Package ‘multilevelPSA’

February 20, 2015

License GPL (>= 2)
Title Multilevel Propensity Score Analysis
Type Package
Author Jason Bryer <jason@bryer.org>
Maintainer Jason Bryer <jason@bryer.org>
Description Functions to estimate and visualize propensity
score analysis for multilevel, or clustered, data.
Version 1.2.2
URL http://jason.bryer.org/multilevelPSA,
http://github.com/jbryer/multilevelPSA
BugReports https://github.com/jbryer/multilevelPSA/issues
Depends ggplot2, xtable, R (>= 3.0)
Imports PSAgraphics, plyr, psych, reshape, proto, grid, party
Suggests testthat, MASS
Date 2014-11-24
NeedsCompilation no
Repository CRAN
Date/Publication 2014-11-25 09:02:29

R topics documented:

multilevelPSA-package .. 2
align.plots ... 3
as.data.frame.covariate.balance 4
covariate.balance ... 4
covariateBalance .. 5
cv.trans.psa .. 6
diffTable.plot .. 7
geom_rug_alt ... 7
getPropensityScores .. 8
multilevelPSA-package

Multilevel Propensity Score Analysis

Description

This package provides functions to estimate and visualize multilevel propensity score analysis.

Details

This package extends the principles put forth by the PSAgraphics (Helmreich, Pruzek, & Xiong, 2010) for multilevel, or clustered, data.

Propensity score analyses are typically done in two phases. In phase I, a statistical model predicting treatment using the available individual covariates is estimated. This package currently provides functions to perform propensity score estimates using logistic regression (see `mlpsa.logistic`) and conditional inference trees (see `mlpsa.ctree`). The latter method provides explicit stratifications as defined by each leaf node. The former however, results in a numerical value ranging from zero to one (i.e. the fitted values). A common approach is to then create stratifications using quintiles. However, other approaches such as Loess regression are also provided.
Phase II of typical propensity score analyses concerns with the comparison of an outcome between the treatment and comparison groups. The `mlpsa` method will perform this analysis in a multilevel, or clustered, fashion. That is, the results of the `mlpsa` procedure produce summary results at level one (i.e. each strata within each cluster), level two (i.e. overall results for each cluster), and overall (i.e. overall results across all clusters).

This package also provides a number of visualizations that provide a critical part in presenting, understanding, and interpreting the results. See `plot.mlpsa` for details.

Author(s)

Jason Bryer <jason@bryer.org>

References

http://cran.r-project.org/web/packages/PSAgraphics/PSAgraphics.pdf http://www.jstatsoft.org/v29/i06/

See Also

PSAgraphics

align.plots

Adapted from ggExtra package which is no longer available. This is related to an experimental mlpsa plot that will combine the circular plot along with the two individual distributions.

Description

Adapted from ggExtra package which is no longer available. This is related to an experimental mlpsa plot that will combine the circular plot along with the two individual distributions.

Usage

```r
## S3 method for class 'plots'
align(gl, ...)
```

Arguments

- `gl` : grid.layout
- `...` : graphic elements to combine.
as.data.frame.covariate.balance

Returns the overall effects as a data frame.

Description

Returns the overall effects as a data frame.

Usage

S3 method for class 'covariate.balance'
as.data.frame(x, row.names = NULL,
 optional = FALSE, ...)

Arguments

x results of covariate.balance.
row.names unused.
optional unused.
... unused

Value

a data frame with overall covariate effects before and after adjustment.

covariate.balance

Estimate covariate effect sizes before and after propensity score adjustment.

Description

Estimate covariate effect sizes before and after propensity score adjustment.

Usage

covariate.balance(covariates, treatment, level2, strata, abs = TRUE)

Arguments

covariates frame or matrix of covariates.
treatment vector of treatment indicators.
level2 vector indicating level 2 membership.
strata strata indicators.
abs if TRUE absolute values of effect sizes will be plotted.
covariateBalance

Calculate covariate effect size differences before and after stratification.

Description

This function is modified from the `cv.bal.psa` function in the PSAgtrahics package.

