Package ‘nscancor’
February 20, 2015

Version 0.6
Date 2014-02-03
Title Non-Negative and Sparse CCA

Description This package implements two algorithms for canonical correlation analysis (CCA) that are based on iterated regression steps. By choosing the appropriate regression algorithm for each data modality, it is possible to enforce sparsity, non-negativity or other kinds of constraints on the projection vectors. Multiple canonical variables are computed sequentially using a generalized deflation scheme, where the additional correlation not explained by previous variables is maximized.

‘nscancor’ is used to analyze paired data from two domains, and has the same interface as the ‘cancor’ function from the ‘stats’ package (plus some extra parameters). ‘mcancor’ is appropriate for analyzing data from three or more domains.

URL http://sigg-iten.ch/research/
License GPL (>= 2)

Suggests CCA, glmnet, MASS, PMA, testthat (>= 0.8), roxygen2

Author Christian Sigg [aut, cre], R Core team [aut]

Maintainer Christian Sigg <christian@sigg-iten.ch>

NeedsCompilation no
Repository CRAN
Date/Publication 2014-07-17 23:46:07

R topics documented:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>acor</td>
<td>2</td>
</tr>
<tr>
<td>cardinality</td>
<td>3</td>
</tr>
<tr>
<td>macor</td>
<td>3</td>
</tr>
<tr>
<td>mcancor</td>
<td>4</td>
</tr>
<tr>
<td>nscancor</td>
<td>7</td>
</tr>
</tbody>
</table>

Index 11
acor

Additional Explained Correlation

Description

acor computes the additional standard correlation explained by each canonical variable, taking into account the possible non-conjugacy of the canonical vectors. The result of the analysis is returned as a list of class nscancor.

Usage

acor(x, xcoef, y, ycoef, xcenter = TRUE, ycenter = TRUE, xscale = FALSE, yscale = FALSE)

Arguments

x a numeric matrix which provides the data from the first domain
xcoef a numeric data matrix with the canonical vectors related to x as its columns.
y a numeric matrix which provides the data from the second domain
ycoef a numeric data matrix with the canonical vectors related to y as its columns.
xcenter a logical value indicating whether the empirical mean of (each column of) x should be subtracted. Alternatively, a vector of length equal to the number of columns of x can be supplied. The value is passed to scale.
ycenter analogous to xcenter
xscale a logical value indicating whether the columns of x should be scaled to have unit variance before the analysis takes place. The default is FALSE for consistency with cancor. Alternatively, a vector of length equal to the number of columns of x can be supplied. The value is passed to scale.
yscale analogous to xscale

Details

The additional correlation is measured after projecting the corresponding canonical vectors to the ortho-complement space spanned by the previous canonical variables. This procedure ensures that the correlation explained by non-conjugate canonical vectors is not counted multiple times. See Mackey (2009) for a presentation of generalized deflation in the context of principal component analysis (PCA), which was adapted here to CCA.

acor is also useful to build a partial CCA model, to be completed with additional canonical variables computed using nscancor.
cardinality

Value
acor returns a list of class nscancor containing the following elements:
cor the additional correlation explained by each pair of canonical variables
xcoef copied from the input arguments
ycoef, ycenter, yscale copied from the input arguments
xp the deflated data matrix corresponding to x
yp analogous to xp

References

cardinality

Cardinality of Column Vectors

Description
Computes the cardinality (the sum of non-zero elements) of each column of the matrix w.

Usage
cardinality(w)

Arguments
w a numeric matrix, e.g. xcoef as returned by nscancor

macor

Multi-Domain Additional Explained Correlation

Description
macor generalizes acor to the case of more than two data domains.

