 16L, split = partysplit(varid = 16L, breaks = 16.7),
 kids = 17:18),
 # V18 <= 18.2
 list(id = 18L, split = partysplit(varid = 18L, breaks = 18.2),
 kids = 19:20),
 # V20 <= 20.6
 list(id = 20L, split = partysplit(varid = 20L, breaks = 20.6),
 kids = 21:22),
 # V22 <= 22.7
 list(id = 22L, split = partysplit(varid = 22L, breaks = 22.7),
 kids = 23:24)
)

 nodelist$id
 # [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
V4 <= 4.8, terminal node
list(id = 5L),
V4 > 4.8, terminal node
list(id = 6L),
V1 > 1.7, terminal node
list(id = 7L)

convert to a recursive structure
node <- as.partynode(nodelist)

set up party object
data("iris")
tree <- party(node, data = iris,
 fitted = data.frame("(fitted)" =
 fitted_node(node, data = iris),
 check.names = FALSE))
tree

ids of all nodes
nodeids(tree)

ids of all terminal nodes
nodeids(tree, terminal = TRUE)

ids of terminal nodes in subtree with root [3]
nodeids(tree, from = 3, terminal = TRUE)

Panel-Generators for Visualization of Party Trees

Description

The plot method for party and constparty objects are rather flexible and can be extended by panel functions. Some pre-defined panel-generating functions of class grapcon_generator for the most important cases are documented here.

Usage

```r
node_inner(obj, id = TRUE, pval = TRUE, abbreviate = FALSE, fill = "white",
           gp = gpar())
```

```r
node_terminal(obj, digits = 3, abbreviate = FALSE,
              fill = c("lightgray", "white"), id = TRUE,
              just = c("center", "top"), top = 0.85,
              align = c("center", "left", "right"), gp = NULL, FUN = NULL)
```
Arguments

obj an object of class party.
digits integer, used for formatting numbers.
abbreviate logical indicating whether strings should be abbreviated.
col, pointcol, boxcol, linecol a color for points and lines.
fill, boxfill a color to filling rectangles.
id logical. Should node IDs be plotted?
pval logical. Should node p values be plotted (if they are available)?
just justification of terminal panel viewport (node_terminal), or edge labels (edge_simple).
justmin minimum average edge label length to employ justification via just in edge_panel, otherwise just = "equal" is used. Thus, by default "equal" justification is always used but other justifications could be employed for finite justmin.
top in case of top justification, the npc coordinate at which the viewport is justified.
align alignment of text within terminal panel viewport.
ylines number of lines for spaces in y-direction.
widths widths in barplots.
width, boxwidth width in boxplots.
The plot methods for party and constparty objects provide an extensible framework for the visualization of binary regression trees. The user is allowed to specify panel functions for plotting terminal and inner nodes as well as the corresponding edges. The panel functions to be used should depend only on the node being visualized, however, for setting up an appropriate panel function, information from the whole tree is typically required. Hence, party adopts the framework of grapcon_generator (graphical appearance control) from the vcd package (Meyer, Zeileis and Hornik, 2005) and provides several panel-generating functions. For convenience, the panel-generating functions node_inner and edge_simple return panel functions to draw inner nodes and left and right edges. For drawing terminal nodes, the functions returned by the other panel functions can be used. The panel generating function node_terminal is a terse text-based representation of terminal nodes.

Graphical representations of terminal nodes are available and depend on the kind of model and the measurement scale of the variables modeled.

For univariate regressions (typically fitted by), node_surv returns a functions that plots Kaplan-Meier curves in each terminal node; node_barplot, node_boxplot, node_hist, node_ecdf and...
node_density can be used to plot bar plots, box plots, histograms, empirical cumulative distribution functions and estimated densities into the terminal nodes.

For multivariate regressions (typically fitted by mob), node_bivplot returns a panel function that creates bivariate plots of the response against all regressors in the model. Depending on the scale of the variables involved, scatter plots, box plots, spinograms (or CD plots) and spine plots are created. For the latter two spine and cd_plot from the vcd package are re-used.

For multivariate responses in ctree, the panel function node_mvar generates one plot for each response.

References

party

Recursive Partytioning

Description

A class for representing decision trees and corresponding accessor functions.

Usage

```
party(node, data, fitted = NULL, terms = NULL, names = NULL, info = NULL)
## S3 method for class 'party'
names(x)
## S3 replacement method for class 'party'
names(x) <- value
data_party(party, id = 1L)
## Default S3 method:
data_party(party, id = 1L)
node_party(party)
is.constparty(party)
is.simpleparty(party)
```

Arguments

- **node**: an object of class `partynode`.
- **data**: a (potentially empty) `data.frame`.
- **fitted**: an optional `data.frame` with `nrow(data)` rows (only if `nrow(data) != 0` and containing at least the fitted terminal node identifiers as element (fitted). In addition, weights may be contained as element (weights) and responses as (response).
- **terms**: an optional `terms` object.
names an optional vector of names to be assigned to each node of node.
info additional information.
x an object of class party.
party an object of class party.
value a character vector of up to the same length as x, or NULL.
id a node identifier.