Usage

```r
covariateBalance(covariates, treatment, propensity, strata = NULL, 
int = NULL, tree = FALSE, minsize = 2, universal.psd = TRUE, 
trM = 0, absolute.es = TRUE, trt.value = NULL, use.trt.var = FALSE, 
verbose = FALSE, xlim = NULL, plot.strata = TRUE, na.rm = TRUE, ...)
```

Arguments

- **covariates**: dataframe of interest
- **treatment**: binary vector of 0s and 1s (necessarily? what if character, or 1, 2?)
- **propensity**: PS scores from some method or other.
- **strata**: either a vector of strata number for each row of covariate, or one number n in which case it is attempted to group rows by ps scores into n strata of size approximately 1/n. This does not seem to work well in the case of few specific propensity values, as from a tree.
- **int**: either a number m used to divide [0,1] into m equal length subintervals, or a vector of cut points between 0 an 1 defining the subintervals (perhaps as suggested by loess.psa). In either case these subintervals define strata, so strata can be of any size.
- **tree**: logical, if unique ps scores are few, as from a recursively partitioned tree, then TRUE will force each ps value to define a stratum.
- **minsize**: smallest allowable stratum-treatment size. If violated, strata is removed.
- **universal.psd**: if 'TRUE', forces standard deviations used to be unadjusted for stratification.
- **trM**: trimming proportion for mean calculations.
- **absolute.es**: logical, if 'TRUE' routine uses absolute values of all effect sizes.
- **trt.value**: allows user to specify which value is active treatment, if desired.
- **use.trt.var**: logical, if true then Rubin-Stuart method using only treatment variance with be used in effect size calculations.
- **verbose**: logical, controls output that is visibly returned.
- **xlim**: limits for the x-axis.
- **plot.strata**: logical indicating whether to print strata.
- **na.rm**: should missing values be removed.
- **...**: currently unused.
Details

Note: effect sizes are calculated as treatment 1 - treatment 0, or treatment B - treatment A.

Author(s)

Robert M. Pruzek RMPruzek@yahoo.com
James E. Helmreich James.Helmreich@Marist.edu
KuangNan Xiong harryxkn@yahoo.com
Jason Bryer jason@bryer.org

cv.trans.psa Transformation of Factors to Individual Levels

Description

The function cv.trans.psa takes a covariate data frame and replaces each categorical covariate of n >=3 levels with n new binary covariate columns, one for each level. Transforms covariate dataframe for use with the function cv.bal.psa.

Usage

cv.trans.psa(covariates, fcol = NULL)

Arguments

covariates A dataframe of covariates, presumably some factors.
fcol An optional vector containing the factor columns in the covariate data frame. In NULL (default) routine to identify factors internally.

Details

NOTE: This function originated in the PSAGraphics package. It has been adapted here for the multilevelPSA package.

Author(s)

James E. Helmreich James.Helmreich@Marist.edu
Robert M. Pruzek RMPruzek@yahoo.com
KuangNan Xiong harryxkn@yahoo.com
Jason Bryer jason@bryer.org
This function produces a ggplot2 figure containing the mean differences for each level two, or cluster.

Usage

difftable.plot(x, fill.colours = NULL, legendlab = NULL, ...)

Arguments

x: the results of `mlpsa`.
fill.colours: the colours to use for each level two.
legendlab: the label to use for the legend, or NULL to exclude.
...

Value

a ggplot2 figure

Alternate Marginal Rug Plot Geom for ggplot2

This alternate rug plot geom simply plots the rug tufts on the top and right (instead of the bottom and left)

Usage

gem_rug_alt(mapping = NULL, data = NULL, stat = "identity",
position = "identity", ...)

Arguments

mapping: mapping between variables and aesthetics generated by aes
data: dataset used in this layer, if not specified uses plot dataset
stat: statistic used by this layer
position: position adjustment used by this layer
...

ignored
getPropensityScores

Author(s)

Hadley Wickham http://had.co.nz

With contributions by:
William E. J. Doane <wil@drdoane.com>
Brian A. Danielak <brian@briandk.com>

References

See Also

geom_rug

getPropensityScores Returns a data frame with two columns corresponding to the level 2 variable and the fitted value from the logistic regression.

Description

Returns a data frame with two columns corresponding to the level 2 variable and the fitted value from the logistic regression.

Usage

getPropensityScores(lr.results, nStrata = 5)

Arguments

lr.results the results of mlpsa.logistic
nStrata number of strata within each level.

Value

a data frame

See Also

mlpsa.logistic
getStrata

Returns a data frame with two columns corresponding to the level 2 variable and the leaves from the conditional inference trees.

