Package ‘midasr’

March 10, 2015

Title Mixed Data Sampling Regression

Description Methods and tools for mixed frequency time series data analysis. Allows estimation, model selection and forecasting for MIDAS regressions.

URL http://mpiktas.github.io/midasr/

Version 0.4

Maintainer Vaidotas Zemlys <zemlys@gmail.com>

Author Virmantas Kvedaras <virmantas.kvedaras@mif.vu.lt>, Vaidotas Zemlys <vaidotas.zemlys@mif.vu.lt>

Depends R (>= 2.11.0), sandwich, optimx

Imports MASS, numDeriv, Matrix, forecast

License GPL-2 | MIT + file LICENCE

BugReports https://github.com/mpiktas/midasr/issues

NeedsCompilation no

Repository CRAN

Date/Publication 2015-03-10 19:47:47

R topics documented:

midasr-package .. 3
+.lws_table ... 3
agk.test ... 4
almonp ... 5
almonp_gradient ... 6
amidas_table ... 6
amweights ... 8
average_forecast ... 9
check_mixfreq ... 11
coeff.midas_r .. 11
deriv_tests .. 13
deviance.midas_r .. 13
dmls ... 14
R topics documented:

expand_amidas .. 15
expand_weights_lags ... 16
fnls ... 17
forecast.midas_r .. 17
get_estimation_sample .. 19
gompertzp ... 20
gompertzp_gradient ... 21
hAh_r_test ... 21
hAh_test ... 23
harstep ... 25
harstep_gradient ... 26
hf_lags_table .. 27
imidas_r ... 28
lcauchyp ... 31
lcauchyp_gradient .. 31
lf_lags_table .. 32
midas_auto_sim ... 33
midas_r ... 34
midas_r.fit .. 37
midas_r_ic_table .. 38
midas_r_np .. 39
midas_r_simple .. 40
midas_sim ... 41
midas_u ... 43
mls ... 44
modsel ... 45
nakagamip ... 47
nakagamip_gradient .. 47
nbeta ... 48
nbetaMT ... 49
nbetaMT_gradient .. 49
nbeta_gradient ... 50
nealmon .. 51
nealmon_gradient .. 52
oos_prec ... 53
plot_midas_coef .. 54
polystep ... 55
polystep_gradient ... 56
predict.midas_r .. 56
prep_hAh ... 58
rvsp500 ... 58
select_and_forecast .. 59
simulate.midas_r .. 61
split_data ... 62
update_weights .. 63
USpayems .. 64
USqgdp ... 64
USrealgdp ... 65
Mixed Data Sampling Regression

Description

Package for estimating, testing and forecasting MIDAS regression.

Details

Methods and tools for mixed frequency time series data analysis. Allows estimation, model selection and forecasting for MIDAS regressions.

Author(s)

Virmantas Kvedaras <virmantas.kvedaras@mif.vu.lt>, Vaidotas Zemlys (maintainer) <zemlys@gmail.com>

Description

Combine lws_table objects

Usage

```r
## S3 method for class 'lws_table'
... + check = TRUE
```

Arguments

```r
... lws_table object
check logical, if TRUE checks that the each lws_table object is named a list with names c("weights","lags","starts")
```

Details

The lws_table objects have similar structure to table, i.e. it is a list with 3 elements which are the lists with the same number of elements. The base function `c` would `cbind` such tables. This function `rbind`s them.
Value

lws_table object

Author(s)

Virmantas Kvedaras, Vaidotas Zemlys

Examples

```
nlnm <- expand_weights_lags("nealmon",0,c(4,8),1,start=list(nealmon=rep(0,3)))
nbtl <- expand_weights_lags("nbeta",0,c(4,8),1,start=list(nbeta=rep(0,4)))
nlnm+nbtl
```

Description

Perform the test whether hyperparameters of normalized exponential Almon lag weights are zero

Usage

```
agk.test(x)
```

Arguments

```
x MIDAS regression object of class midas_r
```

Value

```
a htest object
```

Author(s)

Virmantas Kvedaras, Vaidotas Zemlys

References

almonp

Examples

```r
##' #Load data
data("USunempr")
data("USrealgdp")

y <- diff(log(USrealgdp))
x <- window(diff(USunempr), start=1949)
t <- 1:length(y)

mr <- midas_r(y-t+fmls(x,11,12,nealmon), start=list(x=c(0,0,0)))

agk.test(mr)
```

almonp

Almon polynomial MIDAS weights specification

Description

Calculate Almon polynomial MIDAS weights

Usage

`almonp(p, d, m)`

Arguments

- `p` parameters for Almon polynomial weights
- `d` number of coefficients
- `m` the frequency ratio, currently ignored

Value

vector of coefficients

Author(s)