Details

Objects of class party basically consist of a party node object representing the tree structure in a recursive way and data. The data argument takes a data frame which, however, might have zero columns. Optionally, a data frame with at least one variable (fitted) containing the terminal node numbers of data used for fitting the tree may be specified along with a terms object or any additional (currently unstructured) information as info. Argument names defines names for all nodes in node.

Method names can be used to extract or alter names for nodes. Function node_party returns the node element of a party object. Further methods for party objects are documented in party-methods and party-predict. Trees of various flavors can be coerced to party, see party-coercion.

Two classes inherit from class party and impose additional assumptions on the structure of this object: Class constparty requires that the fitted slot contains a partitioning of the learning sample as a factor ("fitted") and the response values of all observations in the learning sample as ("response"). This structure is most flexible and allows for graphical display of the response values in terminal nodes as well as for computing predictions based on arbitrary summary statistics.

Class simpleparty assumes that certain pre-computed information about the distribution of the response variable is contained in the info slot nodes. At the moment, no formal class is used to describe this information.

Value

The constructor returns an object of class party:

node an object of class party.
data a (potentially empty) data.frame.
fitted an optional data.frame with nrow(data) rows (only if nrow(data) != 0 and containing at least the fitted terminal node identifiers as element (fitted). In addition, weights may be contained as element (weights) and responses as (response).

terms an optional terms object.

names an optional vector of names to be assigned to each node of node.
info additional information.

names can be used to set and retrieve names of nodes and node_party returns an object of class party.node. data_party returns a data frame with observations contained in node id.
Examples

```r
### data ###
## artificial WeatherPlay data
data("WeatherPlay", package = "partykit")
str(WeatherPlay)

### splits ###
## split in overcast, humidity, and windy
sp_o <- partySplit(1L, index = 1:3)
sp_h <- partySplit(3L, breaks = 75)
sp_w <- partySplit(4L, index = 1:2)

## query labels
character_split(sp_o)

### nodes ###
## set up partynode structure
pn <- partyNode(1L, split = sp_o, kids = list(
    partyNode(2L, split = sp_h, kids = list(
        partyNode(3L, info = "yes"),
        partyNode(4L, info = "no"))),
    partyNode(5L, info = "yes"),
    partyNode(6L, split = sp_w, kids = list(
        partyNode(7L, info = "yes"),
        partyNode(8L, info = "no"))))))
pn

### tree ###
## party: associate recursive partynode structure with data
py <- party(pn, WeatherPlay)
py
plot(py)

### variations ###
## tree stump
n1 <- partyNode(id = 1L, split = sp_o, kids = lapply(2L:4L, partyNode))
print(n1, data = WeatherPlay)

## query fitted nodes and kids ids
fitted_node(n1, data = WeatherPlay)
kidids_node(n1, data = WeatherPlay)

## tree with full data sets
t1 <- party(n1, data = WeatherPlay)

## tree with empty data set
party(n1, data = WeatherPlay[0, ])
```
```
## constant-fit tree
```
```
t2 <- party(n1,
data = WeatherPlay,
fitted = data.frame(
  ``(fitted)`` = fitted_node(n1, data = WeatherPlay),
  ``(response)`` = WeatherPlay$play,
  check.names = FALSE),
terms = terms(play ~ ., data = WeatherPlay),
)
t2 <- as.constparty(t2)
t2
plot(t2)
```

party-coercion Coercion Functions

Description

Functions coercing various objects to objects of class party.

Usage

```
as.party(obj, ...)
## S3 method for class 'rpart'
as.party(obj, ...)
## S3 method for class 'Weka_tree'
as.party(obj, ...)
## S3 method for class 'XMLNode'
as.party(obj, ...)
pmmlTreeModel(file, ...)
as.constparty(obj, ...)
as.simpleparty(obj, ...)
## S3 method for class 'party'
as.simpleparty(obj, ...)
## S3 method for class 'simpleparty'
as.simpleparty(obj, ...)
## S3 method for class 'constparty'
as.simpleparty(obj, ...)
## S3 method for class 'XMLNode'
as.simpleparty(obj, ...)
```

Arguments

- `obj` an object of class `rpart`, `Weka_tree`, `XMLNode` or objects inheriting from `party`.
- `file` a file name of a XML file containing a PMML description of a tree.
- `...` additional arguments.
Details

Trees fitted using functions \texttt{rpart} or \texttt{J48} are coerced to \texttt{party} objects. By default, objects of class \texttt{constparty} are returned.

