Copyright (c) 2015 by Randall Pruim, Nicholas Horton, & Daniel Kaplan.

Edition 1.0, January 2015

This material is copyrighted by the authors under a Creative Commons Attribution 3.0 Unported License. You are free to Share (to copy, distribute and transmit the work) and to Remix (to adapt the work) if you attribute our work. More detailed information about the licensing is available at this web page: http://www.mosaic-web.org/go/teachingRlicense.html.

Cover Photo: Maya Hanna.
Contents

1 Introduction 13

2 One Quantitative Variable 15

3 One Categorical Variable 25

4 Two Quantitative Variables 31

5 Two Categorical Variables 41

6 Quantitative Response, Categorical Predictor 45

7 Categorical Response, Quantitative Predictor 53

8 Survival Time Outcomes 57

9 More than Two Variables 59
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Probability Distributions & Random Variables</td>
<td>67</td>
</tr>
<tr>
<td>11</td>
<td>Power Calculations</td>
<td>71</td>
</tr>
<tr>
<td>12</td>
<td>Data Management</td>
<td>75</td>
</tr>
<tr>
<td>13</td>
<td>Health Evaluation (HELP) Study</td>
<td>87</td>
</tr>
<tr>
<td>14</td>
<td>Exercises and Problems</td>
<td>91</td>
</tr>
<tr>
<td>15</td>
<td>Bibliography</td>
<td>97</td>
</tr>
<tr>
<td>16</td>
<td>Index</td>
<td>99</td>
</tr>
</tbody>
</table>
About These Notes

We present an approach to teaching introductory and intermediate statistics courses that is tightly coupled with computing generally and with R and RStudio in particular. These activities and examples are intended to highlight a modern approach to statistical education that focuses on modeling, resampling based inference, and multivariate graphical techniques. A secondary goal is to facilitate computing with data through use of small simulation studies and appropriate statistical analysis workflow. This follows the philosophy outlined by Nolan and Temple Lang\(^1\). The importance of modern computation in statistics education is a principal component of the recently adopted American Statistical Association’s curriculum guidelines\(^2\).

Throughout this book (and its companion volumes), we introduce multiple activities, some appropriate for an introductory course, others suitable for higher levels, that demonstrate key concepts in statistics and modeling while also supporting the core material of more traditional courses.

A Work in Progress

These materials were developed for a workshop entitled *Teaching Statistics Using R* prior to the 2011 United States Conference on Teaching Statistics and revised for US-COTS 2011 and eCOTS 2014. We organized these workshops to help instructors integrate R (as well as some related technologies) into statistics courses at all levels. We received great feedback and many wonderful ideas from the participants and those that we’ve shared this with since the workshops.

Consider these notes to be a work in progress. We ap-

Caution! Despite our best efforts, you WILL find bugs both in this document and in our code. Please let us know when you encounter them so we can call in the exterminators.
preciate any feedback you are willing to share as we con-
tinue to work on these materials and the accompanying mosaic package. Drop us an email at pis@mosaic.org with any comments, suggestions, corrections, etc.

Updated versions will be posted at http://mosaic-web.org.

Two Audiences

The primary audience for these materials is instructors of statistics at the college or university level. A secondary audience is the students these instructors teach. Some of the sections, examples, and exercises are written with one or the other of these audiences more clearly at the forefront. This means that

1. Some of the materials can be used essentially as is with students.

2. Some of the materials aim to equip instructors to de-
 velop their own expertise in R and RStudio to develop
 their own teaching materials.

Although the distinction can get blurry, and what works “as is” in one setting may not work “as is” in an-
other, we’ll try to indicate which parts fit into each cate-
gory as we go along.

R, RStudio and R Packages

R can be obtained from http://cran.r-project.org/. Download and installation are quite straightforward for Mac, PC, or linux machines.

RStudio is an integrated development environment (IDE) that facilitates use of R for both novice and expert users. We have adopted it as our standard teaching en-
v
vironment because it dramatically simplifies the use of R for instructors and for students. RStudio can be installed as a desktop (laptop) application or as a server applica-
tion that is accessible to users via the Internet.

In addition to R and RStudio, we will make use of sev-

eral packages that need to be installed and loaded sep-
arately. The mosaic package (and its dependencies) will

More Info
Several things we use that can be done only in RStudio, for instance manipulate() or RStudio’s support for reproducible research).

Teaching Tip
RStudio server version works well with starting students. All they need is a web browser, avoiding any potential prob-

lems with oddities of students’ individual computers.
be used throughout. Other packages appear from time to time as well.

Marginal Notes

Marginal notes appear here and there. Sometimes these are side comments that we wanted to say, but we didn’t want to interrupt the flow to mention them in the main text. Others provide teaching tips or caution about traps, pitfalls and gotchas.

What’s Ours Is Yours – To a Point

This material is copyrighted by the authors under a Creative Commons Attribution 3.0 Unported License. You are free to Share (to copy, distribute and transmit the work) and to Remix (to adapt the work) if you attribute our work. More detailed information about the licensing is available at this web page: http://www.mosaic-web.org/go/teachingRlicense.html.

This document was created on December 19, 2014, using knitr and R version 3.1.0 Patched (2014-06-02 r65832).
This book is a product of Project MOSAIC, a community of educators working to develop new ways to introduce mathematics, statistics, computation, and modeling to students in colleges and universities.

The goal of the MOSAIC project is to help share ideas and resources to improve teaching, and to develop a curricular and assessment infrastructure to support the dissemination and evaluation of these approaches. Our goal is to provide a broader approach to quantitative studies that provides better support for work in science and technology. The project highlights and integrates diverse aspects of quantitative work that students in science, technology, and engineering will need in their professional lives, but which are today usually taught in isolation, if at all.

In particular, we focus on:

Modeling The ability to create, manipulate and investigate useful and informative mathematical representations of a real-world situations.

Statistics The analysis of variability that draws on our ability to quantify uncertainty and to draw logical inferences from observations and experiment.

Computation The capacity to think algorithmically, to manage data on large scales, to visualize and interact with models, and to automate tasks for efficiency, accuracy, and reproducibility.

Calculus The traditional mathematical entry point for college and university students and a subject that still has the potential to provide important insights to today’s students.
Drawing on support from the US National Science Foundation (NSF DUE-0920350), Project MOSAIC supports a number of initiatives to help achieve these goals, including:

Faculty development and training opportunities, such as the USCOTS 2011, USCOTS 2013, eCOTS 2014, and ICOTS 9 workshops on *Teaching Statistics Using R and RStudio*, our 2010 Project MOSAIC kickoff workshop at the Institute for Mathematics and its Applications, and our *Modeling: Early and Often in Undergraduate Calculus* AMS PREP workshops offered in 2012, 2013, and 2015.

M-casts, a series of regularly scheduled webinars, delivered via the Internet, that provide a forum for instructors to share their insights and innovations and to develop collaborations to refine and develop them. Recordings of M-casts are available at the Project MOSAIC web site, http://mosaic-web.org.

The construction of syllabi and materials for courses that teach MOSAIC topics in a better integrated way. Such courses and materials might be wholly new constructions, or they might be incremental modifications of existing resources that draw on the connections between the MOSAIC topics.

We welcome and encourage your participation in all of these initiatives.
Computational Statistics

There are at least two ways in which statistical software can be introduced into a statistics course. In the first approach, the course is taught essentially as it was before the introduction of statistical software, but using a computer to speed up some of the calculations and to prepare higher quality graphical displays. Perhaps the size of the data sets will also be increased. We will refer to this approach as statistical computation since the computer serves primarily as a computational tool to replace pencil-and-paper calculations and drawing plots manually.

In the second approach, more fundamental changes in the course result from the introduction of the computer. Some new topics are covered, some old topics are omitted. Some old topics are treated in very different ways, and perhaps at different points in the course. We will refer to this approach as computational statistics because the availability of computation is shaping how statistics is done and taught. Computational statistics is a key component of data science, defined as the ability to use data to answer questions and communicate those results.

In practice, most courses will incorporate elements of both statistical computation and computational statistics, but the relative proportions may differ dramatically from course to course. Where on the spectrum a course lies will depend on many factors including the goals of the course, the availability of technology for student use, the perspective of the text book used, and the comfort-level of the instructor with both statistics and computation.

Among the various statistical software packages available, R is becoming increasingly popular. The recent addition of RStudio has made R both more powerful and more accessible. Because R and RStudio are free, they have become widely used in research and industry. Training in R...
and RStudio is often seen as an important additional skill that a statistics course can develop. Furthermore, an increasing number of instructors are using R for their own statistical work, so it is natural for them to use it in their teaching as well. At the same time, the development of R and of RStudio (an optional interface and integrated development environment for R) are making it easier and easier to get started with R.

Nevertheless, those who are unfamiliar with R or who have never used R for teaching are understandably cautious about using it with students. If you are in that category, then this book is for you. Our goal is to reveal some of what we have learned teaching with R and to make teaching statistics with R as rewarding and easy as possible – for both students and faculty. We will cover both technical aspects of R and RStudio (e.g., how do I get R to do thus and such?) as well as some perspectives on how to use computation to teach statistics. The latter will be illustrated in R but would be equally applicable with other statistical software.

Others have used R in their courses, but have perhaps left the course feeling like there must have been better ways to do this or that topic. If that sounds more like you, then this book is for you, too. As we have been working on this book, we have also been developing the mosaic R package (available on CRAN) to make certain aspects of statistical computation and computational statistics simpler for beginners. You will also find here some of our favorite activities, examples, and data sets, as well as answers to questions that we have heard frequently from both students and faculty colleagues. We invite you to scavenge from our materials and ideas and modify them to fit your courses and your students.
1 Introduction

In this monograph, we briefly review the commands and functions needed to analyze data from introductory and second courses in statistics. This is intended to complement the Start Teaching with R and Start Modeling with R books.

Most of our examples will use data from the HELP (Health Evaluation and Linkage to Primary Care) study: a randomized clinical trial of a novel way to link at-risk subjects with primary care. More information on the dataset can be found in chapter 13.

Since the selection and order of topics can vary greatly from textbook to textbook and instructor to instructor, we have chosen to organize this material by the kind of data being analyzed. This should make it straightforward to find what you are looking for even if you present things in a different order. This is also a good organizational template to give your students to help them keep straight “what to do when”.

Some data management is needed by students (and more by instructors). This material is reviewed in Chapter 12.

This work leverages initiatives undertaken by Project MOSAIC (http://www.mosaic-web.org), an NSF-funded effort to improve the teaching of statistics, calculus, science and computing in the undergraduate curriculum. In particular, we utilize the mosaic package, which was written to simplify the use of R for introductory statistics courses, and the mosaicData package which includes a number of data sets. A short summary of the R commands needed to teach introductory statistics can be found in the mosaic package vignette:

 http://cran.r-project.org/web/packages/mosaic/vignettes/mosaic-resources.pdf
Other related resources from Project MOSAIC may be helpful, including an annotated set of examples from the sixth edition of Moore, McCabe and Craig’s *Introduction to the Practice of Statistics*\(^1\) (see http://www.amherst.edu/~nhorton/ips6e), the second and third editions of the *Statistical Sleuth*\(^2\) (see http://www.amherst.edu/~nhorton/sleuth), and *Statistics: Unlocking the Power of Data* by Lock et al (see https://github.com/rpruim/Lock5withR).

To use a package within R, it must be installed (one time), and loaded (each session). The `mosaic` and `mosaicData` packages can be installed using the following commands:

```r
install.packages("mosaic")  # note the quotation marks
```

The `#` character is a comment in R, and all text after that on the current line is ignored.

Once the package is installed (one time only), it can be loaded by running the command:

```r
require(mosaic)
require(mosaicData)
```

The RMarkdown system provides a simple markup language and renders the results in PDF, Word, or HTML. This allows students to undertake their analyses using a workflow that facilitates “reproducibility” and avoids cut and paste errors.

We typically introduce students to RMarkdown very early, requiring students to use it for assignments and reports\(^3\).

2

One Quantitative Variable

2.1 Numerical summaries

R includes a number of commands to numerically summarize variables. These include the capability of calculating the mean, standard deviation, variance, median, five number summary, interquartile range (IQR) as well as arbitrary quantiles. We will illustrate these using the CESD (Center for Epidemiologic Studies–Depression) measure of depressive symptoms (which takes on values between 0 and 60, with higher scores indicating more depressive symptoms).

To improve the legibility of output, we will also set the default number of digits to display to a more reasonable level (see ?options() for more configuration possibilities).

```r
require(mosaic)
require(mosaicData)
options(digits=3)
mean(~ cesd, data=HELPrc)
```

[1] 32.8

Note that the `mean()` function in the mosaic package supports a formula interface common to lattice graphics and linear models (e.g., `lm()`). The mosaic package provides many other functions that use the same notation, which we will be using throughout this document.

The same output could be created using the following commands (though we will use the MOSAIC versions when available).