Virmantas Kvedaras, Vaidotas Zemlys
almonp_gradient

Gradient function for Almon polynomial MIDAS weights

Description

Calculate gradient for Almon polynomial MIDAS weights specification

Usage

```r
almonp_gradient(p, d, m)
```

Arguments

- `p`: vector of parameters for Almon polynomial specification
- `d`: number of coefficients
- `m`: the frequency ratio, currently ignored

Value

vector of coefficients

Author(s)

Vaidotas Zemlys

amidas_table

Weight and lag selection table for aggregates based MIDAS regression model

Description

Create weight and lag selection table for the aggregates based MIDAS regression model

Usage

```r
amidas_table(formula, data, weights, wstart, type, start = NULL, from, to, IC = c("AIC", "BIC"), test = c("hAh_test"), Ofunction = "optim", weight_gradients = NULL, ...)
```
Arguments

- **formula**: the formula for MIDAS regression, the lag selection is performed for the last MIDAS lag term in the formula.
- **data**: a list containing data with mixed frequencies.
- **weights**: the names of weights used in Ghysels schema.
- **wstart**: the starting values for the weights of the first low frequency lag.
- **type**: the type of Ghysels schema see `amweights`, can be a vector of types.
- **start**: the starting values for optimisation excluding the starting values for the last term.
- **from**: a named list, or named vector with high frequency (NB!) lag numbers which are the beginnings of MIDAS lag structures. The names should correspond to the MIDAS lag terms in the formula for which to do the lag selection. Value NA indicates lag start at zero.
- **to**: to a named list where each element is a vector with two elements. The first element is the low frequency lag number from which the lag selection starts, the second is the low frequency lag number at which the lag selection ends. NA indicates lowest (highest) lag numbers possible.
- **IC**: the names of information criteria which should be calculated.
- **test**: the names of statistical tests to perform on restricted model, p-values are reported in the columns of model selection table.
- **Ofunction**: see `midasr`.
- **weight_gradients**: see `midas_r`.
- **...**: additional parameters to optimisation function, see `midas_r`.

Details

This function estimates models sequentially increasing the midas lag from k_{min} to k_{max} and varying the weights of the last term of the given formula.

This function estimates models sequentially increasing the midas lag from k_{min} to k_{max} and varying the weights of the last term of the given formula.

Value

A `midas_r_ic_table` object which is the list with the following elements:

- **table**: the table where each row contains calculated information criteria for both restricted and unrestricted MIDAS regression model with given lag structure.
- **candlist**: the list containing fitted models.
- **IC**: the argument IC.
- **test**: the argument test.
- **weights**: the names of weight functions.
- **lags**: the lags used in models.
Author(s)

Virmantas Kvedaras, Vaidotas Zemlys

Examples

```r
data("USunempr")
data("USrealgdp")
y <- diff(log(USrealgdp))
x <- window(diff(USunempr), start=1949)
trend <- 1:length(y)

tb <- amidas_table(y=trend+fmls(x,12,12,nealmon),
data=list(y=y,x=x,trend=trend),
weights=c("nealmon"),wstart=list(nealmon=c(0,0,0)),
start=list(trend=1),type=c("A"),
from=0,to=c(1,2))
```

Description

Produces weights for aggregates based MIDAS regression

Usage

```r
amweights(p, d, m, weight = nealmon, type = c("A", "B", "C"))
```

Arguments

- `p`: parameters for weight functions, see details.
- `d`: number of high frequency lags
- `m`: the frequency
- `weight`: the weight function
- `type`: type of structure, a string, one of A, B or C.

Details

Suppose a weight function $w(\beta, \theta)$ satisfies the following equation:

$$w(\beta, \theta) = \beta g(\theta)$$

The following combinations are defined, corresponding to structure types A, B and C respectively:

$$(w(\beta_1, \theta_1), \ldots, w(\beta_k, \theta_k))$$

$$(w(\beta_1, \theta), \ldots, w(\beta_k, \theta))$$
\(\beta(w(1, \theta_1), ..., w(1, \theta_k)) \)

The starting values \(p \) should be supplied then as follows:

\((\beta_1, \theta_1, ..., \beta_k, \theta_k) \)
\((\beta_1, ..., \beta_k, \theta) \)
\((\beta, \theta_1, ..., \theta_k) \)

Value

a vector of weights

Author(s)

Virmantas Kvedaras, Vaidotas Zemlys

average_forecast

Average forecasts of MIDAS models

Description

Average MIDAS model forecasts using specified weighting scheme. Produce in-sample and out-of-sample accuracy measures.