When information about the learning sample is available, \texttt{party} objects can be coerced to objects of class \texttt{constparty} or \texttt{simpleparty} (see \texttt{party} for details).

Value

All methods return objects of class \texttt{party}.

Examples

```r
## fit tree using rpart
library("rpart")
rp <- rpart(Kyphosis ~ Age + Number + Start, data = kyphosis)

## coerce to 'constparty'
as.party(rp)
```

Description

Methods for computing on party objects.

Usage

```r
## S3 method for class 'party'
print(x, 
  terminal_panel = function(node) 
    formatinfo_node(node, default = "*", prefix = ": "),
  tp_args = list(),
  inner_panel = function(node) "", ip_args = list(),
  header_panel = function(party) "",
  footer_panel = function(party) "",
  digits = getOption("digits") - 2, ...)

## S3 method for class 'simpleparty'
print(x, digits = getOption("digits") - 4,
  header = NULL, footer = TRUE, ...)

## S3 method for class 'constparty'
print(x, FUN = NULL, digits = getOption("digits") - 4,
  header = NULL, footer = TRUE, ...)

## S3 method for class 'party'
length(x)

## S3 method for class 'party'
x[i, ...]
```
S3 method for class 'party'
x[[i, ...]]
S3 method for class 'party'
depth(x, root = FALSE, ...)
S3 method for class 'party'
width(x, ...)
S3 method for class 'party'
nodeprune(x, ids, ...)

Arguments

- **x**: an object of class `party`.
- **i**: an integer specifying the root of the subtree to extract.
- **terminal_panel**: a panel function for printing terminal nodes.
- **tp_args**: a list containing arguments to `terminal_panel`.
- **inner_panel**: a panel function for printing inner nodes.
- **ip_args**: a list containing arguments to `inner_panel`.
- **header_panel**: a panel function for printing the header.
- **footer_panel**: a panel function for printing the footer.
- **digits**: number of digits to be printed.
- **header**: header to be printed.
- **footer**: footer to be printed.
- **FUN**: a function to be applied to nodes.
- **root**: a logical. Should the root count be counted in `depth`?
- **ids**: a vector of node ids (or their names) to be pruned-off.
- **...**: additional arguments.

Details

- **length**: gives the number of nodes in the tree (in contrast to the `length` method for `partynode` objects which returns the number of kid nodes in the root), `depth` the depth of the tree and `width` the number of terminal nodes. The subset methods extract subtrees and the `print` method generates a textual representation of the tree. `nodeprune` prunes-off nodes and makes sure that the node ids of the resulting tree are in pre-order starting with root node id 1. For `constparty` objects, the `fitted` slot is also changed.

Examples

```r
## a tree as flat list structure
nodelist <- list(  
  # root node
  list(id = 1L, split = partysplit(varid = 4L, breaks = 1.9),  
    kids = 2:3),  
  # V4 <= 1.9, terminal node
```

 Visualization of Trees

Description

plot method for party objects with extended facilities for plugging in panel functions.

Usage

```r
## S3 method for class 'party'
```
plot(x, main = NULL,
 terminal_panel = node_terminal, tp_args = list(),
 inner_panel = node_inner, ip_args = list(),
 edge_panel = edge_simple, ep_args = list(),
 drop_terminal = FALSE, tnex = 1,
 newpage = TRUE, pop = TRUE, gp = gpar(), ...)
S3 method for class 'constparty'
plot(x, main = NULL,
 terminal_panel = NULL, tp_args = list(),
 inner_panel = node_inner, ip_args = list(),
 edge_panel = edge_simple, ep_args = list(),
 type = c("extended", "simple"), tnex = NULL, drop_terminal = NULL,
 newpage = TRUE, pop = TRUE, gp = gpar(), ...)
S3 method for class 'simpleparty'
plot(x, digits =getOption("digits") - 4, tp_args = NULL, ...)

Arguments

x an object of class party or constparty.
main an optional title for the plot.
type a character specifying the complexity of the plot: extended tries to visualize the distribution of the response variable in each terminal node whereas simple only gives some summary information.
terminal_panel an optional panel function of the form function(node) plotting the terminal nodes. Alternatively, a panel generating function of class "grapcon_generator" that is called with arguments x and tp_args to set up a panel function. By default, an appropriate panel function is chosen depending on the scale of the dependent variable.
tp_args a list of arguments passed to terminal_panel if this is a "grapcon_generator" object.
inner_panel an optional panel function of the form function(node) plotting the inner nodes. Alternatively, a panel generating function of class "grapcon_generator" that is called with arguments x and ip_args to set up a panel function.
ip_args a list of arguments passed to inner_panel if this is a "grapcon_generator" object.
edge_panel an optional panel function of the form function(split, ordered = FALSE, left = TRUE) plotting the edges. Alternatively, a panel generating function of class "grapcon_generator" that is called with arguments x and ip_args to set up a panel function.
ep_args a list of arguments passed to edge_panel if this is a "grapcon_generator" object.
drop_terminal a logical indicating whether all terminal nodes should be plotted at the bottom.
tnex a numeric value giving the terminal node extension in relation to the inner nodes.
newpage a logical indicating whether grid.newpage() should be called.
pop a logical whether the viewport tree should be popped before return.
party-predict