Digging Deeper
If you have not seen the formula notation before, the companion book, Start Teaching with R provides a detailed presentation. Start Modeling with R, another companion book, details the relationship between the process of modeling and the formula notation.
with(HELPrc, mean(cesd))
[1] 32.8

mean(HELPrc$cesd)
[1] 32.8

Similar functionality exists for other summary statistics.

sd(~ cesd, data=HELPrc)
[1] 12.5

sd(~ cesd, data=HELPrc)^2
[1] 157

var(~ cesd, data=HELPrc)
[1] 157

It is also straightforward to calculate quantiles of the distribution.

median(~ cesd, data=HELPrc)
[1] 34

By default, the quantile() function displays the quartiles, but can be given a vector of quantiles to display.

with(HELPrc, quantile(cesd))

0% 25% 50% 75% 100%
 1 25 34 41 60

with(HELPrc, quantile(cesd, c(.025, .975)))

2.5% 97.5%
 6.3 55.0

Caution!
Not all commands have been upgraded to support the formula interface. For these functions, variables within dataframes must be accessed using with() or the $ operator.
Finally, the `favstats()` function in the `mosaic` package provides a concise summary of many useful statistics.

```r
favstats(~ cesd, data=HELPrct)
```

```
min Q1 median Q3 max mean sd n missing
1 25 34 41 60 32.8 12.5 453 0
```

2.2 Graphical summaries

The `histogram()` function is used to create a histogram. Here we use the formula interface (as discussed in the *Start Modeling with R* book) to specify that we want a histogram of the CESD scores.

```r
histogram(~ cesd, data=HELPrct)
```

![Histogram of CESD scores](image)

In the `HELPrct` dataset, approximately one quarter of the subjects are female.

```r
tally(~ sex, data=HELPrct)
```

```
female  male  
107 346
```

```r
tally(~ sex, format="percent", data=HELPrct)
```

```
female  male  
23.6 76.4
```
It is straightforward to restrict our attention to just the female subjects. If we are going to do many things with a subset of our data, it may be easiest to make a new dataframe containing only the cases we are interested in. The `filter()` function in the `dplyr` package can be used to generate a new dataframe containing just the women or just the men (see also section 12.4). Once this is created, the the `stem()` function is used to create a stem and leaf plot.

```
female <- filter(HELPrct, sex=='female')
male <- filter(HELPrct, sex=='male')
with(female, stem(cesd))
```

Caution!
Note that the tests for equality use *two* equal signs.

```
0 | 3
0 | 567
1 | 3
1 | 55589999
2 | 123344
2 | 6689999
3 | 00023334444
3 | 55566677788899999
4 | 001111222334
4 | 55566677889
5 | 0112222333444
5 | 67788
6 | 0
```

Subsets can also be generated and used “on the fly” (this time including an overlaid normal density):

```
histogram( ~ cesd, fit="normal",
data=filter(HELPrct, sex=='female'))
```
Alternatively, we can make side-by-side plots to compare multiple subsets.

```r
histogram(~ cesd | sex, data=HELPct)
```

The layout can be rearranged.

```r
histogram(~ cesd | sex, layout=c(1, 2), data=HELPct)
```
We can control the number of bins in a number of ways. These can be specified as the total number.

```r
histogram(~ cesd, nint=20, data=female)
```

The width of the bins can be specified.

```r
histogram(~ cesd, width=1, data=female)
```

The `dotPlot()` function is used to create a dotplot for a smaller subset of subjects (homeless females). We also demonstrate how to change the x-axis label.

```r
dotPlot(~ cesd, xlab="CESD score", data=filter(HELPct, (sex=='female') & (homeless=='homeless')))
```
2.3 Density curves

One disadvantage of histograms is that they can be sensitive to the choice of the number of bins. Another display to consider is a density curve.

Here we adorn a density plot with some gratuitous additions to demonstrate how to build up a graphic for pedagogical purposes. We add some text, a superimposed normal density as well as a vertical line. A variety of line types and colors can be specified, as well as line widths.

```r
densityplot(~ cesd, data=female)
ladd(grid.text(x=0.2, y=0.8, 'only females'))
ladd(panel.mathdensity(args=list(mean=mean(cesd), sd=sd(cesd)), col="red"), data=female)
ladd(panel.abline(v=60, lty=2, lwd=2, col="grey"))
```

Density plots are also sensitive to certain choices. If your density plot is too jagged or too smooth, try changing the adjust argument: larger than 1 for smoother plots, less than 1 for more jagged plots.

Digging Deeper

The `plotFun()` function can also be used to annotate plots (see section 9.2.1).
2.4 Frequency polygons

A third option is a frequency polygon, where the graph is created by joining the midpoints of the top of the bars of a histogram.

freqpolygon(~ cesd, data=female)

![Density plot]

2.5 Normal distributions

The most famous density curve is a normal distribution. The \texttt{xpnorm()} function displays the probability that a random variable is less than the first argument, for a normal distribution with mean given by the second argument and standard deviation by the third. More information about probability distributions can be found in section 10.

xpnorm(1.96, mean=0, sd=1)

If $X \sim N(0,1)$, then

$P(X \leq 1.96) = P(Z \leq 1.96) = 0.975$

$P(X > 1.96) = P(Z > 1.96) = 0.025$

[1] 0.975
2.6 Inference for a single sample

We can calculate a 95% confidence interval for the mean CESD score for females by using a t-test:

```r
t.test(~ cesd, data=female)
```

One Sample t-test

data: data$cesd
t = 29.3, df = 106, p-value < 2.2e-16
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
 34.4 39.4
sample estimates:
mean of x
 36.9

```r
confint(t.test(~ cesd, data=female))
```

mean of x lower upper level
36.89 34.39 39.38 0.95

But it’s also straightforward to calculate this using a bootstrap. The statistic that we want to resample is the mean.

```r
mean(~ cesd, data=female)
```

[1] 36.9
One resampling trial can be carried out:

```r
mean(~ cesd, data=resample(female))
```

[1] 34.9

Another will yield different results:

```r
mean(~ cesd, data=resample(female))
```

[1] 35.2

Now conduct 1000 resampling trials, saving the results in an object called `trials`:

```r
trials <- do(1000) * mean(~ cesd, data=resample(female))

Loading required package: parallel

qdata(c(.025, .975), ~ result, data=trials)

       quantile   p
2.5%     34.2 0.025
97.5%    39.3 0.975

Teaching Tip
Here we sample with replacement from the original dataframe, creating a resampled dataframe with the same number of rows.

Teaching Tip
Even though a single trial is of little use, it's smart having students do the calculation to show that they are (usually!) getting a different result than without resampling.
3
One Categorical Variable

3.1 Numerical summaries

The `tally()` function can be used to calculate counts, percentages and proportions for a categorical variable.

\[
\text{tally(} \sim \text{homeless, data=HELPrct)}
\]

homeless housed
209 244

\[
\text{tally(} \sim \text{homeless, margins=TRUE, data=HELPrct)}
\]

homeless housed Total
209 244 453

\[
\text{tally(} \sim \text{homeless, format="percent", data=HELPrct)}
\]

homeless housed
46.1 53.9

\[
\text{tally(} \sim \text{homeless, format="proportion", data=HELPrct)}
\]

homeless housed
0.461 0.539

Digging Deeper

The Start Teaching with R companion book introduces the formula notation used throughout this book. See also Start Teaching with R for the connections to statistical modeling.
3.2 The binomial test

An exact confidence interval for a proportion (as well as a test of the null hypothesis that the population proportion is equal to a particular value [by default 0.5]) can be calculated using the `binom.test()` function. The standard `binom.test()` requires us to tabulate.

```
binom.test(209, 209 + 244)
```

Exact binomial test

data: x and n
number of successes = 209, number of trials = 453, p-value = 0.1101
alternative hypothesis: true probability of success is not equal to 0.5
95 percent confidence interval:
  0.415 0.509
sample estimates:
  probability of success
  0.461

The mosaic package provides a formula interface that avoids the need to pre-tally the data.

```
result <- binom.test(~ (homeless=="homeless"), HELPrct)
result
```

As is generally the case with commands of this sort, there are a number of useful quantities available from the object returned by the function.
names(result)

[1]  "statistic"  "parameter"  "p.value"  "conf.int"
[5]  "estimate"  "null.value"  "alternative"  "method"
[9]  "data.name"

These can be extracted using the $ operator or an extractor function. For example, the user can extract the confidence interval or p-value.

result$statistic

number of successes
209

confint(result)

probability of success  lower  upper
0.461  0.415  0.509
level 0.950

pval(result)

p.value
0.11

3.3 The proportion test

A similar interval and test can be calculated using the function prop.test(). Here is a count of the number of people at each of the two levels of homeless

tally(~ homeless, data=HELPct)

homeless housed
209  244

The prop.test() function will carry out the calculations of the proportion test and report the result.

Digging Deeper
Most of the objects in R have a print() method. So when we get result, what we are seeing displayed in the console is print(result). There may be a good deal of additional information lurking inside the object itself.

In some situations, such as graphics, the object is returned invisibly, so nothing prints. That avoids you having to look at a long printout not intended for human consumption. You can still assign the returned object to a variable and process it later, even if nothing shows up on the screen. This is sometimes helpful for lattice graphics functions.
prop.test(~(homeless=="homeless"), correct=FALSE, data=HELPrct)

1-sample proportions test without continuity correction

data: HELPrct$(homeless == "homeless")
X-squared = 2.7, df = 1, p-value = 0.1001
alternative hypothesis: true p is not equal to 0.5
95 percent confidence interval:
 0.416 0.507
sample estimates:
  p
 0.461

In this statement, prop.test is examining the homeless variable in the same way that tally() would. prop.test() can also work directly with numerical counts, the way binom.test() does.

prop.test(209, 209 + 244, correct=FALSE)

1-sample proportions test without continuity correction

data: x and n
X-squared = 2.7, df = 1, p-value = 0.1001
alternative hypothesis: true p is not equal to 0.5
95 percent confidence interval:
 0.416 0.507
sample estimates:
  p
 0.461

3.4 Goodness of fit tests

A variety of goodness of fit tests can be calculated against a reference distribution. For the HELP data, we could test the null hypothesis that there is an equal proportion of subjects in each substance abuse group back in the original populations.
tally(~ substance, format="percent", data=HELPrct)

<table>
<thead>
<tr>
<th>substance</th>
<th>alcohol</th>
<th>cocaine</th>
<th>heroin</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>39.1</td>
<td>33.6</td>
<td>27.4</td>
</tr>
</tbody>
</table>

observed <- tally(~ substance, data=HELPrct)
observed

<table>
<thead>
<tr>
<th>substance</th>
<th>alcohol</th>
<th>cocaine</th>
<th>heroin</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>177</td>
<td>152</td>
<td>124</td>
</tr>
</tbody>
</table>

p <- c(1/3, 1/3, 1/3)  # equivalent to rep(1/3, 3)
chisq.test(observed, p=p)

Chi-squared test for given probabilities
data:  observed
X-squared = 9.31, df = 2, p-value = 0.009508

total <- sum(observed); total
[1] 453
expected <- total*p; expected
[1] 151 151 151

We can also calculate the $\chi^2$ statistic manually, as a function of observed and expected values.

chisq <- sum((observed - expected)^2/(expected)); chisq
[1] 9.31
1 - pchisq(chisq, df=2)
[1] 0.00951

Alternatively, the mosaic package provides a version of chisq.test() with more verbose output.

Caution!
In addition to the format option, there is an option margins to include marginal totals in the table. The default in tally() is margins=FALSE. Try it out!

Teaching Tip
We don’t have students do much if any manual calculations in our courses.

Teaching Tip
The pchisq() function calculates the probability that a $\chi^2$ random variable with df() degrees is freedom is less than or equal to a given value. Here we calculate the complement to find the area to the right of the observed Chi-square statistic.
xchisq.test(observed, p=p)

Chi-squared test for given probabilities

data: x
X-squared = 9.31, df = 2, p-value = 0.009508

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>177</td>
<td>152</td>
<td>124</td>
</tr>
<tr>
<td>(151.00)</td>
<td>(151.00)</td>
<td>(151.00)</td>
</tr>
<tr>
<td>[4.4768]</td>
<td>[0.0066]</td>
<td>[4.8278]</td>
</tr>
<tr>
<td>&lt; 2.116&gt;</td>
<td>&lt; 0.081&gt;</td>
<td>&lt;-2.197&gt;</td>
</tr>
</tbody>
</table>

key:
observed
(expected)
[contribution to X-squared]
<residual>

# clean up variables no longer needed
rm(observed, p, total, chisq)

x in xchisq.test() stands for eXtra.

Teaching Tip
Objects in the workspace are listed in the Environment tab in RStudio. If you want to clean up that listing, remove objects that are no longer needed with rm().
4
Two Quantitative Variables

4.1 Scatterplots

We always encourage students to start any analysis by graphing their data. Here we augment a scatterplot of the CESD (a measure of depressive symptoms, higher scores indicate more symptoms) and the MCS (mental component score from the SF-36, where higher scores indicate better functioning) for female subjects with a lowess (locally weighted scatterplot smoother) line, using a circle as the plotting character and slightly thicker line.