Description

Returns a data frame with two columns corresponding to the level 2 variable and the leaves from the conditional inference trees.

Usage

getStrata(party.results, data, level2)

Arguments

- party.results: the results of \texttt{mlpsa.ctree}
- data: the data frame to merge results to
- level2: the name of the level 2 variable.

Value

da data frame

See Also

\texttt{mlpsa.ctree}

is.mlpsa

Returns true if the object is of type \texttt{mlpsa}

Description

Returns true if the object is of type \texttt{mlpsa}

Usage

is.mlpsa(x)

Arguments

- x: the object to test
Loess plot with density distributions for propensity scores and outcomes on top and right, respectively.

Usage

```r
loess.plot(x, response, treatment, responseTitle = "",
           treatmentTitle = "Treatment", percentPoints.treat = 0.1,
           percentPoints.control = 0.01, points.treat.alpha = 0.1,
           points.control.alpha = 0.1, plot.strata, plot.strata.alpha = 0.2, ...)
```

Arguments

- `x` vector of propensity scores.
- `response` the response variable.
- `treatment` the treatment variable as a logical type.
- `responseTitle` the label to use for the y-axis (i.e. the name of the response variable)
- `treatmentTitle` the label to use for the treatment legend.
- `percentPoints.treat` the percentage of treatment points to randomly plot.
- `percentPoints.control` the percentage of control points to randomly plot.
- `points.treat.alpha` the transparency level for treatment points.
- `points.control.alpha` the transparency level for control points.
- `plot.strata` an integer value greater than 2 indicating the number of vertical lines to plot corresponding to quantiles.
- `plot.strata.alpha` the alpha level for the vertical lines.
- `...` other parameters passed to `geom_smooth` and `stat_smooth`.

Value

a ggplot2 figure

See Also

plot.mlpsa
Examples

```r
## Not run:
require(multilevelPSA)
require(party)
data(pisana)
data(pisana$psa.cols)
cnt = 'USA'  # Can change this to USA, MEX, or CAN
pisana2 = pisana[,pisana$CNT == cnt,]
pisana2$treat <- as.integer(pisana2$PUBPRIV) %*% 2
lr.results <- glm(treat ~ ., data=pisana2[,c('treat',pisana$psa.cols)], family='binomial')
st = data.frame(ps=fitted(lr.results),
    math=apply(pisana2[,paste('PV', 1:5, 'MATH', sep=''),], 1, mean),
    pubpriv=pisana2$treat)
st$treat = as.logical(st$pubpriv)
loess.plot(st$ps, response=st$math, treatment=st$treat, percentPoints.control = 0.4,
    percentPoints.treat=0.4)
```

End(Not run)

lsos
Nicer list of objects in memory. Particularly useful for analysis of large data.

Description

Nicer list of objects in memory. Particularly useful for analysis of large data.

Usage

`lsos(..., n = 10)`

Arguments

- `...` not used.
- `n` the number of objects to return.

Value

A list of objects loaded sorted by size.
missing.plot

Returns a heat map graphic representing missingness of variables grouped by the given grouping vector.

Description

NOTE: This is an experimental function and the results may vary depending on the nature of the dataset.

Usage

missing.plot(x, grouping, grid = FALSE, widths = c(unit(3, "null"), unit(1, "inches")), heights = c(unit(1, "inches"), unit(3, "null")), color = "red", ...)

Arguments

 x a data frame containing the variables to visualize missingness
 grouping a vector of length nrow(vars) corresponding to how missing will be grouped by
 grid whether to draw a grid between tiles
 widths the ratio of the widths of the heatmap and histogram.
 heights the ratio of the heights of the heatmap and histogram.
 color the color used for indicating missingness.
 ... currently unused.

Value

 a ggplot2 expression

See Also

 plot.mlpsa

mlpsa

This function will perform phase II of the multilevel propensity score analysis.

Description

 TODO: Need more details

Usage

mlpsa(response, treatment = NULL, strata = NULL, level2 = NULL, minN = 5, reverse = FALSE, ci.level = 0.05)
Arguments

- **response**: vector containing the response values
- **treatment**: vector containing the treatment conditions
- **strata**: vector containing the strata for each response
- **level2**: vector containing the level 2 specifications
- **minN**: the minimum number of subjects per strata for that strata to be included in the analysis.
- **reverse**: reverse the order of treatment and control for the difference calculation.
- **ci.level**: the confidence level to use for confidence intervals. Defaults to a 95% confidence level.