<table>
<thead>
<tr>
<th>gp</th>
<th>graphical parameters.</th>
</tr>
</thead>
<tbody>
<tr>
<td>digits</td>
<td>number of digits to be printed.</td>
</tr>
<tr>
<td>...</td>
<td>additional arguments passed to callsies.</td>
</tr>
</tbody>
</table>

Details

This plot method for party objects provides an extensible framework for the visualization of binary regression trees. The user is allowed to specify panel functions for plotting terminal and inner nodes as well as the corresponding edges. Panel functions for plotting inner nodes, edges and terminal nodes are available for the most important cases and can serve as the basis for user-supplied extensions, see node_inner.

More details on the ideas and concepts of panel-generating functions and "grapcon_generator" objects in general can be found in Meyer, Zeileis and Hornik (2005).

References

See Also

node_inner, node_terminal, edge_simple, node_barplot, node_boxplot.

party-predict

Tree Predictions

Description

Compute predictions from party objects.

Usage

```r
# S3 method for class 'party'
predict(object, newdata = NULL, ...)
predict_party(party, id, newdata = NULL, ...)
# Default S3 method:
predict_party(party, id, newdata = NULL, FUN = NULL, ...)
# S3 method for class 'constparty'
predict_party(party, id, newdata = NULL,
    type = c("response", "prob", "quantile", "density", "node"),
    at = if (type == "quantile") c(0.1, 0.5, 0.9),
    FUN = NULL, simplify = TRUE, ...)
# S3 method for class 'simpleparty'
predict_party(party, id, newdata = NULL,
    type = c("response", "prob", "node"), ...)
```
Arguments

object
objects of class `party`.

newdata
an optional data frame in which to look for variables with which to predict, if omitted, the fitted values are used.

party
objects of class `party`.

id
a vector of terminal node identifiers.

type
a character string denoting the type of predicted value returned, ignored when argument FUN is given. For "response", the mean of a numeric response, the predicted class for a categorical response or the median survival time for a censored response is returned. For "prob" the matrix of conditional class probabilities (`simplify = TRUE`) or a list with the conditional class probabilities for each observation (`simplify = FALSE`) is returned for a categorical response. For numeric and censored responses, a list with the empirical cumulative distribution functions and empirical survivor functions (Kaplan-Meier estimate) is returned when `type = "prob"`. "node" returns an integer vector of terminal node identifiers.

FUN
a function to extract (default method) or compute (constparty method) summary statistics. For the default method, this is a function of a terminal node only, for the constparty method, predictions for each node have to be computed based on arguments \((y, w)\) where \(y\) is the response and \(w\) are case weights.

at
if the return value is a function (as the empirical cumulative distribution function or the empirical quantile function), this function is evaluated at values at and these numeric values are returned. If at is \(\text{NULL}\), the functions themselves are returned in a list.

simplify
a logical indicating whether the resulting list of predictions should be converted to a suitable vector or matrix (if possible).

... additional arguments.

Details

The `predict` method for `party` objects computes the identifiers of the predicted terminal nodes, either for new data in newdata or for the learning samples (only possible for objects of class constparty). These identifiers are delegated to the corresponding predict_party method which computes (via FUN for class constparty) or extracts (class simpleparty) the actual predictions.

Value

A list of predictions, possibly simplified to a numeric vector, numeric matrix or factor.

Examples

```r
# fit tree using rpart
library("rpart")
rp <- rpart(skips ~ Opening + Solder + Mask + PadType + Panel,
            data = solder, method = 'anova')
```
partynode

Description

A class for representing inner and terminal nodes in trees and functions for data partitioning.