Usage

average_forecast(modlist, data, insample, outsample, type = c("fixed", "recursive", "rolling"), fweights = c("EW", "BICW", "MSFE", "DMSFE"), measures = c("MSE", "MAPE", "MASE"), show_progress = TRUE)

Arguments

- modlist: a list of midas_r objects
- data: a list with mixed frequency data
- insample: the low frequency indexes for in-sample data
- outsample: the low frequency indexes for out-of-sample data
- type: a string indicating which type of forecast to use.
- fweights: names of weighting schemes
- measures: names of accuracy measures
- show_progress: logical, TRUE to show progress bar, FALSE for silent evaluation
Details

Given the data, split it to in-sample and out-of-sample data. Then given the list of models, reestimate each model with in-sample data and produce out-of-sample forecast. Given the forecasts average them with the specified weighting scheme. Then calculate the accuracy measures for individual and average forecasts.

The forecasts can be produced in 3 ways. The "fixed" forecast uses model estimated with in-sample data. The "rolling" forecast reestimates model each time by increasing the in-sample by one low frequency observation and dropping the first low frequency observation. These reestimated models then are used to produce out-of-sample forecasts. The "recursive" forecast differs from "rolling" that it does not drop observations from the beginning of data.

Value

a list containing forecasts and tables of accuracy measures

Author(s)

Virmantas Kvedaras, Vaidotas Zemlys

Examples

```
set.seed(1001)
## Number of low-frequency observations
n<-250
## Linear trend and higher-frequency explanatory variables (e.g. quarterly and monthly)
trend<-c(1:n)
x<-rnorm(4*n)
z<-rnorm(12+n)
## Exponential Almon polynomial constraint-consistent coefficients
fn.x <- nealmon(p=c(1,-0.5),d=8)
fn.z <- nealmon(p=c(2,0.5,-0.1),d=17)
## Simulated low-frequency series (e.g. yearly)
y<-2+0.1*trend+mls(x,0:7,4)%*%fn.x+mls(z,0:16,12)%*%fn.z+rnorm(n)
mod1 <- midas_r(y ~ trend + mls(x, 4:14, 4, nealmon) + mls(z, 12:22, 12, nealmon),
start=list(x=c(10,1,-0.1),z=c(2,-0.1)))
mod2 <- midas_r(y ~ trend + mls(x, 4:20, 4, nealmon) + mls(z, 12:25, 12, nealmon),
start=list(x=c(10,1,-0.1),z=c(2,-0.1)))

##Calculate average forecasts
avgf <- average_forecast(list(mod1,mod2),
data=list(y=y,x=x,z=z,trend=trend),
insample=1:200,outsample=201:250,
type="fixed",
measures=c("MSE","MAPE","MASE"),
fweights=c("EW","BICW","MSFE","DMSFE"))
```
check_mixfreq

Check data for MIDAS regression

Description
Given mixed frequency data check whether higher frequency data can be converted to the lowest frequency.

Usage

```r
check_mixfreq(data)
```

Arguments
- `data`: a list containing mixed frequency data

Details
The number of observations in higher frequency data elements should have a common divisor with the number of observations in response variable. It is always assumed that the response variable is of the lowest frequency.

Value
a boolean TRUE, if mixed frequency data is conformable, FALSE if it is not.

Author(s)
Virmantas Kvedaras, Vaidotas Zemlys

coef.midas_r

Extract coefficients of MIDAS regression

Description
Extracts various coefficients of MIDAS regression

Usage

```r
## S3 method for class 'midas_r'
coef(object, midas = FALSE, term_names = NULL, ...)
```
Arguments

object midas_r object

midas logical, if TRUE, MIDAS coefficients are returned, if FALSE (default), coefficients of NLS problem are returned

term_names a character vector with term names. Default is NULL, which means that coefficients of all the terms are returned

Details

MIDAS regression has two sets of coefficients. The first set is the coefficients associated with the parameters of weight functions associated with MIDAS regression terms. These are the coefficients of the NLS problem associated with MIDAS regression. The second is the coefficients of the linear model, i.e. the values of weight functions of terms, or so called MIDAS coefficients. By default the function returns the first set of the coefficients.

Value

a vector with coefficients

Author(s)

Vaidotas Zemlys

Examples

Simulate MIDAS regression
n<-250
trend<-c(1:n)
x<-rnorm(4*n)
z<-rnorm(12*n)
fn.x <- nealmon(p=c(1,-0.5),d=8)
fn.z <- nealmon(p=c(2,0.5,-0.1),d=17)
y<-2+0.1*trend+mls(x,0:7,4)*fn.x+mls(z,0:16,12)*fn.z+rnorm(n)
eqr<-midas_r(y ~ trend + mls(x, 0:7, 4, nealmon) +
 mls(z, 0:16, 12, nealmon),
 start = list(x = c(1, -0.5), z = c(2, 0.5, -0.1)))
coef(eqr)
coef(eqr, term_names = "x")
coef(eqr, midas = TRUE)
coef(eqr, midas = TRUE, term_names = "x")
deriv_tests

Check whether non-linear least squares restricted MIDAS regression problem has converged

Description

Computes the gradient and hessian of the optimisation function of restricted MIDAS regression and checks whether the conditions of local optimum are met. Numerical estimates are used.