Details

The `ci.adjust` provides a Bonferroni-Sidak adjusted confidence intervals based on the number of levels/clusters.

Value

a `mlpsa` class

See Also

- `mlpsa.ctree`
- `mlpsa.logistic`

Examples

```R
## Not run:
require(multilevelPSA)
require(party)
data(pisana)
data(pisa.colnames)
data(pisa.psa.cols)
mlctree = mlpsa.ctree(pisana[,c('CNT','PUBPRIV',pisa.psa.cols)], formula=PUBPRIV ~ ., level2='CNT')
student.party = getStrata(mlctree, pisana, level2='CNT')
student.party$mathscore = apply(student.party[,paste0('PV', 1:5, 'MATH')], 1, sum) / 5
results.psa.math = mlpsa(response=student.party$mathscore, 
treatment=student.party$PUBPRIV, 
strata=student.party$strata, 
level2=student.party$CNT, minN=5)
results.psa.math
summary(results.psa.math)

## End(Not run)
```
mlpsa.circ.plot

Plots the results of a multilevel propensity score model.

Description

The plot created uses the ggplot2 framework. As such, additional modifications can be made. This plot is an extension of the circ.psa function in the PSAGraphics package for multilevel models.

Usage

mlpsa.circ.plot(x, xlab = names(multilevelPSA$level2.summary)[4],
 ylab = names(multilevelPSA$level2.summary)[5], legendlab = "Level 2",
 title = NULL, overall.col = "blue", overall.ci.col = "green",
 level1.plot = FALSE, level1.point.size = NULL, level1.rug.plot = NULL,
 level1.projection.lines = FALSE, level2.plot = TRUE,
 level2.point.size = NULL, level2.rug.plot = geom_rug_alt,
 level2.projection.lines = TRUE, level2.label = FALSE,
 unweighted.means = FALSE, weighted.means = FALSE, fill.colours = NULL,
 ...)

Arguments

- x: the results of `mlpsa`.
- xlab: label for the x-axis.
- ylab: label for the y-axis.
- legendlab: the label for the legend, or NULL to exclude.
- title: title for the figure.
- overall.col: the color used for the overall results.
- overall.ci.col: the color used for the confidence intervals.
- level1.plot: logical value indicating whether level 1 points should be plotted.
- level1.point.size: the size of level 1 points
- level1.rug.plot: the geom to use for plotting a level 1 rug. Possible values are geom_rug (for left and bottom), geom_rug_alt (for top and right), or NULL (to exclude).
- level1.projection.lines: logical value indicating whether level 1 projection lines (parallel to the unit line) are drawn.
- level2.plot: logical value indicating whether level 2 points should be plotted.
- level2.point.size: the size of level 2 points
- level2.rug.plot: the geom to use for plotting a level 2 rug. Possible values are geom_rug (for left and bottom), geom_rug_alt (for top and right), or NULL (to exclude).
level2.projection.lines
 logical value indicating whether level 2 project lines (parallel to the unit line)
 are drawn.
level2.label
 logical value indicating whether level 2 points should be labeled.
unweighted.means
 logical value indicating whether horizontal and vertical lines are drawn repres-
 enting the unweighted (i.e. unadjusted from phase I of PSA) means for each
 level 2, or cluster.
weighted.means
 logical value indicating whether horizontal and vertical lines are drawn repre-
 senting the weighted means for each level 2, or cluster.
fill.colours
 if specified, the colors to use for level 2 points.

See Also

plot.mlpsa

Examples

Not run:
data(pisana)
data(pisa.colnames)
data(pisa.psa.cols)
mlctree = mlpsa.ctree(pisana[,c('CNT','PUBPRIV',pisa.psa.cols)], formula=PUBPRIV ~ ., level2='CNT')
student.party = getStrata(mlctree, pisana, level2='CNT')
student.party$mathscore = apply(student.party[,paste0('PV', 1:5, 'MATH')], 1, sum) / 5
results.psa.math = mlpsa(response=student.party$mathscore,
treatment=student.party$PUBPRIV,
strata=student.party$strata,
level2=student.party$CNT, minN=5)
mlpsa.circ.plot(results.psa.math, legendlab=FALSE)

End(Not run)

mlpsa.ctree

Estimates propensity scores using the recursive partitioning in a conditional inference framework.