Usage

```r
partynode(id, split = NULL, kids = NULL, surrogates = NULL,
           info = NULL)

kidids_node(node, data, vmatch = 1:ncol(data),
            obs = NULL, perm = NULL)

fitted_node(node, data, vmatch = 1:ncol(data),
            obs = 1:nrow(data), perm = NULL)

id_node(node)

split_node(node)

surrogates_node(node)

kids_node(node)

info_node(node)

formatinfo_node(node, FUN = NULL, default = "", prefix = NULL, ...)
```

Arguments

- **id**: integer, a unique identifier for a node.
- **split**: an object of class `partysplit`.
- **kids**: a list of partynode objects.
- **surrogates**: a list of partysplit objects.
- **info**: additional information.
- **node**: an object of class partynode.
partynode

data is a list or data.frame.
vmatch is a permutation of the variable numbers in data.
obs is a logical or integer vector indicating a subset of the observations in data.
perm is a vector of integers specifying the variables to be permuted prior to splitting (i.e., for computing permutation variable importances). The default NULL doesn’t alter the data.
FUN is a function for formatting the info, for default see below.
default is a character used if the info in node is NULL.
prefix is an optional prefix to be added to the returned character.
... further arguments passed to capture.output.

Details

A node represents both inner and terminal nodes in a tree structure. Each node has a unique identifier id. A node consisting only of such an identifier (and possibly additional information in info) is a terminal node.

Inner nodes consist of a primary split (an object of class partysplit) and at least two kids (daughter nodes). Kid nodes are objects of class partynode itself, so the tree structure is defined recursively. In addition, a list of partysplit objects offering surrogate splits can be supplied. Like partysplit objects, partynode objects aren’t connected to the actual data.

Function kidids_node() determines how the observations in data[obs,] are partitioned into the kid nodes and returns the number of the list element in list kids each observations belongs to (and not it’s identifier). This is done by evaluating split (and possibly all surrogate splits) on data using kidids_split.

Function fitted_node() performs all splits recursively and returns the identifier id of the terminal node each observation in data[obs,] belongs to. Arguments vmatch, obs and perm are passed to kidids_split.

Function formatinfo_node() extracts the info from node and formats it to a character vector using the following strategy: If is.null(info), the default is returned. Otherwise, FUN is applied for formatting. The default function uses as.character for atomic objects and applies capture.output to print(info) for other objects. Optionally, a prefix can be added to the computed character string.

All other functions are accessor functions for extracting information from objects of class partynode.

Value

The constructor partynode() returns an object of class partynode:

id is a unique integer identifier for a node.
split is an object of class partysplit.
kids is a list of partynode objects.
surrogates is a list of partysplit objects.
info is additional information.
kidids_split() returns an integer vector describing the partition of the observations into kid nodes by their position in list kids.

fitted_node() returns the node identifiers (id) of the terminal nodes each observation belongs to.

Examples

data("iris", package = "datasets")

a stump defined by a binary split in Sepal.Length
stump <- partynode(id = 1L,
 split = partysplit(which(names(iris) == "Sepal.Length"),
 breaks = 5),
 kids = lapply(2:3, partynode))

textual representation
print(stump, data = iris)

list element number and node id of the two terminal nodes
table(kidids_node(stump, iris),
 fitted_node(stump, data = iris))

assign terminal nodes with probability 0.5
to observations with missing 'Sepal.Length'
iris_NA <- iris
iris_NA[sample(1:nrow(iris), 50), "Sepal.Length"] <- NA
table(fitted_node(stump, data = iris_NA,
 obs = !complete.cases(iris_NA)))

a stump defined by a primary split in `Sepal.Length`
and a surrogate split in `Sepal.Width` which
determines terminal nodes for observations with
missing `Sepal.Length`
stump <- partynode(id = 1L,
 split = partysplit(which(names(iris) == "Sepal.Length"),
 breaks = 5),
 kids = lapply(2:3, partynode),
 surrogates = list(partysplit(
 which(names(iris) == "Sepal.Width"), breaks = 3)))
f <- fitted_node(stump, data = iris_NA,
 obs = !complete.cases(iris_NA))
tapply(iris_NA$Sepal.Width[!complete.cases(iris_NA)], f, range)

Description

Methods for computing on partynode objects.
Usage

is.partynode(x)
as.partynode(x, ...)
S3 method for class 'partynode'
as.partynode(x, from = NULL, recursive = TRUE, ...)
S3 method for class 'list'
as.partynode(x, ...)
S3 method for class 'partynode'
list(x, ...)
S3 method for class 'partynode'
length(x)
S3 method for class 'partynode'
x[i, ...]
S3 method for class 'partynode'
x[[i, ...]]
is.terminal(x, ...)
S3 method for class 'partynode'
is.terminal(x, ...)
S3 method for class 'partynode'
depth(x, root = FALSE, ...)
width(x, ...)
S3 method for class 'partynode'
width(x, ...)
S3 method for class 'partynode'
print(x, data = NULL, names = NULL,
 inner_panel = function(node) "",
 terminal_panel = function(node) " *",
 prefix = "", first = TRUE, digits = getOption("digits") - 2, ...
S3 method for class 'partynode'
nodeprune(x, ids, ...)