Usage
macor(x, coef, center = TRUE, scale_ = FALSE)
Arguments

- **x**: a list of numeric matrices which contain the data from the different domains.
- **coef**: a list of matrices containing the canonical vectors related to each data domain. Each matrix contains the respective canonical vectors as its columns.
- **center**: a list of logical values indicating whether the empirical mean of (each column of) the corresponding data matrix should be subtracted. Alternatively, a list of vectors can be supplied, where each vector specifies the mean to be subtracted from the corresponding data matrix. Each list element is passed to `scale`.
- **scale_**: a list of logical values indicating whether the columns of the corresponding data matrix should be scaled to have unit variance before the analysis takes place. The default is `FALSE` for consistency with `acor`. Alternatively, a list of vectors can be supplied, where each vector specifies the standard deviations used to rescale the columns of the corresponding data matrix. Each list element is passed to `scale`.

Value

`macor` returns a list of class `mcancor` with the following elements:

- **cor**: a multi-dimensional array containing the additional correlations explained by each pair of canonical variables. The first two dimensions correspond to the domains, and the third dimension corresponds to the different canonical variables per domain.
- **coef**: copied from the input arguments
- **center**: the list of empirical means used to center the data matrices
- **scale**: the list of empirical standard deviations used to scale the data matrices
- **xp**: the list of deflated data matrices corresponding to `x`

mcancor

Non-Negative and Sparse Multi-Domain CCA

Description

Performs a canonical correlation analysis (CCA) on multiple data domains, where constraints such as non-negativity or sparsity are enforced on the canonical vectors. The result of the analysis is returned as a list of class `mcancor`.

Usage

```r
mcancor(x, center = TRUE, scale_ = FALSE, nvar = min(sapply(x, dim)),
        predict, cor_tol = NULL, nrestart = 10, iter_tol = 0.001,
        iter_max = 30, partial_model = NULL, verbosity = 0)
```
Arguments

- **x**: a list of numeric matrices which contain the data from the different domains.
- **center**: a list of logical values indicating whether the empirical mean of (each column of) the corresponding data matrix should be subtracted. Alternatively, a list of vectors can be supplied, where each vector specifies the mean to be subtracted from the corresponding data matrix. Each list element is passed to `scale`.
- **scale_**: a list of logical values indicating whether the columns of the corresponding data matrix should be scaled to have unit variance before the analysis takes place. The default is `FALSE` for consistency with `nscancor`. Alternatively, a list of vectors can be supplied, where each vector specifies the standard deviations used to rescale the columns of the corresponding data matrix. Each list element is passed to `scale`.
- **nvar**: the number of canonical variables to be computed for each domain. With the default setting, canonical variables are computed until at least one data matrix is fully deflated.
- **predict**: a list of regression functions to predict the sum of the canonical variables of all other domains. The formal arguments for each regression function are the design matrix `x` corresponding to the data from the current domain, the regression target `sc` as the sum of the canonical variables for all other domains, and `cc` as a counter of which canonical variable is currently computed (e.g., for enforcing different constraints for subsequent canonical vectors of a given domain). See the examples for an illustration.
- **cor_tol**: a threshold indicating the magnitude below which canonical variables should be omitted. Variables are omitted if the sum of all their correlations are less than or equal to `cor_tol` times the sum of all correlations of the first canonical variables of all domains. With the default NULL setting, no variables are omitted.
- **nrestart**: the number of random restarts for computing the canonical variables via iterated regression steps. The solution achieving maximum explained correlation over all random restarts is kept. A value greater than one can help to avoid poor local maxima.
- **iter_tol**: If the relative change of the objective is less than `iter_tol` between iterations, the procedure is assumed to have converged to a local optimum.
- **iter_max**: the maximum number of iterations to be performed. The procedure is terminated if either the `iter_tol` or the `iter_max` criterion is satisfied.
- **partial_model**: NULL or an object of class `mcancor`. The computation can be continued from a partial model by providing an `mcancor` object (either from a previous run of this function or from `macor`) and setting `nvar` to a value greater than the number of canonical variables contained in the partial model. See the examples for an illustration.
- **verbosity**: an integer specifying the verbosity level. Greater values result in more output, the default is to be quiet.