```r
females <- filter(HELPct, female==1)
xyplot(cesd ~ mcs, type=c("p","smooth"), pch=1, cex=0.6,
 lwd=3, data=females)
```

The lowess line can help to assess linearity of a relationship. This is added by specifying both points (using ‘p’) and a lowess smoother.
It’s straightforward to plot something besides a character in a scatterplot. In this example, the USArrests can be used to plot the association between murder and assault rates, with the state name displayed. This requires a panel function to be written.

```r
panel.labels <- function(x, y, labels='x',...) {
 panel.text(x, y, labels, cex=0.4, ...)
}
xyplot(Murder ~ Assault, panel=panel.labels,
 labels=rownames(USArrests), data=USArrests)
```

4.2 Correlation

Correlations can be calculated for a pair of variables, or for a matrix of variables.

```r
cor(cesd, mcs, data=females)

[1] -0.674
```

```r
smallHELP <- select(females, cesd, mcs, pcs)
cor(smallHELP)

 cesd mcs pcs
cesd 1.000 -0.674 -0.369
mcs -0.674 1.000 0.266
pcs -0.369 0.266 1.000
```

By default, Pearson correlations are provided. Other variants (e.g., Spearman) can be specified using the method option.
cor(cesd, mcs, method="spearman", data=females)

[1] -0.666

4.3 Pairs plots

A pairs plot (scatterplot matrix) can be calculated for each pair of a set of variables.

splom(smallHELP)

Scatter Plot Matrix

4.4 Simple linear regression

Linear regression models are described in detail in Start Modeling with R. These use the same formula interface introduced previously for numerical and graphical summaries to specify the outcome and predictors. Here we consider fitting the model cesd ~ mcs.

cesdmodel <- lm(cesd ~ mcs, data=females)
coef(cesdmodel)

(Intercept) mcs
57.349 -0.707

Teaching Tip
The GGally package has support for more elaborate pairs plots.

We tend to introduce linear regression early in our courses, as a purely descriptive technique.
To simplify the output, we turn off the option to display significance stars.

```r
options(show.signif.stars=FALSE)
coef(cesdmodel)

(Intercept) mcs
 57.349 -0.707

summary(cesdmodel)

Call:
 lm(formula = cesd ~ mcs, data = females)

Residuals:
 Min 1Q Median 3Q Max
-23.202 -6.384 0.055 7.250 22.877

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 57.349 2.380 24.09 < 2e-16
 mcs -0.707 0.076 -9.34 1.8e-15

Residual standard error: 9.66 on 105 degrees of freedom
Multiple R-squared: 0.454, Adjusted R-squared: 0.449
F-statistic: 87.3 on 1 and 105 DF, p-value: 1.81e-15

confint(cesdmodel)

 2.5 % 97.5 %
(Intercept) 52.628 62.069
 mcs -0.857 -0.557

rsquared(cesdmodel)
[1] 0.454

It's important to pick good names for modeling objects. Here the output of `lm()` is saved as `cesdmodel`, which denotes that it is a regression model of depressive symptom scores.

class(cesdmodel)

[1] "lm"

The return value from \texttt{lm()} is a linear model object. A number of functions can operate on these objects, as seen previously with \texttt{coef()}. The function \texttt{residuals()} returns a vector of the residuals.

\begin{verbatim}
histogram(~ residuals(cesdmodel), density=TRUE)
\end{verbatim}

\begin{verbatim}
qqmath(~ resid(cesdmodel))
\end{verbatim}

\begin{verbatim}
xyplot(resid(cesdmodel) ~ fitted(cesdmodel), type=c("p", "smooth", "r"),
alpha=0.5, cex=0.3, pch=20)
\end{verbatim}

The function \texttt{residuals()} can be abbreviated \texttt{resid()}. Another useful function is \texttt{fitted()}, which returns a vector of predicted values.
The `mplot()` function can facilitate creating a variety of useful plots, including the same residuals vs. fitted scatterplots, by specifying the `which=1` option.

```
mplot(cesdmodel, which=1)
```

Residuals vs Fitted

It can also generate a normal quantile-quantile plot (which=2),

```
mplot(cesdmodel, which=2)
```

Normal Q–Q
scale vs. location,

\texttt{mplot(cesdmodel, which=3)}

![Scale-Location](image)

Cook’s distance by observation number,

\texttt{mplot(cesdmodel, which=4)}

![Cook's Distance](image)
residuals vs. leverage

\[\text{mplot}(\text{cesdmodel, which}=5) \]

Residuals vs Leverage

![Residuals vs Leverage](image)

Cook’s distance vs. leverage.

\[\text{mplot}(\text{cesdmodel, which}=6) \]

Cook’s dist vs Leverage

![Cook's dist vs Leverage](image)

Prediction bands can be added to a plot using the \text{panel.lmbands()} function.

\[\text{xyplot}(\text{cesd} \sim \text{mcs, panel=panel.lmbands, cex=0.2, band.lwd=2, data=HELPct}) \]

![Prediction bands](image)
5
Two Categorical Variables

5.1 Cross classification tables

Cross classification (two-way or R by C) tables can be constructed for two (or more) categorical variables. Here we consider the contingency table for homeless status (homeless one or more nights in the past 6 months or housed) and sex.

`tally(~ homeless + sex, margins=FALSE, data=HELPct)`

<table>
<thead>
<tr>
<th>sex</th>
<th>homeless</th>
<th>housed</th>
</tr>
</thead>
<tbody>
<tr>
<td>homeless</td>
<td>40</td>
<td>67</td>
</tr>
<tr>
<td>housed</td>
<td>169</td>
<td>177</td>
</tr>
</tbody>
</table>

We can also calculate column percentages:

`tally(~ sex | homeless, margins=TRUE, format="percent", data=HELPct)`

<table>
<thead>
<tr>
<th>homeless</th>
<th>sex</th>
<th>homeless</th>
<th>housed</th>
</tr>
</thead>
<tbody>
<tr>
<td>female</td>
<td>19.1</td>
<td>27.5</td>
<td></td>
</tr>
<tr>
<td>male</td>
<td>80.9</td>
<td>72.5</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
</tr>
</tbody>
</table>

We can calculate the odds ratio directly from the table:

```R
OR <- (40/169)/(67/177); OR
```

```
[1] 0.625
```
The mosaic package has a function which will calculate odds ratios:

```r
oddsRatio(tally(~ (homeless=="housed") + sex, margins=FALSE, data=HELPrct))
```

[1] 0.625

Graphical summaries of cross classification tables may be helpful in visualizing associations. Mosaic plots are one example, where the total area (all observations) is proportional to one. Here we see that males tend to be over-represented amongst the homeless subjects (as represented by the horizontal line which is higher for the homeless rather than the housed).

```r
gt <- tally(~ homeless + sex, margins=FALSE, data=HELPrct)
mosaicplot(gt)
```

The jury is still out regarding the utility of mosaic plots, relative to the low data to ink ratio. But we have found them to be helpful to reinforce understanding of a two way contingency table.

The mosaic() function in the vcd package also makes mosaic plots.
5.2 Chi-squared tests

\begin{verbatim}
chisq.test(tally(~ homeless + sex, margins=FALSE, data=HELPrct), correct=FALSE)
\end{verbatim}

Pearson's Chi-squared test

data: tally(~homeless + sex, margins = FALSE, data = HELPrct)
X-squared = 4.32, df = 1, p-value = 0.03767

There is a statistically significant association found: it is unlikely that we would observe an association this
strong if homeless status and sex were independent in the
population.

When a student finds a significant association, it’s im-
portant for them to be able to interpret this in the context
of the problem. The \texttt{xchisq.test()} function provides
additional details (observed, expected, contribution to
statistic, and residual) to help with this process.

\begin{verbatim}
xchisq.test(tally(~homeless + sex, margins=FALSE, data=HELPrct), correct=FALSE)
\end{verbatim}

Pearson's Chi-squared test

data: x
X-squared = 4.32, df = 1, p-value = 0.03767

\begin{verbatim}
40 169
(49.37) (159.63)
[1.78] [0.55]
<-1.33> < 0.74>
\end{verbatim}

\begin{verbatim}
67 177
(57.63) (186.37)
[1.52] [0.47]
< 1.23> <-0.69>
\end{verbatim}

key:
observed
(expected)
We observe that there are fewer homeless women, and more homeless men that would be expected.

5.3 Fisher’s exact test

An exact test can also be calculated. This is computationally straightforward for 2 by 2 tables. Options to help constrain the size of the problem for larger tables exist (see ?fisher.test).

```r
fisher.test(tally(~homeless + sex, margins=FALSE, data=HELPrct))
```

Fisher’s Exact Test for Count Data

data: tally(~homeless + sex, margins = FALSE, data = HELPrct)
p-value = 0.0456 alternative hypothesis: true odds ratio is not equal to 1 95 percent confidence interval: 0.389 0.997 sample estimates: odds ratio 0.626

Digging Deeper
Note the different estimate of the odds ratio from that seen in section 5.1. The `fisher.test()` function uses a different estimator (and different interval based on the profile likelihood).
6
Quantitative Response, Categorical Predictor

6.1 A dichotomous predictor: numerical and graphical summaries

Here we will compare the distributions of CESD scores by sex.

The \texttt{mean()} function can be used to calculate the mean CESD score separately for males and females.

\begin{verbatim}
mean(cesd ~ sex, data=HELPrct)
\end{verbatim}

\begin{verbatim}
female male
 36.9 31.6
\end{verbatim}

The \texttt{favstats()} function can provide more statistics by group.

\begin{verbatim}
favstats(cesd ~ sex, data=HELPrct)
\end{verbatim}

\begin{verbatim}
 .group min Q1 median Q3 max mean sd n missing
 1 female 3 29 38.0 46.5 60 36.9 13.0 107 0
 2 male 1 24 32.5 40.0 58 31.6 12.1 346 0
\end{verbatim}

Boxplots are a particularly helpful graphical display to compare distributions. The \texttt{bwplot()} function can be used to display the boxplots for the CESD scores separately by sex. We see from both the numerical and graphical summaries that women tend to have slightly higher CESD scores than men.

Although we usually put explanatory variables along the horizontal axis, page layout sometimes makes the other orientation preferable for these plots.
When sample sizes are small, there is no reason to summarize with a boxplot since `xyplot()` can handle categorical predictors. Even with 10–20 observations in a group, a scatter plot is often quite readable. Setting the alpha level helps detect multiple observations with the same value.

```
xyplot(sex ~ length, KidsFeet, alpha=.6, cex=1.4)
```

One of us once saw a biologist proudly present side-by-side boxplots. Thinking a major victory had been won, he naively asked how many observations were in each group. “Four,” replied the biologist.

6.2 A dichotomous predictor: two-sample t

The Student’s two sample t-test can be run without (default) or with an equal variance assumption.

```
t.test(cesd ~ sex, var.equal=FALSE, data=HELPct)
```

```
Welch Two Sample t-test

data:  cesd by sex
t = 3.73, df = 167, p-value = 0.0002587
alternative hypothesis: true difference in means is not equal to 0
```
95 percent confidence interval:
 2.49 8.09
sample estimates:
mean in group female mean in group male
 36.9 31.6

We see that there is a statistically significant difference between the two groups.

We can repeat using the equal variance assumption.

\texttt{t.test(cesd ~ sex, var.equal=TRUE, data=HELPrc)}

Two Sample t-test

data: cesd by sex
t = 3.88, df = 451, p-value = 0.00012
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 2.61 7.97
sample estimates:
mean in group female mean in group male
 36.9 31.6

The groups can also be compared using the \texttt{lm()} function (also with an equal variance assumption).