Arguments

x an object of class partynode or list.
from an integer giving the identifier of the root node.
recursive a logical, if FALSE, only the id of the root node is checked against from. If TRUE, the ids of all nodes are checked.
i an integer specifying the kid to extract.
root a logical. Should the root count be counted in depth?
data an optional data.frame.
names a vector of names for nodes.
terminal_panel a panel function for printing terminal nodes.
inner_panel a panel function for printing inner nodes.
prefix lines start with this symbol.
first a logical.
digits number of digits to be printed.
ids a vector of node ids to be pruned-off.
... additional arguments.

Details

is.partynode checks if the argument is a valid partynode object. is.terminal is TRUE for terminal nodes and FALSE for inner nodes. The subset methods return the partynode object corresponding to the ith kid.

The as.partynode and as.list methods can be used to convert flat list structures into recursive partynode objects and vice versa. as.partynode applied to partynode objects renumbers the recursive nodes starting with root node identifier from.

length gives the number of kid nodes of the root node, depth the depth of the tree and width the number of terminal nodes.

Examples

```r
## a tree as flat list structure
data(nodelist <- list(
  # root node
  list(id = 1L, split = partysplit(varid = 4L, breaks = 1.9),
    kids = 2:3)),
  # V4 <= 1.9, terminal node
  list(id = 2L),
  # V4 > 1.9
  list(id = 3L, split = partysplit(varid = 4L, breaks = 1.7),
    kids = c(4L, 7L)),
  # V1 <= 1.7
  list(id = 4L, split = partysplit(varid = 4L, breaks = 4.8),
    kids = 5:6),
  # V4 <= 4.8, terminal node
  list(id = 5L),
  # V4 > 4.8, terminal node
  list(id = 6L),
  # V1 > 1.7, terminal node
  list(id = 7L)
))

## convert to a recursive structure
data(nodelist <- as.partynode(nodelist))

## print raw recursive structure without data
print(node)

## print tree along with the associated iris data
data("iris", package = "datasets")
print(node, data = iris)

## print subtree
partysplit

Description

A class for representing multiway splits and functions for computing on splits.

Usage

partysplit(varid, breaks = NULL, index = NULL, right = TRUE,
prob = NULL, info = NULL)
kidids_split(split, data, vmatch = 1:ncol(data), obs = NULL,
perm = NULL)
character_split(split, data = NULL,
digits =getOption("digits") - 2)
varid_split(split)
breaks_split(split)
index_split(split)
right_split(split)
prob_split(split)
info_split(split)

Arguments

varid
breaks
index
right

an integer specifying the variable to split in, i.e., a column number in data.
a numeric vector of split points.
an integer vector containing a contiguous sequence from one to the number of
terminal nodes. May contain NAs.
a logical, indicating if the intervals defined by breaks should be closed on the
right (and open on the left) or vice versa.
partysplit

- **prob**: a numeric vector representing a probability distribution over kid nodes.
- **info**: additional information.
- **split**: an object of class `partysplit`.
- **data**: a `list` or `data.frame`.
- **vmatch**: a permutation of the variable numbers in `data`.
- **obs**: a logical or integer vector indicating a subset of the observations in `data`.
- **perm**: a vector of integers specifying the variables to be permuted prior to splitting (i.e., for computing permutation variable importances). The default `NULL` doesn’t alter the data.
- **digits**: minimal number of significant digits.

**Details**

A split is basically a function that maps data, more specifically a partitioning variable, to a set of integers indicating the kid nodes to send observations to. Objects of class `partysplit` describe such a function and can be set-up via the `partysplit()` constructor. The variables are available in a `list` or `data.frame` (here called `data`) and `varid` specifies the partitioning variable, i.e., the variable or list element to split in. The constructor `partysplit()` doesn’t have access to the actual data, i.e., doesn’t *estimate* splits.