Details

`mcancor` generalizes `nscancor` to the case where more than two data domains are available for an analysis. Its objective is to maximize the sum of all pairwise correlations of the canonical variables.
mcancor returns a list of class mcancor with the following elements:

cor a multi-dimensional array containing the additional correlations explained by each pair of canonical variables. The first two dimensions correspond to the domains, and the third dimension corresponds to the different canonical variables per domain (see also macor).

coeff a list of matrices containing the canonical vectors related to each data domain. The canonical vectors are stored as the columns of each matrix.

center the list of empirical means used to center the data matrices

scale the list of empirical standard deviations used to scale the data matrices

Examples

library(glmnet)

data(breastdata, package="PMA")

set.seed(1)

Three data domains: genes and CGH spots for the first and second chromosome
x <- with(breastdata,
 list(t(rna), t(dna)[, chrom==1], t(dna)[, chrom==2]))

Sparse regression functions with different cardinalities for different domains
generate_predict <- function(dfmax) {
 force(dfmax)
 return(
 function(x, sc, cc) {
 en <- glmnet(x, sc, alpha=0.05, intercept=FALSE, dfmax=dfmax)
 W <- coef(en)
 return(W[2:nrow(W), ncol(W)])
 })
)
}

predict <- lapply(c(20, 10, 10), generate_predict)

Compute two canonical variables per domain (this can take up to a minute on a slow machine)
Not run: mcc <- mcancor(x, predict=predict, nvar=2, verbosity=2)

Compute another canonical variable
Not run: mcc <- mcancor(x, predict=predict, nvar=3, partial_model=mcc)
nscancor

Non-Negative and Sparse CCA

Description

Performs a canonical correlation analysis (CCA) where constraints such as non-negativity or sparsity are enforced on the canonical vectors. The result of the analysis is returned as a list of class nscancor, which contains a superset of the elements returned by cancor.

Usage

```r
nscancor(x, y, xcenter = TRUE, ycenter = TRUE, xscale = FALSE,
          yscale = FALSE, nvar = min(dim(x), dim(y)), xpredict, ypredict,
          cor_tol = NULL, nrestart = 10, iter_tol = 0.001, iter_max = 30,
          partial_model = NULL, verbosity = 0)
```

Arguments

- **x**
 a numeric matrix which provides the data from the first domain

- **y**
 a numeric matrix which provides the data from the second domain

- **xcenter**
 a logical value indicating whether the empirical mean of (each column of) x should be subtracted. Alternatively, a vector of length equal to the number of columns of x can be supplied. The value is passed to scale.

- **ycenter**
 analogous to xcenter

- **xscale**
 a logical value indicating whether the columns of x should be scaled to have unit variance before the analysis takes place. The default is FALSE for consistency with cancor. Alternatively, a vector of length equal to the number of columns of x can be supplied. The value is passed to scale.

- **yscale**
 analogous to xscale

- **nvar**
 the number of canonical variables to be computed for each domain. With the default setting, canonical variables are computed until either x or y is fully deflated.

- **xpredict**
 the regression function to predict the canonical variable for x, given y. The formal arguments are the design matrix y, the regression target xc as the current canonical variable for x, and cc as a counter of the current pair of canonical variables (e.g. for enforcing different constraints for different canonical vectors). See the examples for an illustration.

- **ypredict**
 analogous to xpredict

- **cor_tol**
 a threshold indicating the magnitude below which canonical variables should be omitted. Variables are omitted if their explained correlations are less than or equal to cor_tol times the correlation of the first pair of canonical variables. With the default NULL setting, no variables are omitted.
nrestart

the number of random restarts for computing the canonical variables via iterated regression steps. The solution achieving maximum explained correlation over all random restarts is kept. A value greater than one can help to avoid poor local maxima.

iter_tol

If the relative change of the objective is less than iter_tol between iterations, the procedure is assumed to have converged to a local optimum.

iter_max

the maximum number of iterations to be performed. The procedure is terminated if either the iter_tol or the iter_max criterion is satisfied.

partial_model

NULL or an object of class nscancor. The computation can be continued from a partial model by providing an nscancor object (either from a previous run of this function or from acor) and setting nvar to a value greater than the number of canonical variables contained in the partial model. See the examples for an illustration.

verbosity

an integer specifying the verbosity level. Greater values result in more output, the default is to be quiet.