\texttt{summary(lm(cesd ~ sex, data=HELPrc))}

Call:
\texttt{lm(formula = cesd ~ sex, data = HELPrct)}

Residuals:
 Min 1Q Median 3Q Max
-33.89 -7.89 1.11 8.40 26.40

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 36.89 1.19 30.96 < 2e-16
sexmale -5.29 1.36 -3.88 0.00012

Residual standard error: 12.3 on 451 degrees of freedom
Multiple R-squared: 0.0323, Adjusted R-squared: 0.0302
F-statistic: 15.1 on 1 and 451 DF, p-value: 0.00012
6.3 Non-parametric 2 group tests

The same conclusion is reached using a non-parametric (Wilcoxon rank sum) test.

```r
wilcox.test(cesd ~ sex, data=HELPrct)
```

Wilcoxon rank sum test with continuity correction

```
data:  cesd by sex
W = 23105, p-value = 0.0001033
alternative hypothesis: true location shift is not equal to 0
```

6.4 Permutation test

Here we extend the methods introduced in section 2.6 to undertake a two-sided test comparing the ages at baseline by gender. First we calculate the observed difference in means:

```r
mean(age ~ sex, data=HELPrct)
```

```
female  male
  36.3  35.5
```

```r
test.stat <- diffmean(age ~ sex, data=HELPrct)
test.stat
diffmean
 -0.784
```

We can calculate the same statistic after shuffling the group labels:

```r
do(1) * diffmean(age ~ shuffle(sex), data=HELPrct)
diffmean
 1  -1.32
```

```r
do(1) * diffmean(age ~ shuffle(sex), data=HELPrct)
```
\begin{verbatim}
diffmean
1 0.966

do(3) * diffmean(age ~ shuffle(sex), data=HELPrc)

diffmean
1 0.280
2 -0.246
3 -0.148

rtest.stats <- do(500) * diffmean(age ~ shuffle(sex),
data=HELPrc)

favstats(~ diffmean, data=rtest.stats)

<table>
<thead>
<tr>
<th></th>
<th>min</th>
<th>Q1</th>
<th>median</th>
<th>Q3</th>
<th>max</th>
<th>mean</th>
<th>sd</th>
<th>n</th>
<th>missing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-3.26</td>
<td>-0.604</td>
<td>-0.0622</td>
<td>0.586</td>
<td>2.41</td>
<td>-0.0173</td>
<td>0.853</td>
<td>500</td>
<td>0</td>
</tr>
</tbody>
</table>

histogram(~ diffmean, n=40, xlim=c(-6, 6),
groups=diffmean >= test.stat, pch=16, cex=.8,
data=rtest.stats)
ladd(panel.abline(v=test.stat, lwd=3, col="red"))

Here we don’t see much evidence to contradict the null hypothesis that men and women have the same mean age in the population.

6.5 One-way ANOVA

Earlier comparisons were between two groups. We can also consider testing differences between three or more groups using one-way ANOVA. Here we compare CESD
\end{verbatim}
scores by primary substance of abuse (heroin, cocaine, or alcohol).

\texttt{bwplot(cesd ~ substance, data=HELPrct)}

![Box plot](image)

\texttt{mean(cesd ~ substance, data=HELPrct)}

alcohol cocaine heroin
34.4 29.4 34.9

\texttt{anovamod <- aov(cesd ~ substance, data=HELPrct)}

\texttt{summary(anovamod)}

<table>
<thead>
<tr>
<th>Df</th>
<th>Sum Sq</th>
<th>Mean Sq</th>
<th>F value</th>
<th>Pr(>F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>substance</td>
<td>2</td>
<td>2704</td>
<td>1352</td>
<td>8.94</td>
</tr>
<tr>
<td>Residuals</td>
<td>450</td>
<td>68084</td>
<td>151</td>
<td></td>
</tr>
</tbody>
</table>

While still high (scores of 16 or more are generally considered to be “severe” symptoms), the cocaine-involved group tend to have lower scores than those whose primary substances are alcohol or heroin.

\texttt{modintercept <- lm(cesd ~ 1, data=HELPrct)}

\texttt{modsubstance <- lm(cesd ~ substance, data=HELPrct)}

The \texttt{anova()} command can summarize models.

\texttt{anova(modsubstance)}

\texttt{Analysis of Variance Table}

\texttt{Response: cesd}

<table>
<thead>
<tr>
<th>Df</th>
<th>Sum Sq</th>
<th>Mean Sq</th>
<th>F value</th>
<th>Pr(>F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>substance</td>
<td>2</td>
<td>2704</td>
<td>1352</td>
<td>8.94</td>
</tr>
<tr>
<td>Residuals</td>
<td>450</td>
<td>68084</td>
<td>151</td>
<td></td>
</tr>
</tbody>
</table>
It can also be used to formally compare two (nested) models.

```r
anova(modintercept, modsubstance)
```

Analysis of Variance Table

<table>
<thead>
<tr>
<th>Model</th>
<th>Res.Df</th>
<th>RSS</th>
<th>Df</th>
<th>Sum of Sq</th>
<th>F</th>
<th>Pr(>F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>cesd ~ 1</td>
<td>452</td>
<td>70788</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cesd ~ substance</td>
<td>450</td>
<td>68084</td>
<td>2</td>
<td>2704</td>
<td>8.94</td>
<td>0.00016</td>
</tr>
</tbody>
</table>

6.6 Tukey’s Honest Significant Differences

There are a variety of multiple comparison procedures that can be used after fitting an ANOVA model. One of these is Tukey’s Honest Significant Differences (HSD). Other options are available within the multcomp package.

```r
favstats(cesd ~ substance, data=HELPrct)
```

```
.group  min  Q1 median Q3 max  mean    sd  n missing
1  alcohol  4 26  36  42  58 34.4  12.1 177     0
2  cocaine  1 19  30  39  60 29.4  13.4 152     0
3  heroin  4 28  35  43  56 34.9  11.2 124     0
```

```r
HELP <- mutate(HELP, subgrp = factor(substance, levels=c("alcohol", "cocaine", "heroin"), labels = c("A", "C", "H")))
```

```r
mod <- lm(cesd ~ subgrp, data=HELP)
HELPHSD <- TukeyHSD(mod, "subgrp")
HELPHSD
```

Tukey multiple comparisons of means
95% family-wise confidence level

Fit: aov(formula = x)
Again, we see that the cocaine group has significantly lower CESD scores than either of the other two groups.
7

Categorical Response, Quantitative Predictor

7.1 Logistic regression

Logistic regression is available using the `glm()` function, which supports a variety of link functions and distributional forms for generalized linear models, including logistic regression.

```r
logitmod <- glm(homeless ~ age + female, family=binomial, data=HELPrct)
summary(logitmod)
```

Call:
`glm(formula = homeless ~ age + female, family = binomial, data = HELPrct)`

Deviance Residuals:
```
       Min      1Q  Median      3Q     Max
-1.5470  -1.2020   0.9180   1.1229   1.3602
```

Coefficients:
```
Estimate Std. Error z value Pr(>|z|)
(Intercept)    0.8926     0.4537   1.970   0.049
age           -0.0239     0.0124  -1.922   0.055
female         0.4920     0.2282   2.160   0.031
```

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 625.28 on 452 degrees of freedom
Residual deviance: 617.19 on 450 degrees of freedom
AIC: 623.2

Number of Fisher Scoring iterations: 4

The `glm()` function has argument `family`, which can take an option `link`. The `logit` link is the default link for the binomial family, so we don’t need to specify it here. The more verbose usage would be `family=binomial(link=logit).`
exp(coef(logitmod))

(Intercept) age female
 2.442 0.976 1.636

exp(confint(logitmod))

Waiting for profiling to be done...

 2.5 % 97.5 %
(Intercept) 1.008 5.99
 age 0.953 1.00
female 1.050 2.57

We can compare two models (for multiple degree of
freedom tests). For example, we might be interested in
the association of homeless status and age for each of the
three substance groups.

mymodsubage <- glm((homeless=="homeless") ~ age + substance,
 family=binomial, data=HELP pct)
mymodage <- glm((homeless=="homeless") ~ age, family=binomial,
 data=HELP pct)
summary(mymodsubage)

Call:
glm(formula = (homeless == "homeless") ~ age + substance, family = binomial,
 data = HELP pct)

Deviance Residuals:
 Min 1Q Median 3Q Max
-1.409 -1.001 -0.947 1.086 1.458

Coefficients: Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.0509 0.5164 -0.10 0.9215
age 0.0100 0.0129 0.77 0.4399
substancecocaine -0.7496 0.2303 -3.25 0.0011
substanceheroin -0.7780 0.2469 -3.15 0.0016

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 625.28 on 452 degrees of freedom
Residual deviance: 607.62 on 449 degrees of freedom
AIC: 615.6
exp(coef(mymodsubage))

<table>
<thead>
<tr>
<th></th>
<th>age</th>
<th>substancecocaine</th>
<th>substanceheroin</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>0.950</td>
<td>1.010</td>
<td>0.473</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.459</td>
</tr>
</tbody>
</table>

anova(mymodage, mymodsubage, test="Chisq")

Analysis of Deviance Table

Model 1: (homeless == "homeless") ~ age
Model 2: (homeless == "homeless") ~ age + substance

<table>
<thead>
<tr>
<th>Resid. Df</th>
<th>Resid. Dev</th>
<th>Df</th>
<th>Deviance</th>
<th>Pr(>Chi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>451</td>
<td></td>
<td>622</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>449</td>
<td>2</td>
<td>14.3</td>
<td>0.00078</td>
</tr>
</tbody>
</table>

We observe that the cocaine and heroin groups are significantly less likely to be homeless than alcohol involved subjects, after controlling for age. (A similar result is seen when considering just homeless status and substance.)

tally(~ homeless | substance, format="percent", margins=TRUE, data=HELPrct)

<table>
<thead>
<tr>
<th>substance</th>
<th>homeless</th>
<th>alcohol</th>
<th>cocaine</th>
<th>heroin</th>
</tr>
</thead>
<tbody>
<tr>
<td>homeless</td>
<td>58.2</td>
<td>38.8</td>
<td>37.9</td>
<td></td>
</tr>
<tr>
<td>housed</td>
<td>41.8</td>
<td>61.2</td>
<td>62.1</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
</tr>
</tbody>
</table>
8 Survival Time Outcomes

Extensive support for survival (time to event) analysis is available within the `survival` package.

8.1 Kaplan-Meier plot

```r
require(survival)
fit <- survfit(Surv(dayslink, linkstatus) ~ treat,
               data=HELPct)
plot(fit, conf.int=FALSE, lty=1:2, lwd=2,
     xlab="time (in days)", ylab="P(not linked)"
legend(20, 0.4, legend=c("Control", "Treatment"),
       lty=c(1,2), lwd=2)
title("Product-Limit Survival Estimates (time to linkage)"
```
We see that the subjects in the treatment (Health Evaluation and Linkage to Primary Care clinic) were significantly more likely to link to primary care (less likely to “survive”) than the control (usual care) group.

8.2 Cox proportional hazards model

```r
require(survival)
summary(coxph(Surv(dayslink, linkstatus) ~ age + substance,
data=HELPrct))
```

Call:
coxph(formula = Surv(dayslink, linkstatus) ~ age + substance,
data = HELPrct)

n= 431, number of events= 163
(22 observations deleted due to missingness)

| | coef | exp(coef) | se(coef) | z | Pr(>|z|) |
|------|------|-----------|----------|-------|----------|
| age | 0.00893 | 1.00897 | 0.01026 | 0.87 | 0.38 |
| substancecocaine | 0.18045 | 1.19775 | 0.18100 | 1.00 | 0.32 |
| substanceheroin | -0.28970 | 0.74849 | 0.21725 | -1.33 | 0.18 |

| | coef | exp(coef) | se(coef) | z | Pr(>|z|) |
|------|------|-----------|----------|-------|----------|
| age | 1.009 | 0.991 | 0.989 | 1.03 | |
| substancecocaine | 1.198 | 0.835 | 0.840 | 1.71 | |
| substanceheroin | 0.748 | 1.336 | 0.489 | 1.15 | |

Concordance= 0.55 (se = 0.023)
Rsquare= 0.014 (max possible= 0.988)
Likelihood ratio test= 6.11 on 3 df, p=0.106
Wald test = 5.84 on 3 df, p=0.12
Score (logrank) test = 5.91 on 3 df, p=0.116

Neither age or substance group was significantly associated with linkage to primary care.
More than Two Variables

9.1 Two (or more) way ANOVA

We can fit a two (or more) way ANOVA model, without or with an interaction, using the same modeling syntax.

\[
\text{median}(\text{cesd} \sim \text{substance} \mid \text{sex}, \text{data=HELPrct})
\]

<table>
<thead>
<tr>
<th></th>
<th>alcohol.female</th>
<th>cocaine.female</th>
<th>heroin.female</th>
<th>alcohol.male</th>
</tr>
</thead>
<tbody>
<tr>
<td>female</td>
<td>40.0</td>
<td>35.0</td>
<td>39.0</td>
<td>33.0</td>
</tr>
<tr>
<td>male</td>
<td>29.0</td>
<td>34.5</td>
<td>38.0</td>
<td>32.5</td>
</tr>
</tbody>
</table>

\[
\text{bwplot}(\text{cesd} \sim \text{subgrp} \mid \text{sex}, \text{data=HELPrct})
\]

\[
\text{summary}(\text{aov}(\text{cesd} \sim \text{substance} + \text{sex}, \text{data=HELPrct}))
\]

<table>
<thead>
<tr>
<th></th>
<th>Df</th>
<th>Sum Sq</th>
<th>Mean Sq</th>
<th>F value</th>
<th>Pr(>F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>substance</td>
<td>2</td>
<td>2704</td>
<td>1352</td>
<td>9.27</td>
<td>0.0011</td>
</tr>
<tr>
<td>sex</td>
<td>1</td>
<td>2569</td>
<td>2569</td>
<td>17.61</td>
<td>3.3e-05</td>
</tr>
<tr>
<td>Residuals</td>
<td>449</td>
<td>65515</td>
<td>146</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
summary(aov(cesd ~ substance * sex, data=HELPrct))

<table>
<thead>
<tr>
<th>Df</th>
<th>Sum Sq</th>
<th>Mean Sq</th>
<th>F value</th>
<th>Pr(>F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2704</td>
<td>1352</td>
<td>9.25</td>
<td>0.00012</td>
</tr>
<tr>
<td>1</td>
<td>2569</td>
<td>2569</td>
<td>17.57</td>
<td>3.3e-05</td>
</tr>
<tr>
<td>2</td>
<td>146</td>
<td>73</td>
<td>0.50</td>
<td>0.60752</td>
</tr>
<tr>
<td>447</td>
<td>65369</td>
<td>146</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

There's little evidence for the interaction, though there are statistically significant main effects terms for substance group and sex.

xyplot(cesd ~ substance, groups=sex,
 auto.key=list(columns=2, lines=TRUE, points=FALSE), type='a',
 data=HELPrct)

9.2 Multiple regression

Multiple regression is a logical extension of the prior commands, where additional predictors are added. This allows students to start to try to disentangle multivariate relationships.