`kidids_split(split, data)` actually partitions the data `data[obs, varid_split(split)]` and assigns an integer (giving the kid node number) to each observation. If `vmatch` is given, the variable `vmatch[varid_split(split)]` is used. In case `perm` contains `varid_split(split)`, the data are permuted using `sample` prior to partitioning.

`character_split()` returns a character representation of its `split` argument. The remaining functions defined here are accessor functions for `partysplit` objects.

The numeric vector `breaks` defines how the range of the partitioning variable (after coercing to a numeric via `as.numeric`) is divided into intervals (like in `cut`) and may be `NULL`. These intervals are represented by the numbers one to `length(breaks) + 1`.

`index` assigns these `length(breaks) + 1` intervals to one of at least two kid nodes. Thus, `index` is a vector of integers where each element corresponds to one element in a list `kids` containing `partynode` objects, see `partynode` for details. The vector `index` may contain NAs, in that case, the corresponding values of the splitting variable are treated as missings (for example factor levels that are not present in the learning sample). Either `breaks` or `index` must be given. When `breaks` is `NULL`, it is assumed that the partitioning variable itself has storage mode `integer` (e.g., is a `factor`).

`prob` defines a probability distribution over all kid nodes which is used for random splitting when a deterministic split isn’t possible (due to missing values, for example).

`info` takes arbitrary user-specified information.

**Value**

The constructor `partysplit()` returns an object of class `partysplit`:

- **varid**: an integer specifying the variable to split in, i.e., a column number in `data`.
- **breaks**: a numeric vector of split points.
partysplit

index an integer vector containing a contiguous sequence from one to the number of kid nodes.
right a logical, indicating if the intervals defined by breaks should be closed on the right (and open on the left) or vice versa
prob a numeric vector representing a probability distribution over kid nodes.
info additional information.

kidids_split() returns an integer vector describing the partition of the observations into kid nodes.
character_split() gives a character representation of the split and the remaining functions return the corresponding slots of partysplit objects.

See Also

cut

Examples

data("iris", package = "datasets")

## binary split in numeric variable `Sepal.Length`
s15 <- partysplit(which(names(iris) == "Sepal.Length"),
  breaks = 5)
character_split(s15, data = iris)
table(kidids_split(s15, data = iris), iris$Sepal.Length <= 5)

## multiway split in numeric variable `Sepal.Width`,
## higher values go to the first kid, smallest values to the last kid
sw23 <- partysplit(which(names(iris) == "Sepal.Width"),
  breaks = c(3, 3.5), index = 3:1)
character_split(sw23, data = iris)
table(kidids_split(sw23, data = iris),
  cut(iris$Sepal.Width, breaks = c(-Inf, 2, 3, Inf)))

## binary split in factor `Species`
sp <- partysplit(which(names(iris) == "Species"),
  index = c(1L, 1L, 2L))
character_split(sp, data = iris)
table(kidids_split(sp, data = iris), iris$Species)

## multiway split in factor `Species`
sp <- partysplit(which(names(iris) == "Species"), index = 1:3)
character_split(sp, data = iris)
table(kidids_split(sp, data = iris), iris$Species)

## multiway split in numeric variable `Sepal.Width`
sp <- partysplit(which(names(iris) == "Sepal.Width"),
  breaks = quantile(iris$Sepal.Width))
character_split(sp, data = iris)
## predictions for permuted values of `Sepal.Width`
## Weather Conditions and Playing a Game

### Description

Artificial data set concerning the conditions suitable for playing some unspecified game.

### Usage