Usage

deriv_tests(x, tol = 1e-06)

S3 method for class 'midas_r'
deriv_tests(x, tol = 1e-06)

Arguments

- **x** midas_r object
- **tol** a tolerance, values below the tolerance are considered zero

Value

A list with gradient, hessian of optimisation function and convergence message

Author(s)

Vaidotas Zemlys

See Also

midas_r

deviance.midas_r

MIDAS regression model deviance

Description

Returns the deviance of a fitted MIDAS regression object

Usage

S3 method for class 'midas_r'
deviance(object, ...)

Arguments

object
 a midas_r object

... currently nothing

Value

The sum of squared residuals

Author(s)

Virmantas Kvedaras, Vaidotas Zemlys

dmls

MIDAS lag structure for unit root processes

Description

Prepares MIDAS lag structure for unit root processes

Usage

dmls(x, k, m, ...)

Arguments

x
 a vector

k
 maximal lag order

m
 frequency ratio

... further arguments used in fitting MIDAS regression

Value

a matrix containing the first differences and the lag k+1.

Author(s)

Virmantas Kvedaras, Vaidotas Zemlys
Description

Create table of weights, lags and starting values for Ghysels weight schema, see `amweights`.

Usage

```r
expand_amidas(weight, type = c("A", "B", "C"), from = 0, to, m, start)
```

Arguments

- **weight**: the names of weight functions
- **type**: the type of Ghysels schema, "A", "B" or "C"
- **from**: the high frequency lags from which to start the fitting
- **to**: to a vector of length two, containing minimum and maximum lags, high frequency if m=1, low frequency otherwise.
- **m**: the frequency ratio
- **start**: the starting values for the weights of the one low frequency lag

Details

Given weight function creates lags starting from \(k_{\text{min}}\) to \(k_{\text{max}}\) and replicates starting values for each low frequency lag.

Value

A `lws_table` object, a list with elements `weights`, `lags` and `starts`

Author(s)

Virmantas Kvedaras, Vaidotas Zemlys

Examples

```r
expand_amidas("nealmon","A", 0, c(1,2), 12, c(0,0,0))
```
expand_weights_lags Create table of weights, lags and starting values

Description

Creates table of weights, lags and starting values

Usage

expand_weights_lags(weights, from = 0, to, m = 1, start)

Arguments

weights either a vector with names of the weight functions or a named list of weight functions
from the high frequency lags from which to start the fitting
to a vector of length two, containing minimum and maximum lags, high frequency if m=1, low frequency otherwise.
m the frequency ratio
start a named list with the starting values for weight functions

Details

For each weight function creates lags starting from \(k_{\text{min}} \) to \(k_{\text{max}} \). This is a convenience function for easier work with the function midas_r_ic_table.

Value

a lws_table object, a list with elements weights, lags and starts.

Author(s)

Virmantas Kvedaras, Vaidotas Zemlys

Examples

expand_weights_lags(c("nealmon","nbeta"),0,c(4,8),1,start=list(nealmon=rep(0,3),nbeta=rep(0,4)))
nlmm <- expand_weights_lags("nealmon",0,c(4,8),1,start=list(nealmon=rep(0,3)))
nbtt <- expand_weights_lags("nbeta",0,c(4,8),1,start=list(nbtt=rep(0,4)))
nlmm+nbtt
fmls

Full MIDAS lag structure

Description

Create a matrix of MIDAS lags, including contemporaneous lag up to selected order.

Usage

```r
fmls(x, k, m, ...)
```

Arguments

- `x`: a vector
- `k`: maximum lag order
- `m`: frequency ratio
- `...`: further arguments

Details

This is a convenience function, it calls `link{msl}` to perform actual calculations.

Value

a matrix containing the lags

Author(s)

Virmantas Kvedaras, Vaidotas Zemlys

See Also

mls

forecast.midas_r

Forecast MIDAS regression

Description

Forecasts MIDAS regression given the future values of regressors. For dynamic models (with lagged response variable) there is an option to calculate dynamic forecast, when forecasted values of response variable are substituted into the lags of response variable.
Usage

```r
## S3 method for class 'midas_r'
forecast(object, newdata = NULL, se = FALSE,
  level = c(80, 95), fan = FALSE, npaths = 999, method = c("static",
  "dynamic"), insample = get_estimation_sample(object),
  show_progress = TRUE, add_ts_info = FALSE, ...)
```