Here we consider a model (parallel slopes) for depressive symptoms as a function of Mental Component Score (MCS), age (in years) and sex of the subject.
```r
lmnointeract <- lm(cesd ~ mcs + age + sex, data=HELPrct)
summary(lmnointeract)

Call:
lm(formula = cesd ~ mcs + age + sex, data = HELPrct)

Residuals:
     Min       1Q   Median       3Q      Max
-26.924   -6.363    0.403    6.453   25.217

Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept)   53.8303     2.3617   22.79  <2e-16
mcs            -0.6548     0.0336  -19.50  <2e-16
age             0.0553     0.0556    1.00  0.3200
sexmale        -2.8993     1.0137   -2.86  0.0044

Residual standard error: 9.09 on 449 degrees of freedom
Multiple R-squared: 0.476, Adjusted R-squared: 0.473
F-statistic: 136 on 3 and 449 DF,  p-value: <2e-16

We can also fit a model that includes an interaction between MCS and sex.

lminteract <- lm(cesd ~ mcs + age + sex + mcs:sex, data=HELPrct)
summary(lminteract)

Call:
lm(formula = cesd ~ mcs + age + sex + mcs:sex, data = HELPrct)

Residuals:
     Min       1Q   Median       3Q      Max
-26.667   -6.406    0.289    6.133   24.832

Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept)   55.3906     2.9903   18.52  <2e-16
mcs           -0.7082     0.0712  -9.95  <2e-16
age            0.0549     0.0556    1.00  0.324
sexmale        -4.9421     2.6055  -1.90   0.058
mcs:sexmale    0.0687     0.0807    0.85   0.395

Residual standard error: 9.09 on 448 degrees of freedom
Multiple R-squared: 0.477, Adjusted R-squared: 0.472
```
F-statistic: 102 on 4 and 448 DF, p-value: <2e-16

anova(lminteract)

Analysis of Variance Table

Response: cesd

<table>
<thead>
<tr>
<th>Df</th>
<th>Sum Sq</th>
<th>Mean Sq</th>
<th>F value</th>
<th>Pr(>F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>mcs</td>
<td>1</td>
<td>32918</td>
<td>32918</td>
<td>398.27</td>
</tr>
<tr>
<td>age</td>
<td>1</td>
<td>107</td>
<td>107</td>
<td>1.29</td>
</tr>
<tr>
<td>sex</td>
<td>1</td>
<td>676</td>
<td>676</td>
<td>8.18</td>
</tr>
<tr>
<td>mcs:sex</td>
<td>1</td>
<td>60</td>
<td>60</td>
<td>0.72</td>
</tr>
<tr>
<td>Residuals</td>
<td>448</td>
<td>37028</td>
<td>83</td>
<td></td>
</tr>
</tbody>
</table>

anova(lmnointeract, lminteract)

Analysis of Variance Table

Model 1: cesd ~ mcs + age + sex
Model 2: cesd ~ mcs + age + sex + mcs:sex

<table>
<thead>
<tr>
<th>Res.Df</th>
<th>RSS</th>
<th>Df</th>
<th>Sum of Sq</th>
<th>F</th>
<th>Pr(>F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>449</td>
<td>37088</td>
<td>1</td>
<td>59.9</td>
<td>0.72</td>
</tr>
<tr>
<td>2</td>
<td>448</td>
<td>37028</td>
<td>1</td>
<td>59.9</td>
<td>0.72</td>
</tr>
</tbody>
</table>

There is little evidence for an interaction effect, so we drop this from the model.

9.2.1 Visualizing the results from the regression

The `makeFun()` and `plotFun()` functions from the `mosaic` package can be used to display the results from a regression model. For this example, we might display the predicted CESD values for a range of MCS values for 36 year old male and female subject from the parallel slopes (no interaction) model.

```{r}
lmfunction <- makeFun(lmnointeract)
```

We can now plot this function for male and female subjects over a range of MCS (mental component score) values, along with the observed data for 36 year olds.
9.2.2 Coefficient plots

It is sometimes useful to display a plot of the coefficients for a multiple regression model (along with their associated confidence intervals).

mplot(lmnointeract, rows=-1, which=7)
9.2.3 Residual diagnostics

It’s straightforward to undertake residual diagnostics for this model. We begin by adding the fitted values and residuals to the dataset.

```r
HELPct <- mutate(HELPct, residuals = resid(lmnointeract),
               pred = fitted(lmnointeract))
```

```r
histogram(~ residuals, xlab="residuals", fit="normal",
data=HELPct)
```

We can identify the subset of observations with extremely large residuals.

```r
filter(HELPct, abs(residuals) > 25)
```

```r
age anysubstatus anysub cesd d1 daysanysub dayslink drugrisk e2b
1 43 0 no 16 15 191 414 0 NA
2 27 NA <NA> 40 1 NA 365 3 2
female sex glb homeless i1 i2 id indtot linkstatus link mcs pcs
1 0 male no homeless 24 36 44 41 0 no 15.9 71.4
2 0 male no homeless 18 18 420 37 0 no 57.5 37.7
pss_fr racegrp satreat sexrisk substance treat subgrp residuals
1 3 white no 7 cocaine yes C -26.9
2 8 white yes 3 heroin no H 25.2
```

```
pred
1 42.9
2 14.8
```
The assumptions of normality, linearity and homoscedasticity seem reasonable here.
10

Probability Distributions & Random Variables

R can calculate quantities related to probability distributions of all types. It is straightforward to generate random samples from these distributions, which can be used for simulation and exploration.

```r
xpnorm(1.96, mean=0, sd=1)  # P(Z < 1.96)
```

If $X \sim N(0,1)$, then

$P(X \leq 1.96) = P(Z \leq 1.96) = 0.975$

$P(X > 1.96) = P(Z > 1.96) = 0.025$

[1] 0.975
The following table displays the basenames for probability distributions available within base R. These functions can be prefixed by `d` to find the density function for the distribution, `p` to find the cumulative distribution function, `q` to find quantiles, and `r` to generate random draws. For example, to find the density function of an exponential random variable, use the command `dexp()`. The `qDIST()` function is the inverse of the `pDIST()` function, for a given basename `DIST`.

<table>
<thead>
<tr>
<th>Distribution</th>
<th>Basename</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beta</td>
<td>beta</td>
</tr>
<tr>
<td>binomial</td>
<td>binom</td>
</tr>
<tr>
<td>Cauchy</td>
<td>cauchy</td>
</tr>
<tr>
<td>chi-square</td>
<td>chisq</td>
</tr>
<tr>
<td>exponential</td>
<td>exp</td>
</tr>
<tr>
<td>F</td>
<td>f</td>
</tr>
<tr>
<td>gamma</td>
<td>gamma</td>
</tr>
<tr>
<td>geometric</td>
<td>geom</td>
</tr>
<tr>
<td>hypergeometric</td>
<td>hyper</td>
</tr>
<tr>
<td>logistic</td>
<td>logis</td>
</tr>
<tr>
<td>lognormal</td>
<td>lnorm</td>
</tr>
<tr>
<td>negative binomial</td>
<td>nbinom</td>
</tr>
<tr>
<td>normal</td>
<td>norm</td>
</tr>
<tr>
<td>Poisson</td>
<td>pois</td>
</tr>
<tr>
<td>Student’s t</td>
<td>t</td>
</tr>
<tr>
<td>Uniform</td>
<td>unif</td>
</tr>
<tr>
<td>Weibull</td>
<td>weibull</td>
</tr>
</tbody>
</table>

The `plotDist()` can be used to display distributions in a variety of ways.

Digging Deeper

The `fitdistr()` within the `MASS` package facilitates estimation of parameters for many distributions.
plotDist('norm', mean=100, sd=10, kind='cdf')

plotDist('exp', kind='histogram', xlab='x')

plotDist('binom', size=25, prob=0.25, xlim=c(-1,26))
11

Power Calculations

While not generally a major topic in introductory courses, power and sample size calculations help to reinforce key ideas in statistics. In this section, we will explore how R can be used to undertake power calculations using analytic approaches. We consider a simple problem with two tests (t-test and sign test) of a one-sided comparison.

We will compare the power of the sign test and the power of the test based on normal theory (one sample one sided t-test) assuming that \(\sigma \) is known. Let \(X_1, ..., X_{25} \) be i.i.d. \(N(0.3, 1) \) (this is the alternate that we wish to calculate power for). Consider testing the null hypothesis \(H_0 : \mu = 0 \) versus \(H_A : \mu > 0 \) at significance level \(\alpha = .05 \).

11.1 Sign test

We start by calculating the Type I error rate for the sign test. Here we want to reject when the number of positive values is large. Under the null hypothesis, this is distributed as a Binomial random variable with \(n=25 \) trials and \(p=0.5 \) probability of being a positive value. Let’s consider values between 15 and 19.

```r
xvals <- 15:19
probs <- 1 - pbinom(xvals, size=25, prob=0.5)
cbind(xvals, probs)
```

<table>
<thead>
<tr>
<th>xvals</th>
<th>probs</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>0.11476</td>
</tr>
<tr>
<td>16</td>
<td>0.05388</td>
</tr>
<tr>
<td>17</td>
<td>0.02164</td>
</tr>
<tr>
<td>18</td>
<td>0.00732</td>
</tr>
<tr>
<td>19</td>
<td>0.00204</td>
</tr>
</tbody>
</table>
So we see that if we decide to reject when the number of positive values is 17 or larger, we will have an \(\alpha \) level of 0.054, which is near the nominal value in the problem.

We calculate the power of the sign test as follows. The probability that \(X_i > 0 \), given that \(H_A \) is true is given by:

\[
1 - \text{pnorm}(0, \text{mean}=0.3, \text{sd}=1)
\]

[1] 0.618

We can view this graphically using the command:

\[
\text{xpnorm}(0, \text{mean}=0.3, \text{sd}=1, \text{lower.tail}=\text{FALSE})
\]

If \(X \sim \text{N}(0.3, 1) \), then

\[
\begin{align*}
P(X \leq 0) &= P(Z \leq -0.3) = 0.3821 \\
P(X > 0) &= P(Z > -0.3) = 0.6179
\end{align*}
\]

[1] 0.618

The power under the alternative is equal to the probability of getting 17 or more positive values, given that \(p = 0.6179 \):

\[
1 - \text{pbinom}(16, \text{size}=25, \text{prob}=0.6179)
\]

[1] 0.338

The power is modest at best.
11.2 T-test

We next calculate the power of the test based on normal theory. To keep the comparison fair, we will set our α level equal to 0.05388.

```r
alpha <- 1 - pbinom(16, size=25, prob=0.5); alpha
[1] 0.0539
```

First we find the rejection region.

```r
n <- 25; sigma <- 1 # given
stderr <- sigma/sqrt(n)
zstar <- qnorm(1-alpha, mean=0, sd=1)
zstar
[1] 1.61
```

```r
crit <- zstar*stderr
crit
[1] 0.322
```

Therefore, we reject for observed means greater than 0.322.

To calculate the power of this one-sided test we find the probability under the alternative hypothesis to the right of this cutoff.

```r
power <- 1 - pnorm(crit, mean=0.3, sd=stderr)
power
[1] 0.457
```

The power of the test based on normal theory is 0.457. To provide a check (or for future calculations of this sort) we can use the `power.t.test()` function.

```r
power.t.test(n=25, delta=.3, sd=1, sig.level=alpha, alternative="one.sided", type="one.sample")$power
[1] 0.441
```
This analytic (formula-based approach) yields a similar estimate to the value that we calculated directly.
Overall, we see that the t-test has higher power than the sign test, if the underlying data are truly normal.