```r
data("WeatherPlay")
```

### Format

A data frame containing 14 observations on 5 variables.

- **outlook** factor.
- **temperature** numeric.
- **humidity** numeric.
- **windy** factor.
- **play** factor.

### Source

Table 1.3 in Witten and Frank (2011).

### References


### See Also

`party`, `partynode`, `partysplit`
Examples

```r
load weather data
data("WeatherPlay", package = "partykit")
WeatherPlay

construct simple tree
pn <- partynode(1L,
split = partysplit(1L, index = 1:3),
kids = list(
 partynode(2L,
split = partysplit(3L, breaks = 75),
kids = list(
 partynode(3L, info = "yes"),
 partynode(4L, info = "no"))),
 partynode(5L, info = "yes"),
 partynode(6L,
split = partysplit(4L, index = 1:2),
kids = list(
 partynode(7L, info = "yes"),
 partynode(8L, info = "no")))))

couple with data
py <- party(pn, WeatherPlay)

print/plot/predict
print(py)
plot(py)
predict(py, newdata = WeatherPlay)

customize printing
print(py,
 terminal_panel = function(node) paste(":: play=" info_node(node), sep = ""))
```
Index

*Topic **datasets**  
   HuntingSpiders, 13  
   WeatherPlay, 47  
*Topic **hplot**  
   panelfunctions, 26  
   party-plot, 35  
*Topic **misc**  
   ctree_control, 9  
   mob_control, 20  
*Topic **tree**  
   cforest, 2  
   ctree, 4  
   glmmtree, 11  
   lmtree, 14  
   mob, 17  
   model.frame.rpart, 22  
   nodeapply, 23  
   nodeids, 25  
   party, 29  
   party-coercion, 32  
   party-methods, 33  
   party-predict, 37  
   partynode, 39  
   partynode-methods, 41  
   partysplit, 44  
   [.party (party-methods), 33  
   [.partynode (partynode-methods), 41  
   [[.party (party-methods), 33  
   [[.partynode (partynode-methods), 41  
   as.constparty (party-coercion), 32  
   as.list.partynode (partynode-methods), 41  
   as.numeric, 45  
   as.party (party-coercion), 32  
   as.partynode (partynode-methods), 41  
   as.simpleparty (party-coercion), 32  
   breaks_split (partysplit), 44  
   capture.output, 40  
   catL2BB, 22  
   cd_plot, 29  
   cforest, 2, 3–5  
   character_split (partysplit), 44  
   coef, 18  
   coef.modelparty (mob), 17  
   ctree, 4, 6, 10, 11, 29  
   ctree_control, 3, 4, 7, 8, 9  
   cut, 45, 46  
   data.frame, 29, 30, 40, 45  
   data_party (party), 29  
   depth.party (party-methods), 33  
   depth.partynode (partynode-methods), 41  
   deviance, 18  
   deviance.modelparty (mob), 17  
   edge_simple, 37  
   edge_simple (panelfunctions), 26  
   estfun, 18  
   factor, 45  
   fitted.modelparty (mob), 17  
   fitted_node (partynode), 39  
   formatinfo_node, 28  
   formatinfo_node (partynode), 39  
   formula.modelparty (mob), 17  
   getCall.modelparty (mob), 17  
   glm, 11  
   glm.control, 11  
   glm.fit, 11  
   glmmtree, 11, 15, 19  
   HuntingSpiders, 13  
   id_node (partynode), 39  
   index_split (partysplit), 44  
   info_node (partynode), 39  
   info_split (partysplit), 44
is.constparty (party), 29
is.partrynode (partrynode-methods), 41
is.simpleparty (partry), 29
is.terminal (partrynode-methods), 41

J48, 33

kidids_node (partrynode), 39
kidids_split, 40
kidids_split (partysplit), 44
kids_node (partrynode), 39

lapply, 3, 10, 22
length.partry (partry-methods), 33
length.partrynode (partrynode-methods), 41
list, 40, 45
lm.fit, 15
lm.wfit, 15
lmtree, 12, 14, 19
logLik, 18
logLik.modepartry (mob), 17

mclapply, 3, 10, 22
mob, 11, 12, 15, 17, 20–22, 28
mob_control, 11, 12, 14, 15, 17–19, 20
model.frame, 11, 14, 17, 23
model.frame.modepartry (mob), 17
model.frame.rpart, 22
modepartry, 12, 15
modepartry (mob), 17

names.partry (partry), 29
names<- partry (partry), 29
nobs.modepartry (mob), 17
node_barplot, 37
node_barplot (panelfunctions), 26
node_bivplot (panelfunctions), 26
node_boxplot, 37
node_boxplot (panelfunctions), 26
node_ecdf (panelfunctions), 26
node_inner, 37
node Integer (panelfunctions), 26
node_mvar (panelfunctions), 26
node.partry (partry), 29
node_surv (panelfunctions), 26
node_terminal, 37
node_terminal (panelfunctions), 26
nodeapply, 23
nodeids, 25

nodeprune (partry-methods), 33
nodeprune.modepartry
(partrynode-methods), 41

panelfunctions, 26
partry, 7, 8, 19, 23, 25, 29, 33, 34, 38, 47
partry-coercion, 32
partry-methods, 33
partry-plot, 35
partry-predict, 37
partrynode, 23, 25, 29, 30, 34, 39, 45, 47
partrynode-methods, 41
partysplit, 39, 40, 44, 47
plot.constparty (constparty-plot), 35
plot.glmtree (glmtree), 11
plot.lmtree (lmtree), 14
plot.modepartry (mob), 17
plot.partry (partry-plot), 35
plot.simpleparty (partry-plot), 35
pmm1TreeModel (party-coercion), 32
pmvnorm, 22
predict, 4, 8, 38
predict.cforest (cforest), 2
predict.glmtree (glmtree), 11
predict.lmtree (lmtree), 14
predict.modepartry (mob), 17
predict.partry (partry-predict), 37
predict.partry (partry-predict), 37
print.constparty (partry-methods), 33
print.glmtree (glmtree), 11
print.lmtree (lmtree), 14
print.modepartry (mob), 17
print.partry (partry-methods), 33
print.partysplit (partysplit), 44
randomForest, 4, 5
refit.modepartry (mob), 17
residuals.modepartry (mob), 17
right_split (partysplit), 44
rpart, 23, 32, 33

sample, 45
scctest.constparty (ctree), 6
scctest.modepartry (mob), 17
spine, 29
split_node (partrynode), 39
summary.modepartry (mob), 17
surrogates_node (partynode), 39
survfit, 28

terms, 29, 30
treeresponse, 5

varid_split (partysplit), 44

WeatherPlay, 47
weights.modelparty (mob), 17
Weka_tree, 32
where, 5
width (partynode-methods), 41
width.party (party-methods), 33