Details

nscancor computes the canonical vectors (called xcoef and ycoef) using iterated regression steps, where the constraints suitable for each domain are enforced by choosing the appropriate regression method. See Sigg et al. (2007) for an early avvlication of the principle (not yet including generalized deflation).

Because constrained canonical vectors no longer correspond to true eigenvectors of the cross-covariance matrix and are usually not pairwise conjugate (i.e. the canonical variables are not uncorrelated), special attention needs to be paid when computing more than a single pair of canonical vectors. nscancor implements a generalized deflation (GD) scheme which builds on GD for PCA as proposed by Mackey (2009). For each domain, a basis of the space spanned by the previous canonical variables is computed. Then, the correlation of the current pair of canonical variables is maximized after projecting each current canonical vector to the ortho-complement space of its respective basis. This procedure maximizes the additional correlation not explained by previous canonical variables, and is identical to standard CCA if the canonical vectors are the eigenvectors of the cross-covariance matrix.

See the references for further details.

Value

nscancor returns a list of class nscancor containing the following elements:

cor

the additional correlation explained by each pair of canonical variables, see acor.

xcoef

the matrix containing the canonical vectors related to x as its columns

ycoef

analogous to xcoef

xcenter

if xcenter is TRUE the centering vector, else the zero vector (in accordance with cancor)

ycenter

analogous to xcenter

xscale

if xscale is TRUE the scaling vector, else FALSE
yscale analogous to xscale
xp the deflated data matrix corresponding to x
yp analogous to xp

References

See Also
acor, cancor, scale

Examples
library(MASS)
library(glmnet)
data(nutrimouse, package="CCA")

set.seed(1)

###
Unconstrained CCA, produces identical results to calling
canor(nutrimouse\$gene[,1:10], nutrimouse\$lipid)

ypredict <- function(x, yc, cc) {
 return(ginv(x)%%yc)
}
xpredict <- function(y, xc, cc) {
 return(ginv(y)%%xc)
}
cc <- nscancor(nutrimouse\$gene[,1:10], nutrimouse\$lipid, xpredict=xpredict,
 ypredict=ypredict)

###
Non-negative sparse CCA using glmnet() as the regression function, where
different regularisers are enforced on the different data domains and pairs of
canonical variables.
dfmax_w <- c(40, 15, 10, 10)
ypredict <- function(x, yc, cc) {
 en <- glmnet(x, yc, alpha=0.5, intercept=FALSE, dfmax=dfmax_w[cc], lower.limits=0)
 W <- coef(en)
 return(W[2:nrow(W), ncol(W)])
}
dfmax_v <- c(7, 5, 5, 3)
xpredict <- function(y, xc, cc) {

```r
```
en <- glmnet(y, xc, alpha=0.5, intercept=FALSE, dfmax=dfmax_v[cc])
V <- coef(en)
return(V[2:nrow(V), ncol(V)])
}
nscc <- nscancor(nutrimouse$gene, nutrimouse$lipid, nvar=3,
 xpredict=xpredict, ypredict=ypredict)

continue the computation of canonical variables from a partial model
nscc <- nscancor(nutrimouse$gene, nutrimouse$lipid, nvar=4,
 xpredict=xpredict, ypredict=ypredict,
 partial_model=nscc)
Index

acor, 2, 3, 8, 9

cancor, 7, 9
cardinality, 3

macor, 3, 5, 6
mcancor, 4

nscancor, 2, 3, 5, 6, 7

scale, 2, 4–7, 9