Teaching Tip
It’s useful to have students calculate power empirically, to demonstrate the power of simulations.
12

Data Management

Data management is a key capacity to allow students (and instructors) to “compute with data” or as Diane Lambert of Google has stated, “think with data”. We tend to keep student data management to a minimum during the early part of an introductory statistics course, then gradually introduce topics as needed. For courses where students undertake substantive projects, data management is more important. This chapter describes some key data management tasks.

12.1 Adding new variables to a dataframe

We can add additional variables to an existing dataframe (name for a dataset in R) using `mutate()`. But first we create a smaller version of the iris dataframe.

```r
irisSmall <- select(iris, Species, Sepal.Length)

# cut places data into bins
irisSmall <- mutate(irisSmall,
                   Length = cut(Sepal.Length, breaks=4:8))
```

```r
head(irisSmall)

<table>
<thead>
<tr>
<th>Species</th>
<th>Sepal.Length</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>setosa</td>
<td>5.1</td>
<td>(5,6]</td>
</tr>
<tr>
<td>setosa</td>
<td>4.9</td>
<td>(4,5]</td>
</tr>
<tr>
<td>setosa</td>
<td>4.7</td>
<td>(4,5]</td>
</tr>
<tr>
<td>setosa</td>
<td>4.6</td>
<td>(4,5]</td>
</tr>
<tr>
<td>setosa</td>
<td>5.0</td>
<td>(4,5]</td>
</tr>
<tr>
<td>setosa</td>
<td>5.4</td>
<td>(5,6]</td>
</tr>
</tbody>
</table>
```

Teaching Tip
The `Start Teaching with R` book features an extensive section on data management, including use of the `read.file()` function to load data into R and RStudio.

Teaching Tip
The `dplyr` and `tidyr` packages provide an elegant approach to data management and facilitate the ability of students to compute with data. Hadley Wickham, author of the packages, suggests that there are six key idioms (or verbs) implemented within these packages that allow a large set of tasks to be accomplished: filter (keep rows matching criteria), select (pick columns by name), arrange (reorder rows), mutate (add new variables), summarise (reduce variables to values), and group by (collapse groups).

Teaching Tip
The `cut()` function has an option `labels` which can be used to specify more descriptive names for the groups.
The CPS85 dataframe contains data from a Current Population Survey (current in 1985, that is). Two of the variables in this dataframe are age and educ. We can estimate the number of years a worker has been in the workforce if we assume they have been in the workforce since completing their education and that their age at graduation is 6 more than the number of years of education obtained. We can add this as a new variable in the dataframe using `mutate()`.

```r
CPS85 <- mutate(CPS85, workforce.years = age - 6 - educ)
favstats(~ workforce.years, data=CPS85)

min Q1 median Q3 max mean sd n missing
-4 8 15 26 55 17.8 12.4 534 0
```

In fact this is what was done for all but one of the cases to create the exper variable that is already in the CPS85 data.

```r
tally(~ (exper - workforce.years), data=CPS85)

0 4
533 1
```

12.2 Dropping variables

Since we already have the exper variable, there is no reason to keep our new variable. Let’s drop it. Notice the clever use of the minus sign.

```r
names(CPS85)

[1] "wage"   "educ"    "race"
[4] "sex"    "hispanic" "south"
[7] "married" "exper"   "union"
[10] "age"    "sector"   "workforce.years"

CPS1 <- select(CPS85, select = -matches("workforce.years"))
names(CPS1)

[1] "wage"  "educ"  "race"  "sex"   "hispanic" "south"
[7] "married" "exper" "union" "age"   "sector"
```
Any number of variables can be dropped or kept in a similar manner.

CPS1 <- select(CPS85, select = -matches("workforce.years|exper"))

12.3 Renaming variables

The column (variable) names for a dataframe can be changed using the `rename()` function in the `dplyr` package.

```r
names(CPS85)
[1] "wage"   "educ"   "race"   "sex"    "hispanic"  "south"  "married" "exper"  "union"  "age"    "sector"  "workforce.years"
CPSnew = rename(CPS85, workforce=workforce.years)
names(CPSnew)
[1] "wage"   "educ"   "race"   "sex"    "hispanic"  "south"  "married" "exper"  "union"  "age"    "sector"  "workforce"
```

The row names of a dataframes can be changed by simple assignment using `row.names()`.

The faithful data set (in the datasets package, which is always available) has very unfortunate names.

```r
names(faithful)
[1] "eruptions" "waiting"
```

The measurements are the duration of an eruption and the time until the subsequent eruption, so let’s give it some better names.

```r
faithful <- rename(faithful,
  duration = eruptions,
  time.til.next=waiting)
```

Teaching Tip

It’s a good idea to start teaching good practices for choice of variable names from day one.
names(faithful)

[1] "duration" "time.til.next"

xyplot(time.til.next ~ duration, alpha=0.5, data=faithful)

If the variable containing a dataframe is modified or used to store a different object, the original data from the package can be recovered using data().

data(faithful)
head(faithful, 3)

<table>
<thead>
<tr>
<th>eruptions</th>
<th>waiting</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.60</td>
</tr>
<tr>
<td>2</td>
<td>1.80</td>
</tr>
<tr>
<td>3</td>
<td>3.33</td>
</tr>
</tbody>
</table>

12.4 Creating subsets of observations

We can also use filter() to reduce the size of a dataframe by selecting only certain rows.

data(faithful)
names(faithful) <- c('duration', 'time.til.next')
any logical can be used to create subsets
faithfullong <- filter(faithful, duration > 3)
xyplot(time.til.next ~ duration, data=faithfullong)
12.5 Sorting dataframes

Data frames can be sorted using the `arrange()` function.

```r
head(faithful, 3)
```

```
  duration time.til.next
1     3.60         79
2     1.80         54
3     3.33         74
```

```r
sorted <- arrange(faithful, duration)
head(sorted, 3)
```

```
  duration time.til.next
1     1.60         52
2     1.67         64
3     1.70         59
```

Caution!
It is usually better to make new datasets rather than modifying the original.

12.6 Merging datasets

The `fusion1` dataframe in the `fastR` package contains genotype information for a SNP (single nucleotide polymorphism) in the gene TCF7L2. The `pheno` dataframe contains phenotypes (including type 2 diabetes case/control status) for an intersecting set of individuals. We can join (or merge) these together to explore the association between genotypes and phenotypes using `merge()`.
require(fastR)
require(dplyr)
fusion1 <- arrange(fusion1, id)
head(fusion1, 3)

head(phen, 3)

require(tidyr)
fusion1m <- inner_join(fusion1, pheno, by='id')
head(fusion1m, 3)

Now we are ready to begin our analysis.

tally(~t2d + genotype, data=fusion1m)
12.7 **Slicing and dicing**

The `tidyr` package provides a flexible way to change the arrangement of data. It was designed for converting between long and wide versions of time series data and its arguments are named with that in mind.

A common situation is when we want to convert from a wide form to a long form because of a change in perspective about what a unit of observation is. For example, in the `traffic` dataframe, each row is a year, and data for multiple states are provided.

```r
traffic

year cn.deaths ny cn ma ri
1 1951 265 13.9 13.0 10.2 8.0
2 1952 230 13.8 10.8 10.0 8.5
3 1953 275 14.4 12.8 11.0 8.5
4 1954 240 13.0 10.8 10.5 7.5
5 1955 325 13.5 14.0 11.8 10.0
6 1956 280 13.4 12.1 11.0 8.2
7 1957 273 13.3 11.9 10.2 9.4
8 1958 248 13.0 10.1 11.8 8.6
9 1959 245 12.9 10.0 11.0 9.0
```

We can reformat this so that each row contains a measurement for a single state in one year.

```r
longTraffic <- traffic %>%
gather(state, deathRate, ny:ri)
head(longTraffic)

year cn.deaths state deathRate
1 1951 265 ny 13.9
2 1952 230 ny 13.8
3 1953 275 ny 14.4
4 1954 240 ny 13.0
5 1955 325 ny 13.5
6 1956 280 ny 13.4
```

We can also reformat the other way, this time having all data for a given state form a row in the dataframe.

Teaching Tip
The vignettes that accompany the `tidyr` and `dplyr` packages feature a number of useful examples of common data manipulations.
stateTraffic <- longTraffic %>%
 select(year, deathRate, state) %>%
 mutate(year=paste("deathRate.", year, sep="")) %>%
 spread(year, deathRate)

<table>
<thead>
<tr>
<th>state</th>
<th>deathRate.1951</th>
<th>deathRate.1952</th>
<th>deathRate.1953</th>
<th>deathRate.1954</th>
<th>deathRate.1955</th>
<th>deathRate.1956</th>
<th>deathRate.1957</th>
<th>deathRate.1958</th>
<th>deathRate.1959</th>
</tr>
</thead>
<tbody>
<tr>
<td>ny</td>
<td>13.9</td>
<td>13.8</td>
<td>14.4</td>
<td>13.0</td>
<td>13.5</td>
<td>13.4</td>
<td>13.3</td>
<td>13.0</td>
<td>12.9</td>
</tr>
<tr>
<td>cn</td>
<td>13.0</td>
<td>10.8</td>
<td>12.8</td>
<td>10.8</td>
<td>14.0</td>
<td>12.1</td>
<td>11.9</td>
<td>10.1</td>
<td>10.0</td>
</tr>
<tr>
<td>ma</td>
<td>10.2</td>
<td>10.0</td>
<td>11.0</td>
<td>10.5</td>
<td>11.8</td>
<td>11.0</td>
<td>10.2</td>
<td>11.8</td>
<td>11.0</td>
</tr>
<tr>
<td>ri</td>
<td>8.0</td>
<td>8.5</td>
<td>8.5</td>
<td>7.5</td>
<td>10.0</td>
<td>8.2</td>
<td>9.4</td>
<td>8.6</td>
<td>9.0</td>
</tr>
</tbody>
</table>

12.8 Derived variable creation

A number of functions help facilitate the creation or re-coding of variables.

12.8.1 Creating categorical variable from a quantitative variable

Next we demonstrate how to create a three-level categorical variable with cuts at 20 and 40 for the CESD scale (which ranges from 0 to 60 points).

favstats(~ cesd, data=HELPrct)

<table>
<thead>
<tr>
<th>min</th>
<th>Q1</th>
<th>median</th>
<th>Q3</th>
<th>max</th>
<th>mean</th>
<th>sd</th>
<th>n</th>
<th>missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25</td>
<td>34</td>
<td>41</td>
<td>60</td>
<td>32.8</td>
<td>12.5</td>
<td>453</td>
<td>0</td>
</tr>
</tbody>
</table>

HELPrct <- mutate(HELPrct, cesdcut = cut(cesd, breaks=c(0, 20, 40, 60), include.lowest=TRUE))
bwplot(cesd ~ cesdcut, data=HELPrct)
The \texttt{ntiles()} function can be used to automate creation of groups in this manner.

Reordering factors

By default R uses the first level in lexicographic order as the reference group for modeling. This can be overridden using the \texttt{relevel()} function (see also \texttt{reorder()}).

\begin{verbatim}
tally(~ substance, data=HELPrct)

alcohol cocaine heroin
 177 152 124

\texttt{coef(lm(cesd ~ substance, data=HELPrct))}
\end{verbatim}

12.8.2 Reordering factors

By default R uses the first level in lexicographic order as the reference group for modeling. This can be overridden using the \texttt{relevel()} function (see also \texttt{reorder()}).
(Intercept) substancecocaine substanceheroin
34.373 -4.952 0.498

HELPrc <- mutate(HELPrc, subnew = relevel(substance, ref="heroin"))

coef(lm(cesd ~ subnew, data=HELPrc))

(Intercept) subnewalcohol subnewcocaine
34.871 -0.498 -5.450

12.9 Group-wise statistics

It can often be useful to calculate summary statistics by
group, and add these into a dataset. The group_by()
function in the dplyr package facilitates this process.
Here we demonstrate how to add a variable containing
the median age of subjects by substance group.

favstats(age ~ substance, data=HELPrc)

<table>
<thead>
<tr>
<th>.group</th>
<th>min</th>
<th>Q1</th>
<th>median</th>
<th>Q3</th>
<th>max</th>
<th>mean</th>
<th>sd</th>
<th>n</th>
<th>missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>alcohol</td>
<td>20</td>
<td>33</td>
<td>38.0</td>
<td>43.0</td>
<td>58</td>
<td>38.2</td>
<td>7.65</td>
<td>177</td>
<td>0</td>
</tr>
<tr>
<td>cocaine</td>
<td>23</td>
<td>30</td>
<td>33.5</td>
<td>37.2</td>
<td>60</td>
<td>34.5</td>
<td>6.69</td>
<td>152</td>
<td>0</td>
</tr>
<tr>
<td>heroin</td>
<td>19</td>
<td>27</td>
<td>33.0</td>
<td>39.0</td>
<td>55</td>
<td>33.4</td>
<td>7.99</td>
<td>124</td>
<td>0</td>
</tr>
</tbody>
</table>

ageGroup <- HELPrct %>%
group_by(substance) %>%
summarise(agebygroup = mean(age))
ageGroup