Arguments

- **object**: midas_r object
- **newdata**: a named list containing future values of mixed frequency regressors. The default is NULL, meaning that only in-sample data is used.
- **se**: logical, if TRUE, the prediction intervals are calculated
- **level**: confidence level for prediction intervals
- **fan**: if TRUE, level is set to seq(50,99,by=1). This is suitable for fan plots
- **npaths**: the number of samples for simulating prediction intervals
- **method**: the forecasting method, either "static" or "dynamic"
- **insample**: a list containing the historic mixed frequency data
- **show_progress**: logical, if TRUE, the progress bar is shown if se = TRUE
- **add_ts_info**: logical, if TRUE, the forecast is cast as ts object. Some attempts are made to guess the correct start, by assuming that the response variable is a ts object of frequency 1. If FALSE, then the result is simply a numeric vector.
- **...**: additional arguments to simulate.midas_r

Details

Given future values of regressors this function combines the historical values used in the fitting the MIDAS regression model and calculates the forecasts.

Value

An object of class "forecast", a list containing following elements:

- **method**: the name of forecasting method: MIDAS regression, static or dynamic
- **model**: original object of class midas_r
- **mean**: point forecasts
- **lower**: lower limits for prediction intervals
- **upper**: upper limits for prediction intervals
- **fitted**: fitted values, one-step forecasts
- **residuals**: residuals from the fitted model
- **x**: the original response variable

The methods print, summary and plot from package forecast can be used on the object.
get_estimation_sample Get the data which was used to estimate MIDAS regression

Description

Gets the data which was used to estimate MIDAS regression

Usage

get_estimation_sample(object)
Arguments

object midas_r object

Details

A helper function.

Value

a named list with mixed frequency data

Author(s)

Vaidotas Zemlys

gompertzp

Normalized Gompertz probability density function MIDAS weights specification Calculate MIDAS weights according to normalized Gompertz probability density function specification

Description

Normalized Gompertz probability density function MIDAS weights specification Calculate MIDAS weights according to normalized Gompertz probability density function specification

Usage

gompertzp(p, d, m)

Arguments

p parameters for normalized Gompertz probability density function
d number of coefficients
m the frequency ratio, currently ignored

Value

vector of coefficients

Author(s)

Julius Vainora
gompertzp_gradient

Description
Gradient function for normalized Gompertz probability density function MIDAS weights specification Calculate gradient function for normalized Gompertz probability density function specification of MIDAS weights.

Usage

```r
gompertzp_gradient(p, d, m)
```

Arguments
- `p` parameters for normalized Gompertz probability density function
- `d` number of coefficients
- `m` the frequency ratio, currently ignored

Value
vector of coefficients

Author(s)
Julius Vainora

hAhr_test

Description
Perform a test whether the restriction on MIDAS regression coefficients holds.

Usage

```r
hAhr_test(x, PHI = vcovHAC(x$unrestricted, sandwich = FALSE))
```

Arguments
- `x` MIDAS regression model with restricted coefficients, estimated with `midas_r`
- `PHI` the "meat" covariance matrix, defaults to `vcovHAC(x$unrestricted, sandwich=FALSE)`
Details

Given MIDAS regression:

\[y_t = \sum_{j=0}^{k} \sum_{i=0}^{m-1} \theta_{jm+i} x_{t-jm-i} + u_t \]

test the null hypothesis that the following restriction holds:

\[\theta_h = g(h, \lambda), \]

where \(h = 0, \ldots, (k + 1)m \).

Value

a htest object

Author(s)

Virmantas Kvedaras, Vaidotas Zemlys

References

Kvedaras V., Zemlys, V. The statistical content and empirical testing of the MIDAS restrictions

See Also

hAh_test

Examples

```r
# The parameter function
theta_h0 <- function(p, dk, ...) {
  i <- (1:dk-1)
  (p[i] + p[2]*i)*exp(p[3]*i + p[4]*i^2)
}

# Generate coefficients
theta0 <- theta_h0(c(-0.1, 0.1, -0.1, -0.001), 4*12)

# Plot the coefficients
plot(theta0)

# Generate the predictor variable
set.seed(13)
xx <- ts(arima.sim(model = list(ar = 0.6), 600 * 12), frequency = 12)

# Simulate the response variable
y <- midas_sim(500, xx, theta0)
```
hAh_test

Test restrictions on coefficients of MIDAS regression

description

Perform a test whether the restriction on MIDAS regression coefficients holds.