Description

This function will estimate propensity scores using the conditional inference framework as outlined in the party package. Specifically, a separate tree will be estimated for each level 2 (or cluster). A key advantage of this framework over other methods for estimating propensity scores is that this method will work on data sets containing missing values.

Usage

mlpsa.ctree(vars, formula, level2, ...)

mlpsa.difference.plot

Arguments

vars a data frame containing the covariates to use for estimating the propensity scores.
formula the model for estimating the propensity scores. For example, treat ~ .
level2 the name of the column in vars specifying the level 2 (or cluster).
... currently unused.

Value

a list of BinaryTree-class classes for each level 2

References

See Also

getStrata
tree.plot

mlpsa.difference.plot Creates a graphic summarizing the differences between treatment and comparison groups within and across level two clusters.

Description

Creates a graphic summarizing the differences between treatment and comparison groups within and across level two clusters.

Usage

mlpsa.difference.plot(x, xlab, ylab = NULL, title = NULL,
overall.col = "blue", overall.ci.col = "green",
level2.point.size = NULL, level1.points = TRUE, errorbars = TRUE,
errorbars.adjusted.ci = TRUE, level2.rug.plot = TRUE, jitter = TRUE,
reorder = TRUE, labelLevel2 = TRUE, sd = NULL, xlim, ...)

Arguments

x the results of mlpsa.
xlab label for the x-axis, or NULL to exclude.
ylab label for the y-axis, or NULL to exclude.
title title of the figure, or NULL to exclude.
overall.col the color of the overall results line.
overallNci.col the color of the overall confidence interval.
level2Npoint.size the point size of level 2 points.
level1Npoints logical value indicating whether level 1 strata should be plotted.
errorbars logical value indicating whether error bars should be plotted for each level 1.
errorbarsNadjustedNci whether the Bonferonni adjusted error bars should be plotted (these will be dashed lines).
level2NrugNplot logical value indicating whether a rug plot should be plotted for level 2.
jitter logical value indicating whether level 1 points should be jittered.
reorder logical value indicating whether the level two clusters should be reordered from largest difference to smallest.
labelLevel2 logical value indicating whether the difference for each level 2 should be labeled.
sd If specified, effect sizes will be plotted instead of difference in the native unit.
xlim the limits of the x-axis.
... currently unused.

See Also
plot.mlpsa

Examples

```r
## Not run:
data(pisana)
data(pisa.colnames)
data(pisa.psa.cols)
mlctree = mlpsa.ctree(pisana[,c('CNT','PUBPRIV',pisa.psa.cols)], formula=PUBPRIV ~ ., level2='CNT')
student.party = getStrata(mlctree, pisana, level2='CNT')
student.party$mathscore = apply(student.party[,paste0('PV', 1:5, 'MATH')], 1, sum) / 5
results.psa.math = mlpsa(response=student.party$mathscore,
                           treatment=student.party$PUBPRIV,
                           strata=student.party$strata,
                           level2=student.party$CNT, minN=5)
mlpsa.difference.plot(results.psa.math, sd=mean(student.party$mathscore, na.rm=TRUE))

## End(Not run)
```
mlpsa.distribution.plot

Plots distribution for either the treatment or comparison group.

Description

Plots distribution for either the treatment or comparison group.

Usage

```r
mlpsa.distribution.plot(x, treat, fill.colours = NULL, flip = TRUE,
                           label = treat, level2.label = NULL, legendlab = NULL,
                           axis.text.size = 8, ...)
```

Arguments

- `x` the results of `mlpsa`.
- `treat` the group to plot. This must be one of the two levels of the treatment variable.
- `fill.colours` if specified, the colors to use for level 2 points.
- `flip` if TRUE, the level 2 clusters will be on the y-axis and the outcome variable on the x-axis. Otherwise reversed.
- `label` the label to use for the axis.
- `level2.label` the axis label for the level 2 indicators.
- `legendlab` the label for the legend, or NULL to exclude a legend.
- `axis.text.size` the size of the axis text
- `...` currently unused.

See Also

`plot.mlpsa`

mlpsa.logistic

Estimates propensity scores using logistic regression.

Description

This method will estimate a separate logistic regression model for each level 2 (or cluster).