Source: local data frame [3 x 2]

<table>
<thead>
<tr>
<th>substance</th>
<th>agebygroup</th>
</tr>
</thead>
<tbody>
<tr>
<td>alcohol</td>
<td>38.2</td>
</tr>
<tr>
<td>cocaine</td>
<td>34.5</td>
</tr>
<tr>
<td>heroin</td>
<td>33.4</td>
</tr>
</tbody>
</table>

HELPmerged <- left_join(ageGroup, HELPrc, by="substance")
favstats(agebygroup ~ substance, data=HELPmerged)

<table>
<thead>
<tr>
<th>.group</th>
<th>min</th>
<th>Q1</th>
<th>median</th>
<th>Q3</th>
<th>max</th>
<th>mean</th>
<th>sd</th>
<th>n</th>
<th>missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>alcohol</td>
<td>38.2</td>
<td>38.2</td>
<td>38.2</td>
<td>38.2</td>
<td>38.2</td>
<td>38.2</td>
<td>0</td>
<td>177</td>
<td>0</td>
</tr>
<tr>
<td>cocaine</td>
<td>34.5</td>
<td>34.5</td>
<td>34.5</td>
<td>34.5</td>
<td>34.5</td>
<td>34.5</td>
<td>0</td>
<td>152</td>
<td>0</td>
</tr>
<tr>
<td>heroin</td>
<td>33.4</td>
<td>33.4</td>
<td>33.4</td>
<td>33.4</td>
<td>33.4</td>
<td>33.4</td>
<td>0</td>
<td>124</td>
<td>0</td>
</tr>
</tbody>
</table>
12.10 Accounting for missing data

Missing values arise in almost all real world investigations. R uses the NA character as an indicator for missing data. The HELPmiss dataframe within the mosaicData package includes all \(n = 470 \) subjects enrolled at baseline (including the \(n = 17 \) subjects with some missing data who were not included in HELPrct).

\[
\text{smaller} \leftarrow \text{select}(\text{HELPmiss, cesd, drugrisk, indtot, mcs, pcs, substance)}
\]
\[
\text{dim}(\text{smaller})
\]
\[1 \] 470 6

\[
\text{summary}(\text{smaller})
\]

<table>
<thead>
<tr>
<th>cesd</th>
<th>drugrisk</th>
<th>indtot</th>
<th>mcs</th>
<th>pcs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min. : 1.0</td>
<td>Min. : 0.00</td>
<td>Min. : 4.0</td>
<td>Min. : 6.8</td>
<td>Min. : 14.1</td>
</tr>
<tr>
<td>1st Qu.:25.0</td>
<td>1st Qu.: 0.00</td>
<td>1st Qu.:32.0</td>
<td>1st Qu.:21.7</td>
<td>1st Qu.:40.3</td>
</tr>
<tr>
<td>Median :34.0</td>
<td>Median : 0.00</td>
<td>Median :37.5</td>
<td>Median :28.6</td>
<td>Median :48.9</td>
</tr>
<tr>
<td>Mean :32.9</td>
<td>Mean : 1.87</td>
<td>Mean :35.7</td>
<td>Mean :31.5</td>
<td>Mean :48.1</td>
</tr>
<tr>
<td>3rd Qu.:41.0</td>
<td>3rd Qu.: 1.00</td>
<td>3rd Qu.:41.0</td>
<td>3rd Qu.:40.6</td>
<td>3rd Qu.:57.0</td>
</tr>
<tr>
<td>Max. :60.0</td>
<td>Max. :21.00</td>
<td>Max. :45.0</td>
<td>Max. :62.2</td>
<td>Max. :74.8</td>
</tr>
<tr>
<td>NA's :2</td>
<td>NA's :14</td>
<td>NA's :2</td>
<td>NA's :2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>substance</th>
</tr>
</thead>
<tbody>
<tr>
<td>alcohol:185</td>
</tr>
<tr>
<td>cocaine:156</td>
</tr>
<tr>
<td>heroin :128</td>
</tr>
<tr>
<td>missing: 1</td>
</tr>
</tbody>
</table>

Of the 470 subjects in the 6 variable dataframe, only the drugrisk, indtot, mcs, and pcs variables have missing values.

\[
\text{favstats}(\sim \text{mcs, data=smaller})
\]

<table>
<thead>
<tr>
<th>min</th>
<th>Q1</th>
<th>median</th>
<th>Q3</th>
<th>max</th>
<th>mean</th>
<th>sd</th>
<th>n</th>
<th>missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.76</td>
<td>21.7</td>
<td>28.6</td>
<td>40.6</td>
<td>62.2</td>
<td>31.5</td>
<td>12.8</td>
<td>468</td>
<td>2</td>
</tr>
</tbody>
</table>
with(smaller, sum(is.na(mcs)))

[1] 2

nomiss <- na.omit(smaller)
dim(nomiss)

[1] 453 6

favstats(~ mcs, data=nomiss)

 min Q1 median Q3 max mean sd n missing
favStats 6.76 21.8 28.6 40.9 62.2 31.7 12.8 453 0

Alternatively, we could generate the same dataset using logical conditions.

nomiss <- filter(smaller,
 (!is.na(mcs) & !is.na(indtot) & !is.na(drugrisk)))
dim(nomiss)

[1] 453 6
Health Evaluation (HELP) Study

Many of the examples in this guide utilize data from the HELP study, a randomized clinical trial for adult inpatients recruited from a detoxification unit. Patients with no primary care physician were randomized to receive a multidisciplinary assessment and a brief motivational intervention or usual care, with the goal of linking them to primary medical care. Funding for the HELP study was provided by the National Institute on Alcohol Abuse and Alcoholism (R01-AA10870, Samet PI) and National Institute on Drug Abuse (R01-DA10019, Samet PI). The details of the randomized trial along with the results from a series of additional analyses have been published.

Eligible subjects were adults, who spoke Spanish or English, reported alcohol, heroin or cocaine as their first or second drug of choice, resided in proximity to the primary care clinic to which they would be referred or were homeless. Patients with established primary care relationships they planned to continue, significant dementia, specific plans to leave the Boston area that would prevent research participation, failure to provide contact information for tracking purposes, or pregnancy were excluded.

Subjects were interviewed at baseline during their detoxification stay and follow-up interviews were undertaken every 6 months for 2 years. A variety of continuous, count, discrete, and survival time predictors and outcomes were collected at each of these five occasions. The Institutional Review Board of Boston University Medical Center approved all aspects of the study, including the creation of the de-identified dataset. Additional privacy protection was secured by the issuance of a Certificate of Confidentiality by the Department of Health and Human Services.

The mosaicData package contains several forms of the de-identified HELP dataset. We will focus on HELPrct, which contains 27 variables for the 453 subjects with minimal missing data, primarily at baseline. Variables included in the HELP dataset are described in Table 13.1.

More information can be found here\(^2\). A copy of the study instruments can be found at: \(\text{http://www.amherst.edu/~nhorton/help}\).

Table 13.1: Annotated description of variables in the HELPrct dataset

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>DESCRIPTION (VALUES)</th>
<th>NOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>age</td>
<td>age at baseline (in years) (range 19–60)</td>
<td></td>
</tr>
<tr>
<td>anysub</td>
<td>use of any substance post-detox</td>
<td>see also daysanysub</td>
</tr>
<tr>
<td>cesd</td>
<td>Center for Epidemiologic Studies Depression scale (range 0–60, higher scores indicate more depressive symptoms)</td>
<td></td>
</tr>
<tr>
<td>d1</td>
<td>how many times hospitalized for medical problems (lifetime) (range 0–100)</td>
<td></td>
</tr>
<tr>
<td>daysanysub</td>
<td>time (in days) to first use of any substance post-detox (range 0–268)</td>
<td>see also anysubstatus</td>
</tr>
<tr>
<td>dayslink</td>
<td>time (in days) to linkage to primary care (range 0–456)</td>
<td>see also linkstatus</td>
</tr>
<tr>
<td>drugrisk</td>
<td>Risk-Assessment Battery (RAB) drug risk score (range 0–21)</td>
<td>see also sexrisk</td>
</tr>
<tr>
<td>e2b</td>
<td>number of times in past 6 months entered a detox program (range 1–21)</td>
<td></td>
</tr>
<tr>
<td>female</td>
<td>gender of respondent (0=male, 1=female)</td>
<td></td>
</tr>
<tr>
<td>glb</td>
<td>experienced serious thoughts of suicide (last 30 days, values 0=no, 1=yes)</td>
<td></td>
</tr>
<tr>
<td>homeless</td>
<td>1 or more nights on the street or shelter in past 6 months (0=no, 1=yes)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>i1</td>
<td>average number of drinks (standard units) consumed per day (in the past 30 days, range 0–142)</td>
<td>see also i2</td>
</tr>
<tr>
<td>i2</td>
<td>maximum number of drinks (standard units) consumed per day (in the past 30 days range 0–184)</td>
<td>see also i1</td>
</tr>
<tr>
<td>id</td>
<td>random subject identifier (range 1–470)</td>
<td></td>
</tr>
<tr>
<td>indtot</td>
<td>Inventory of Drug Use Consequences (InDUC) total score (range 4–45)</td>
<td></td>
</tr>
<tr>
<td>linkstatus</td>
<td>post-detox linkage to primary care (0=no, 1=yes)</td>
<td>see also dayslink</td>
</tr>
<tr>
<td>mcs</td>
<td>SF-36 Mental Component Score (range 7-62, higher scores are better)</td>
<td>see also pcs</td>
</tr>
<tr>
<td>pcs</td>
<td>SF-36 Physical Component Score (range 14-75, higher scores are better)</td>
<td>see also mcs</td>
</tr>
<tr>
<td>pss_fr</td>
<td>perceived social supports (friends, range 0–14)</td>
<td></td>
</tr>
<tr>
<td>racegrp</td>
<td>race/ethnicity (black, white, hispanic or other)</td>
<td></td>
</tr>
<tr>
<td>satreat</td>
<td>any BSAS substance abuse treatment at baseline (0=no, 1=yes)</td>
<td></td>
</tr>
<tr>
<td>sex</td>
<td>sex of respondent (male or female)</td>
<td></td>
</tr>
<tr>
<td>sexrisk</td>
<td>Risk-Assessment Battery (RAB) sex risk score (range 0–21)</td>
<td>see also drugrisk</td>
</tr>
<tr>
<td>substance</td>
<td>primary substance of abuse (alcohol, cocaine or heroin)</td>
<td></td>
</tr>
<tr>
<td>treat</td>
<td>randomization group (randomize to HELP clinic, no or yes)</td>
<td></td>
</tr>
</tbody>
</table>

Notes: Observed range is provided (at baseline) for continuous variables.
14
Exercises and Problems

2.1 Using the HELPrct dataset, create side-by-side histograms of the CESD scores by substance abuse group, just for the male subjects, with an overlaid normal density.

4.1 Using the HELPrct dataset, fit a simple linear regression model predicting the number of drinks per day as a function of the mental component score. This model can be specified using the formula: $\text{i1} \sim \text{mcs}$. Assess the distribution of the residuals for this model.

9.1 The RailTrail dataset within the mosaic package includes the counts of crossings of a rail trail in Northampton, Massachusetts for 90 days in 2005. City officials are interested in understanding usage of the trail network, and how it changes as a function of temperature and day of the week. Describe the distribution of the variable avgtemp in terms of its center, spread and shape.

```r
favstats(~ avgtemp, data=RailTrail)
```

<table>
<thead>
<tr>
<th></th>
<th>min</th>
<th>Q1</th>
<th>median</th>
<th>Q3</th>
<th>max</th>
<th>mean</th>
<th>sd</th>
<th>n</th>
<th>missing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>33</td>
<td>48.6</td>
<td>65.2</td>
<td>84</td>
<td>57.4</td>
<td>11.3</td>
<td>90</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

```r
densityplot(~ avgtemp, xlab="Average daily temp (degrees F)", data=RailTrail)
```
9.2 The RailTrail dataset also includes a variable called cloudcover. Describe the distribution of this variable in terms of its center, spread and shape.

9.3 The variable in the RailTrail dataset that provides the daily count of crossings is called volume. Describe the distribution of this variable in terms of its center, spread and shape.

9.4 The RailTrail dataset also contains an indicator of whether the day was a weekday (weekday==1) or a weekend/holiday (weekday==0). Use `tally()` to describe the distribution of this categorical variable. What percentage of the days are weekends/holidays?

9.5 Use side-by-side boxplots to compare the distribution of volume by day type in the RailTrail dataset. Hint: you’ll need to turn the numeric weekday variable into a factor variable using `as.factor()`. What do you conclude?