Usage

hAh_test(x)

Arguments

x MIDAS regression model with restricted coefficients, estimated with midas_r

details

Given MIDAS regression:

\[y_t = \sum_{j=0}^{k} \sum_{i=0}^{m-1} \theta_{jm+i} x_{(t-j)m-i} + u_t \]

test the null hypothesis that the following restriction holds:
\[\theta_h = g(h, \lambda), \]

where \(h = 0, \ldots, (k + 1)m. \)

Value

a `h_test` object

Author(s)

Virmantas Kvedaras, Vaidotas Zemlys

References

See Also

`hAr_test`

Examples

```r
## The parameter function
theta_h0 <- function(p, dk, ...) {
  i <- (1:dk-1)
  (p[1] + p[2]*i)*exp(p[3]*i + p[4]*i^2)
}

## Generate coefficients
theta0 <- theta_h0(c(-0.1,0.1,-0.1,-0.001),4*12)

## Plot the coefficients
plot(theta0)

## Generate the predictor variable
set.seed(13)
xx <- ts(arima.sim(model = list(ar = 0.6), 600 * 12), frequency = 12)

## Simulate the response variable
y <- midas_sim(500, xx, theta0)

x <- window(xx, start=start(y))
## Fit restricted model
mr <- midas_r(y=fmls(x,4*12-1,12,theta_h0)-1,list(y=y,x=x),
               start=list(x=c(-0.1,0.1,-0.1,-0.001)))

## Perform test (the expected result should be the acceptance of null)
```
The gradient function

```r
theta_h0_gradient <- function(p, dk, \ldots) {
  i <- (1:dk-1)
  a <- exp(p[3]*i + p[4]*i^2)
  cbind(a, a*i, a*i*(p[1]+p[2]*i), a*i^2*(p[1]+p[2]*i))
}
```

```r
mr <- midas_r(y=fmls(x, 4*12-1, 12, theta_h0)-1, list(y=y, x=x),
               start=list(x=c(-0.1, 0.1, -0.1, -0.001)),
               weight_gradients=list())
```

The test will use an user supplied gradient of weight function. See the
help of midas_r on how to supply the gradient.

```r
hAh_test(mr)
```

Description

HAR(3)-RV model MIDAS weights specification

Usage

```r
harstep(p, d, m)
```

Arguments

- `p`
 parameters for Almon lag

- `d`
 number of the coefficients

- `m`
 the frequency, currently ignored.

Details

MIDAS weights for Heterogeneous Autoregressive model of Realized Volatility (HAR-RV). It is assumed that month has 20 days.

Value

vector of coefficients

Author(s)

Virmantas Kvedaras, Vaidotas Zemlys
References

harstep_gradient
Gradient function for HAR(3)-RV model MIDAS weights specification

Description

Gradient function for HAR(3)-RV model MIDAS weights specification

Usage

```r
harstep_gradient(p, d, m)
```

Arguments

- `p`: parameters for Almon lag
- `d`: number of the coefficients
- `m`: the frequency, currently ignored.

Details

MIDAS weights for Heterogeneous Autoregressive model of Realized Volatility (HAR-RV). It is assumed that month has 20 days.

Value

vector of coefficients

Author(s)

Virmantas Kvedaras, Vaidotas Zemlys

References

hf_lags_table

Create a high frequency lag selection table for MIDAS regression model

Description

Creates a high frequency lag selection table for MIDAS regression model with given information criteria and minimum and maximum lags.

Usage

hf_lags_table(formula, data, start, from, to, IC = c("AIC", "BIC"),
 test = c("hAh_test"), Ofunction = "optim", weight_gradients = NULL, ...)

Arguments

formula the formula for MIDAS regression, the lag selection is performed for the last MIDAS lag term in the formula
data a list containing data with mixed frequencies
start the starting values for optimisation
from a named list, or named vector with lag numbers which are the beginings of MIDAS lag structures. The names should correspond to the MIDAS lag terms in the formula for which to do the lag selection. Value NA indicates lag start at zero
to a named list where each element is a vector with two elements. The first element is the lag number from which the lag selection starts, the second is the lag number at which the lag selection ends. NA indicates lowest (highest) lag numbers possible.
IC the information criteria which to compute
test the names of statistical tests to perform on restricted model, p-values are reported in the columns of model selection table
Ofunction see midasr
weight_gradients see midas_r
... additional parameters to optimisation function, see midas_r

Details

This function estimates models sequentially increasing the midas lag from kmin to kmax of the last term of the given formula
Value

a midas_r_iclagtab object which is the list with the following elements:

- **table**: the table where each row contains calculated information criteria for both restricted and unrestricted MIDAS regression model with given lag structure
- **candlist**: the list containing fitted models
- **IC**: the argument IC

Author(s)

Virmantas Kvedaras, Vaidotas Zemlys

Examples

```r
data("USunemp\r")
data("USrealgdp")
y <- diff(log(USrealgdp))
x <- window(diff(USunemp),start=1949)
trend <- 1:length(y)

mlr <- hf_lags_table(y ~ trend + fmls(x, 12, 12,Nealmon),
                     start = list(x=rep(0,3)),
                     data = list(y = y, x = x, trend = trend),
                     from=c(x=0),to=list(x=c(4,4)))

mlr
```