Usage

```r
mlpsa.logistic(vars, formula, level2, stepAIC = FALSE, ...)
```
Arguments

vars data frame containing the variables to estimate the logistic regression
formula the logistic regression formula to use
level2 the name of the column containing the level 2 specification
stepAIC if true, the stepAIC from the MASS package will be used within each level.
 currently unused.

Value

a list of glm classes for each level 2 or stepwise-selected model if stepAIC is true.

See Also

getPropensityScores

Description

This data frame provides three variables, Variable corresponding to the column names in pisana, ShortDesc providing a short description of the variable as a valid R object name, and Desc providing a longer description of the variable.

Format

da data frame with 50 rows of 3 variables.

Description

This data frame has two columns, CNT3 for the three letter abbreviation of each country and Country that provides the full country name in English.

Format

data frame with 65 rows of 2 variables.
<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>pisa.psa.cols</td>
<td>Character vector representing the list of covariates used for estimating propensity scores.</td>
<td>a character vector with covariate names for estimating propensity scores.</td>
</tr>
</tbody>
</table>

Description

Character vector representing the list of covariates used for estimating propensity scores.

Format

a character vector with covariate names for estimating propensity scores.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pisana</td>
<td>North American (i.e. Canada, Mexico, and United States) student results of the 2009 Programme of International Student Assessment.</td>
</tr>
</tbody>
</table>

Description

Format

a data frame with 66,548 observations of 65 variables.

Details

Note that missing values have been imputed using the http://cran.r-project.org/web/packages/mice/index.html package. Details on the specific procedure are in the `pisa.impute` function in the `pisa` package.

Source

Organization for Economic Co-operation and Development

References

plot.covariate.balance

Multiple covariate balance assessment plot.

Description

A graphic based upon `cv.bal.psa` function in the PSAGraphics package. This graphic plots the effect sizes for multiple covariated before and after propensity score adjustment.

Usage

```r
## S3 method for class 'covariate.balance'
plot(x, plot.strata = FALSE,
     order = c("unadjusted", "adjusted"), strata.size = 3,
     strata.legend.guide = "none", point.size = 3, point.alpha = 1,
     line.color = "black", line.alpha = 0.2, legend.position = c(0.8, 0.2),
     ...)```

Arguments

- `x` results of `covariate.balance`.
- `plot.strata` whether individual strata should be plotted.
- `order` how to order the y-axis. Possible values are adjusted, unadjusted, or NULL (don’t reorder).
- `strata.size` text size for strata if plotted.
- `strata.legend.guide` guide for legend placement for strata.
- `point.size` size of the overall effect size points.
- `point.alpha` transparency level of the overall effect size points.
- `line.color` the color of the line connecting the overall effect size points.
- `line.alpha` transparency level of the line connecting the overall effect size points.
- `legend.position` where to position the legend.
- `...` currently unused.

Value

A `ggplot2` with an attribute, `effects`, that is the data frame used to create the plot.
plot.mlpsa

Plots the results of a multilevel propensity score model.

Description

The plot created uses the ggplot2 framework. As such, additional modifications can be made. This plot is an extension of the circ.psa function in the PSAGraphics package for multilevel models.

Usage

```r
S3 method for class 'mlpsa'
plot(x, ratio = c(1, 2), plotExtra = NULL, ...)
```

Arguments

- `x` the results of mlpsa.
- `ratio` the ratio of the size of the distribution plots (left and bottom) to the circular plot.
- `plotExtra` a plot to place in the lower left corner.
- `...` parameters passed to mlpsa.circ.plot and mlpsa.distribution.plot

Examples

```r
Not run:
require(multilevelPSA)
require(party)
data(pisana)
data(pisa.colnames)
data(pisa.psa.cols)
mlctree = mlpsa.ctree(pisana[,c('CNT','PUBPRIV',pisa.psa.cols)], formula=PUBPRIV ~ ., level2='CNT')
student.party = getStrata(mlctree, pisana, level2='CNT')
student.party$mathscore = apply(student.party[,paste0('PV', 1:5, 'MATH')], 1, sum) / 5
results.psa.math = mlpsa(response=student.party$mathscore,
 treatment=student.party$PUBPRIV,
 strata=student.party$strata,
 level2=student.party$CNT, minN=5)
plot(results.psa.math)
```

## End(Not run)
plot.psrange

Plots densities and ranges for the propensity scores.

Description

Plots densities and ranges for the propensity scores.

Usage