9.6 Use overlapping densityplots to compare the distribution of volume by day type in the RailTrail dataset. What do you conclude?

9.7 Create a scatterplot of volume as a function of avgtemp using the RailTrail dataset, along with a regression line
and scatterplot smoother (lowess curve). What do you observe about the relationship?

9.8 Using the RailTrail dataset, fit a multiple regression model for volume as a function of cloudcover, avgtemp, weekday and the interaction between day type and average temperature. Is there evidence to retain the interaction term at the $\alpha = 0.05$ level?

9.9 Use `makeFun()` to calculate the predicted number of crossings on a weekday with average temperature 60 degrees and no clouds. Verify this calculation using the coefficients from the model.

```
coef(fm)
```

```
(Intercept) cloudcover avgtemp weekday1
378.83 -17.20 2.31 -321.12
avgtemp:weekday1
  4.73
```

9.10 Use `makeFun()` and `plotFun()` to display predicted values for the number of crossings on weekdays and weekends/holidays for average temperatures between 30 and 80 degrees and a cloudy day (cloudcover=10).

9.11 Using the multiple regression model, generate a histogram (with overlaid normal density) to assess the normality of the residuals.

9.12 Using the same model generate a scatterplot of the residuals versus predicted values and comment on the linearity of the model and assumption of equal variance.

9.13 Using the same model generate a scatterplot of the residuals versus average temperature and comment on the linearity of the model and assumption of equal vari-
10.1 Generate a sample of 1000 exponential random variables with rate parameter equal to 2, and calculate the mean of those variables.

10.2 Find the median of the random variable X, if it is exponentially distributed with rate parameter 10.

11.1 Find the power of a two-sided two-sample t-test where both distributions are approximately normally distributed with the same standard deviation, but the group differ by 50% of the standard deviation. Assume that there are 25 observations per group and an alpha level of 0.054.

11.2 Find the sample size needed to have 90% power for a two group t-test where the true difference between means is 25% of the standard deviation in the groups (with $\alpha = 0.05$).

12.1 Using faithful dataframe, make a scatter plot of eruption duration times vs. the time since the previous eruption.

12.2 The fusion2 data set in the fastR package contains genotypes for another SNP. Merge fusion1, fusion2, and pheno into a single data frame.

 Note that fusion1 and fusion2 have the same columns.

 names(fusion1)
 [1] "id" "marker" "markerID" "allele1" "allele2" "genotype" "Adose"
 [8] "Cdose" "Gdose" "Tdose"

 names(fusion2)
 [1] "id" "marker" "markerID" "allele1" "allele2" "genotype" "Adose"
 [8] "Cdose" "Gdose" "Tdose"
You may want to use the `suffixes` argument to `merge()` or rename the variables after you are done merging to make the resulting dataframe easier to navigate.

Tidy up your dataframe by dropping any columns that are redundant or that you just don’t want to have in your final dataframe.
15

Bibliography

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>abs()</td>
<td></td>
<td>64</td>
</tr>
<tr>
<td>add option</td>
<td></td>
<td>62</td>
</tr>
<tr>
<td>adding variables</td>
<td></td>
<td>75</td>
</tr>
<tr>
<td>all.x option</td>
<td></td>
<td>80</td>
</tr>
<tr>
<td>alpha option</td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>analysis of variance</td>
<td></td>
<td>49</td>
</tr>
<tr>
<td>anova()</td>
<td></td>
<td>50, 54</td>
</tr>
<tr>
<td>aov()</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>arrange()</td>
<td></td>
<td>79, 80</td>
</tr>
<tr>
<td>auto.key option</td>
<td></td>
<td>60, 62</td>
</tr>
<tr>
<td>band.lwd option</td>
<td></td>
<td>38</td>
</tr>
<tr>
<td>binom.test()</td>
<td></td>
<td>26</td>
</tr>
<tr>
<td>binomial test</td>
<td></td>
<td>26</td>
</tr>
<tr>
<td>bootstrapping</td>
<td></td>
<td>23</td>
</tr>
<tr>
<td>breaks option</td>
<td></td>
<td>82</td>
</tr>
<tr>
<td>bwplot()</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>by.x option</td>
<td></td>
<td>80</td>
</tr>
<tr>
<td>categorical variables</td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>cex option</td>
<td></td>
<td>31, 64</td>
</tr>
<tr>
<td>chisq.test()</td>
<td></td>
<td>29, 43</td>
</tr>
<tr>
<td>class()</td>
<td></td>
<td>34</td>
</tr>
<tr>
<td>coef()</td>
<td></td>
<td>33, 34, 83</td>
</tr>
<tr>
<td>coefficient plots</td>
<td></td>
<td>63</td>
</tr>
<tr>
<td>col option</td>
<td></td>
<td>21</td>
</tr>
<tr>
<td>conf.int option</td>
<td></td>
<td>57</td>
</tr>
<tr>
<td>confint()</td>
<td></td>
<td>23, 27, 34</td>
</tr>
<tr>
<td>contingency tables</td>
<td></td>
<td>25, 41</td>
</tr>
<tr>
<td>Cook’s distance</td>
<td></td>
<td>37</td>
</tr>
<tr>
<td>cor()</td>
<td></td>
<td>32</td>
</tr>
<tr>
<td>correct option</td>
<td></td>
<td>27</td>
</tr>
<tr>
<td>correlation</td>
<td></td>
<td>32</td>
</tr>
<tr>
<td>Cox proportional hazards model</td>
<td></td>
<td>58</td>
</tr>
<tr>
<td>coxph()</td>
<td></td>
<td>58</td>
</tr>
<tr>
<td>CPS85 dataset</td>
<td></td>
<td>76</td>
</tr>
<tr>
<td>creating subsets</td>
<td></td>
<td>78</td>
</tr>
<tr>
<td>cross classification tables</td>
<td></td>
<td>41</td>
</tr>
<tr>
<td>cut()</td>
<td></td>
<td>75, 82</td>
</tr>
<tr>
<td>data management</td>
<td></td>
<td>75</td>
</tr>
<tr>
<td>data()</td>
<td></td>
<td>78</td>
</tr>
<tr>
<td>dataframe</td>
<td></td>
<td>75</td>
</tr>
<tr>
<td>density option</td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>densityplot()</td>
<td></td>
<td>21</td>
</tr>
<tr>
<td>derived variables</td>
<td></td>
<td>82</td>
</tr>
<tr>
<td>diffmean()</td>
<td></td>
<td>48</td>
</tr>
<tr>
<td>dim()</td>
<td></td>
<td>85</td>
</tr>
<tr>
<td>display first few rows</td>
<td></td>
<td>76</td>
</tr>
<tr>
<td>dnorm()</td>
<td></td>
<td>67</td>
</tr>
<tr>
<td>do()</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>dotPlot()</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>dplyr package</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>dropping variables</td>
<td></td>
<td>76</td>
</tr>
<tr>
<td>exp()</td>
<td></td>
<td>53</td>
</tr>
<tr>
<td>factor reordering</td>
<td></td>
<td>83</td>
</tr>
<tr>
<td>factor()</td>
<td></td>
<td>51</td>
</tr>
<tr>
<td>failure time analysis</td>
<td></td>
<td>57</td>
</tr>
<tr>
<td>faithful dataset</td>
<td></td>
<td>77, 78</td>
</tr>
<tr>
<td>family option</td>
<td></td>
<td>53</td>
</tr>
<tr>
<td>favstats()</td>
<td></td>
<td>17, 84, 85</td>
</tr>
<tr>
<td>filter()</td>
<td></td>
<td>18, 76</td>
</tr>
<tr>
<td>Fisher’s exact test</td>
<td></td>
<td>44</td>
</tr>
<tr>
<td>fisher.test()</td>
<td></td>
<td>44</td>
</tr>
<tr>
<td>fit option</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>fitted()</td>
<td></td>
<td>64</td>
</tr>
<tr>
<td>format option</td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>freqpolygon()</td>
<td></td>
<td>22</td>
</tr>
<tr>
<td>function()</td>
<td></td>
<td>32</td>
</tr>
<tr>
<td>fusion1 dataset</td>
<td></td>
<td>80</td>
</tr>
<tr>
<td>gather()</td>
<td></td>
<td>81</td>
</tr>
<tr>
<td>glm()</td>
<td></td>
<td>53</td>
</tr>
<tr>
<td>grid.text()</td>
<td></td>
<td>21</td>
</tr>
<tr>
<td>group-wise statistics</td>
<td></td>
<td>84</td>
</tr>
<tr>
<td>group_by()</td>
<td></td>
<td>84</td>
</tr>
<tr>
<td>groups option</td>
<td></td>
<td>49, 62</td>
</tr>
<tr>
<td>head()</td>
<td></td>
<td>76</td>
</tr>
<tr>
<td>Health Evaluation and Linkage to Primary Care study</td>
<td>87</td>
<td></td>
</tr>
<tr>
<td>HELP study</td>
<td></td>
<td>87</td>
</tr>
<tr>
<td>HELPmiss dataset</td>
<td></td>
<td>85</td>
</tr>
<tr>
<td>HELPct dataset</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>histogram()</td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>honest significant differences</td>
<td></td>
<td>51</td>
</tr>
<tr>
<td>include.lowest option</td>
<td></td>
<td>82</td>
</tr>
<tr>
<td>incomplete data</td>
<td></td>
<td>85</td>
</tr>
<tr>
<td>install.packages()</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>installing packages</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>integrate()</td>
<td></td>
<td>67</td>
</tr>
</tbody>
</table>
interactions, 61
iris dataset, 75
is.na(), 85

Kaplan-Meier plot, 57
knitr, 14

labels option, 51
ladd(), 21
layout option, 19
left_join(), 84
levels option, 51
leverage, 38
linear regression, 33
linearity, 31
lm(), 33, 51
loading packages, 14
logistic regression, 53
lowess, 31
lty option, 21
lwd option, 21, 31

makeFun(), 62
margins option, 25
markdown, 14
mean(), 15
median(), 16
merging dataframes, 79
missing data, 85
model comparison, 51
Modeling with R, 15
mosaic package, 15
mosaicplot(), 42
mplot(), 36, 52, 63
multiple comparisons, 51
multiple regression, 60
multivariate relationships, 60
mutate(), 51, 75, 76, 82, 83

NA character, 85
na.omit(), 85
names(), 77
nint option, 20
ntiles(), 83

oddsRatio(), 42
one-way ANOVA, 49
options(), 15

pairs plot, 33
panel.abline(), 21
panel.labels(), 32
panel.lmbands(), 38
panel.mathdensity(), 21
panel.text(), 32
paste(), 82
pbinom(), 72
pch option, 31
pchisq(), 29
Pearson correlation, 32
permutation test, 48
plotFun(), 62
pnorm(), 67
polygons, 22
prediction bands, 38
print(), 27
prop.test(), 27
proportional hazards model, 58
pval(), 27

qdata(), 24
qnorm(), 67
qqmath(), 35
quantile(), 16
quantiles, 16

random variables, 67
read.file(), 75
regression, 33
regression diagnostics, 64
relevel(), 83
rename(), 77
renaming variables, 77
reordering factors, 83
reproducing variables, 77

residuals(), 35
rnorm(), 67
row.names(), 77
rownames(), 32
rsquared(), 34

scale versus location, 37
scatterplot matrix, 33
scatterplots, 31
sd(), 16
select option, 76
select(), 82, 84, 85
shuffle(), 48
significance stars, 34
smoothers, 31
sorting dataframes, 79
Spearman correlation, 32
splom(), 33
spread(), 82
Start Modeling with R, 15
Start Teaching with R, 15
stem(), 18
subsets of dataframes, 78
sum(), 29
summarise(), 84
summary(), 34
Surv(), 57
survfit(), 57
survival analysis, 57

t.test(), 23
tables, 25, 41
tally(), 17, 25, 41, 83
Teaching with R, 15
test option, 54
thinking with data, 75
tidyr package, 18, 80
time to event analysis, 57
transforming dataframes, 81
transposing dataframes, 81
Tukey’s HSD, 51
TukeyHSD(), 51
type option, 31, 64
<table>
<thead>
<tr>
<th>Command</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>var()</td>
<td>16</td>
</tr>
<tr>
<td>vignettes</td>
<td>13</td>
</tr>
<tr>
<td>which option</td>
<td>36</td>
</tr>
<tr>
<td>width option</td>
<td>20</td>
</tr>
<tr>
<td>with()</td>
<td>15, 85</td>
</tr>
<tr>
<td>xchisq.test()</td>
<td>43</td>
</tr>
<tr>
<td>xlab option</td>
<td>57</td>
</tr>
<tr>
<td>xlim option</td>
<td>49</td>
</tr>
<tr>
<td>xpnorm()</td>
<td>67</td>
</tr>
<tr>
<td>xyplot()</td>
<td>31, 62</td>
</tr>
<tr>
<td>ylab option</td>
<td>62</td>
</tr>
</tbody>
</table>