Description

Estimate restricted MIDAS regression using non-linear least squares, when the regressor is I(1)

Usage

```r
imid\r(formula, data, start, Ofunction = "optim", weight_gradients = NULL, ...)
```

Arguments

- **formula**: formula for restricted MIDAS regression. Formula must include fmls function
- **data**: a named list containing data with mixed frequencies
- **start**: the starting values for optimisation. Must be a list with named elements.
- **Ofunction**: the list with information which R function to use for optimisation. The list must have element named Ofunction which contains character string of chosen R function. Other elements of the list are the arguments passed to this function. The default optimisation function is optim with argument method="BFGS". Other supported functions are nls
weight_gradients

A named list containing gradient functions of weights. The weight gradient function must return the matrix with dimensions \(d_k \times q \), where \(d_k \) and \(q \) are the number of coefficients in unrestricted and restricted regressions correspondingly. The names of the list should coincide with the names of weights used in formula. The default value is NULL, which means that the numeric approximation of weight function gradient is calculated. If the argument is not NULL, but the name of the weight used in formula is not present, it is assumed that there exists an R function which has the name of the weight function appended with \(\text{gradient} \).

Details

Given MIDAS regression:

\[
y_t = \sum_{j=0}^{k} \sum_{i=0}^{m-1} \theta_{jm+i} x(t-j)m-i + z_t \beta + u_t
\]

estimate the parameters of the restriction

\[
\theta_h = g(h, \lambda),
\]

where \(h = 0, ..., (k + 1)m \), together with coefficients \(\beta \) corresponding to additional low frequency regressors.

It is assumed that \(x \) is a I(1) process, hence the special transformation is made. After the transformation \(\text{midas_r} \) is used for estimation.

MIDAS regression involves times series with different frequencies.

Value

A \text{midas_r} \ object which is the list with the following elements:

- coefficients: the estimates of parameters of restrictions
- midas_coefficients: the estimates of MIDAS coefficients of MIDAS regression
- model: model data
- unrestricted: unrestricted regression estimated using \text{midas_u}
- term_info: the named list. Each element is a list with the information about the term, such as its frequency, function for weights, gradient function of weights, etc.
- fn0: optimisation function for non-linear least squares problem solved in restricted MIDAS regression
- rhs: the function which evaluates the right-hand side of the MIDAS regression
- gen_midas_coef: the function which generates the MIDAS coefficients of MIDAS regression
imidas_r

opt the output of optimisation procedure
argmap_opt the list containing the name of optimisation function together with arguments for optimisation function
start_opt the starting values used in optimisation
start_list the starting values as a list
call the call to the function
terms terms object
gradient gradient of NLS objective function
hessian hessian of NLS objective function
gradD gradient function of MIDAS weight functions
Zenv the environment in which data is placed
use_gradient TRUE if user supplied gradient is used, FALSE otherwise
nobs the number of effective observations
convergence the convergence message
fitted.values the fitted values of MIDAS regression
residuals the residuals of MIDAS regression

Author(s)
Virmantas Kvedaras, Vaidotas Zemlys

See Also
midas_r

Examples

theta.h0 <- function(p, dk) {
 i <- (1:dk-1)/100
 pol <- p[3]*i + p[4]*i^2
 (p[1] + p[2]*i)*exp(pol)
}

theta0 <- theta.h0(c(-0.1,10,-10,-10),4*12)

xx <- ts(cumsum(rnorm(600*12)), frequency = 12)

Simulate the response variable
y <- midas_sim(500, xx, theta0)

x <- window(xx, start=start(y))

imr <- imidas_r(y=fmls(x,4*12-1,12,theta.h0)-1,start=list(x=c(-0.1,10,-10,-10)))
Description

Normalized log-Cauchy probability density function MIDAS weights specification Calculate MIDAS weights according to normalized log-Cauchy probability density function specification

Usage

\[\text{lcauchyp}(p, d, m) \]

Arguments

- \(p \): parameters for normalized log-Cauchy probability density function
- \(d \): number of coefficients
- \(m \): the frequency ratio, currently ignored

Value

vector of coefficients

Author(s)

Julius Vainora

Description

Gradient function for normalized log-Cauchy probability density function MIDAS weights specification Calculate gradient function for normalized log-Cauchy probability density function specification of MIDAS weights.

Usage

\[\text{lcauchyp_gradient}(p, d, m) \]
lf_lags_table

Arguments

- `p`: parameters for normalized log-Cauchy probability density function
- `d`: number of coefficients
- `m`: the frequency ratio, currently ignored

Value

- vector of coefficients

Author(s)

Julius Vainora

Description

Creates a low frequency lag selection table for MIDAS regression model with given information criteria and minimum and maximum lags.