```r
S3 method for class 'psrange'
plot(x, xlab = NULL, ylab = NULL,
 labels = c("Comparison", "Treatment"), text.ratio.size = 4,
 text.ncontrol.size = 3, point.size = 1, point.alpha = 0.6,
 line.width = 6, density.alpha = 0.2, rect.color = "green",
 rect.alpha = 0.2, ...)
```

Arguments

- `x` the result of `psrange`.
- `xlab` label for x-axis.
- `ylab` label for y-axis.
- `labels` labels for the comparison and treatment legend.
- `text.ratio.size` size of the text for the ratio.
- `text.ncontrol.size` size of the text for the number of control units.
- `point.size` size of the points for the minimum and maximum ranges for each model.
- `point.alpha` the alpha (transparency) level for the points.
- `line.width` the width of the line between the median of the minimum and maximum ranges.
- `density.alpha` the alpha (transparency) level of the density curves.
- `rect.color` the color of the rectangle surrounding the range of minimum and maximum ranges.
- `rect.alpha` the alpha (transparency) level of the rectangle.
- `...` currently unused.

Value

a ggplot2 object
print.covariate.balance

*Prints the overall effects before and after propensity score adjustment.*

**Description**

Prints the overall effects before and after propensity score adjustment.

**Usage**

```r
S3 method for class 'covariate.balance'
print(x, ...)
```

**Arguments**

- `x` results of `covariate.balance`
- `...` unused.

---

print.mlpsa

*Prints basic information about a mlpsa class.*

**Description**

Prints basic information about a mlpsa class.

**Usage**

```r
S3 method for class 'mlpsa'
print(x, ...)
```

**Arguments**

- `x` the mlpsa class.
- `...` unused.
print.psrnage

\textit{Prints information about a psrange result.}

\section*{Description}

Prints information about a psrange result.

\section*{Usage}

\begin{verbatim}
## S3 method for class 'psrange'
print(x, ...)
\end{verbatim}

\section*{Arguments}

\begin{itemize}
  \item \begin{verbatim}x\end{verbatim} psrange to print info about.
  \item \begin{verbatim}...\end{verbatim} currently unused
\end{itemize}

print.xmlpsa \textit{Prints the results of mlp\text{\textsc{sa}} and \text{\textsc{xtable}}.m\text{\textsc{lp}}\text{\textsc{sa}}.}

\section*{Description}

Print method for \text{\textsc{xtable}}.mlpsa.

\section*{Usage}

\begin{verbatim}
## S3 method for class 'xmlpsa'
print(x, tabular.environment = "longtable",
       floating = FALSE, ...)
\end{verbatim}

\section*{Arguments}

\begin{itemize}
  \item \begin{verbatim}x\end{verbatim} result of \text{\textsc{xtable}}.mlpsa
  \item \begin{verbatim}tabular.environment\end{verbatim} see \text{\textsc{print.xtable}}.
  \item \begin{verbatim}floating\end{verbatim} see \text{\textsc{print.xtable}}.
  \item \begin{verbatim}...\end{verbatim} other parameters passed to \text{\textsc{print.xtable}}
psrange

Estimates models with increasing number of comparison subjects starting from 1:1 to using all available comparison group subjects.

Description
Estimates models with increasing number of comparison subjects starting from 1:1 to using all available comparison group subjects.

Usage

psrange(df, treatvar, formula, nsteps = 10, nboot = 10, samples, type = c("logistic", "ctree"), ...)

Arguments

df
data frame with variables to pass to glm
treatvar
vector representing treatment placement. Should be coded as 0s (for control) and 1s (for treatment).
formula
formula for logistic regression model
nsteps
number of steps to estimate from 1:1 to using all control records.
nboot
number of models to execute for each step.
samples
the sample sizes to draw from control group for each step.
type
either logistic for Logistic regression (using glm function) or ctree for Conditional Inference Trees (using the ctree function).
... other parameters passed to glm.

Value
a class of psrange that contains a summary data frame, a details data frame, and a list of each individual result from glm.

summary.mlpsa
Provides a summary of a mlpsa class.

Description
Provides a summary of a mlpsa class.

Usage

## S3 method for class 'mlpsa'
summary(object, overall.label = "Overall", ...)
summary.psrang

Arguments

- object: the mlpsa object.
- overall.label: the label to place in the strata column for the overall results.
- ...: unused.

summary.psrang: Prints the summary results of psrange.

Description

Prints the summary results of psrange.

Usage

```r
S3 method for class 'psrange'
summary(object, ...)
```

Arguments

- object: psrange to print summary of.
- ...: currently unused.

tree.plot: Heat map representing variables used in a conditional inference tree across level 2 variables.

Description

This figure provides a summary of the covariates used within each level two cluster along with their relative importance. Covariates are listed on the y-axis and level two clusters along the x-axis. Cells that are shaded indicate that that covariate was present in the conditional. The shade of the color represents the highest level within the tree that covariate appeared. That is, the darkest color, or depth 1, corresponds to the covariate used at the root of the tree, or the first split.

Usage

```r
tree.plot(x, colNames, level2Col, colLabels = NULL, color.high = "azure", color.low = "steelblue", color.na = "white", ...)
```
Arguments

x  the results of `mlpsa.ctree`
colNames the columns to include in the graphic
level2Col the name of the level 2 column.
collabels column labels to use. This is a data frame with two columns, the first column should match the values in `trees` and the second column the description that will be used for labeling the variables.
color.high color for variables with less relative importance as determined by occurring later in the tree (further from the root split).
color.low color for variables with greater relative importance as determined by occurring sooner in the tree (closer to the root split).
color.na color for variables that do not occur in the tree.

Value

a `ggplot2` expression

See Also

plot.mlpsa

Examples

```r
Not run:
require(party)
data(pisana)
data(pisa.colnames)
data(pisa.psa.cols)
mlctree = mlpsa.ctree(pisana[,c('CNT','PUBPRIV',pisa.psa.cols)], formula=PUBPRIV ~ ., level2='CNT')
student.party = getStrata(mlctree, pisana, level2='CNT')
tree.plot(mlctree, level2Col=pisana$CNT)

End(Not run)
```

---

**xtable.mlpsa**

*Prints the results of `mlpsa` as a LaTeX table.*

Description

This function implements the `xtable` method for `mlpsa`.

Usage

```r
S3 method for class 'mlpsa'
xtable(x, caption, label, align, digits = 2, display,
 include.note = TRUE, ...)
```
Arguments

x results of `mlpsa`
caption passed through to `xtable`.
label passed through to `xtable`.
align Not used.
digits number of digits to print.
display passed through to `xtable`.
include.note include a table note indicating how many rows were removed due to insufficient data within a strata.
... other parameters passed to `summary.mlpsa`
Index

*Topic analysis
  multilevelPSA-package, 2
*Topic datasets
  pisa.colnames, 19
  pisa.countries, 19
  pisa.psa.cols, 20
  pisana, 20
*Topic graphics
  multilevelPSA-package, 2
*Topic multilevel
  multilevelPSA-package, 2
*Topic propensity
  multilevelPSA-package, 2
*Topic psa
  multilevelPSA-package, 2
*Topic score
  multilevelPSA-package, 2
alignNplots, 3
asNdataNframeNcovariateNbalance, 4
covariateNbalance, 4, 4, 21, 24
covariateBalance, 5
cvNbalNpsa, 5, 21
cvNtransNpsa, 6
diffNtableNplot, 7
geom_rug, 8
geom_rug_alt, 7
geom_smooth, 10
getPropensityScores, 8
getStrata, 9, 16
isNmlpsa, 9
loess.plot, 10
lsos, 11
missing.plot, 12
mlpsa, 3, 7, 12, 14, 16, 18, 22, 25, 28, 29
mlpsa.circ.plot, 14, 22
mlpsa.ctree, 2, 9, 13, 15, 28
mlpsa.difference.plot, 16
mlpsa.distribution.plot, 18, 22
mlpsa.logistic, 2, 8, 13, 18
multilevelPSA (multilevelPSA-package), 2
multilevelPSA-package, 2
pisa.colnames, 19
pisa.countries, 19
pisa.psa.cols, 20
pisana, 19, 20
plotNcovariateNbalance, 21
plot.mlpsa, 3, 22
plot.psrangle, 23
print.covariateNbalance, 24
print.mlpsa, 24
print.psrangle, 25
print.xmlpsa, 25
print.xtable, 25
psrange, 26
stat_smooth, 10
stepAIC, 19
summary.mlpsa, 26, 29
summary.psrangle, 27
tree.plot, 16, 27
xtable, 28, 29
xtable.mlpsa, 25, 28