Usage

```r
lf_lags_table(formula, data, start, from, to, IC = c("AIC", "BIC"),
               test = c("hAh_test"), Ofunction = "optim", weight_gradients = NULL, ...)
```

Arguments

- `formula`: the formula for MIDAS regression, the lag selection is performed for the last MIDAS lag term in the formula
- `data`: a list containing data with mixed frequencies
- `start`: the starting values for optimisation
- `from`: a named list, or named vector with high frequency (NB!) lag numbers which are the beginnings of MIDAS lag structures. The names should correspond to the MIDAS lag terms in the formula for which to do the lag selection. Value NA indicates lag start at zero
- `to`: a named list where each element is a vector with two elements. The first element is the low frequency lag number from which the lag selection starts, the second is the low frequency lag number at which the lag selection ends. NA indicates lowest (highest) lag numbers possible.
- `IC`: the information criteria which to compute
- `test`: the names of statistical tests to perform on restricted model, p-values are reported in the columns of model selection table
midas_auto_sim

```r
0function see midasr
weight_gradients see midas_r
...
additional parameters to optimisation function, see midas_r
```

Details

This function estimates models sequentially increasing the midas lag from \(k_{\text{min}} \) to \(k_{\text{max}} \) of the last term of the given formula.

Value

A `midas_r_ic_table` object which is the list with the following elements:

- `table`: the table where each row contains calculated information criteria for both restricted and unrestricted MIDAS regression model with given lag structure.
- `candlist`: the list containing fitted models.
- `IC`: the argument IC.

Author(s)

Virmantas Kvedaras, Vaidotas Zemlys

Examples

```r
data("USunempr")
data("USrealgdp")
y <- diff(log(USrealgdp))
x <- window(diff(USunempr), start=1949)
trend <- 1:length(y)

mlr <- lf_lags_table(y-trend+fmls(x,12,12,nealmon),
                      start=list(x=rep(0,3)),
                      from=c(x=0), to=list(x=c(3,4)))

mlr
```

midas_auto_sim Simulate simple autoregressive MIDAS model

Description

Given the predictor variable, the weights and autoregressive coefficients, simulate MIDAS regression response variable.

Usage

```r
midas_auto_sim(n, alpha, x, theta, rand_gen = rnorm, innov = rand_gen(n, ...), n_start = NA, ...)
```
Arguments

- **n**: sample size.
- **alpha**: autoregressive coefficients.
- **x**: a high frequency predictor variable.
- **theta**: a vector with MIDAS weights for predictor variable.
- **rand_gen**: a function to generate the innovations, default is the normal distribution.
- **innov**: an optional time series of innovations.
- **n_start**: number of observations to omit for the burn.in.
- **...**: additional arguments to function `rand_gen`.

Value

- a `ts` object

Author(s)

Virmantas Kvedaras, Vaidotas Zemlys

Examples

```r
theta_h0 <- function(p, dk) {
  i <- (1:dk-1)/100
  pol <- p[3]*i + p[4]*i^2
  (p[1] + p[2]*i)*exp(pol)
}

# Generate coefficients
theta0 <- theta_h0(c(-0.1, 10, -10, -10), 4*12)

# Generate the predictor variable
xx <- ts(arima.sim(model = list(ar = 0.6), 1000 * 12), frequency = 12)

y <- midas_auto_sim(500, 0.5, xx, theta0, n_start = 200)
x <- window(xx, start=start(y))
midas_r(y - mls(y, 1, 1) + mls(x, 4*12-1, 12, theta_h0), start = list(x = c(-0.1, 10, -10, -10)))
```

midas_r

Restricted MIDAS regression

Description

Estimate restricted MIDAS regression using non-linear least squares.

Usage

```r
midas_r(formula, data, start, Ofunction = "optim", weight_gradients = NULL, ...)
```
Arguments

formula
formula for restricted MIDAS regression or midas_r object. Formula must include fmls function

data
a named list containing data with mixed frequencies

start
the starting values for optimisation. Must be a list with named elements.

0function
the list with information which R function to use for optimisation. The list must have element named 0function which contains character string of chosen R function. Other elements of the list are the arguments passed to this function. The default optimisation function is optim with argument method="BFGS". Other supported functions are nls

weight_gradients
a named list containing gradient functions of weights. The weight gradient function must return the matrix with dimensions $d_k \times q$, where d_k and q are the number of coefficients in unrestricted and restricted regressions correspondingly. The names of the list should coincide with the names of weights used in formula. The default value is NULL, which means that the numeric approximation of weight function gradient is calculated. If the argument is not NULL, but the name of the weight used in formula is not present, it is assumed that there exists an R function which has the name of the weight function appended with _gradient.

...
additional arguments supplied to optimisation function

Details

Given MIDAS regression:

$$y_t = \sum_{j=1}^{p} \alpha_j y_{t-j} + \sum_{i=0}^{k} \sum_{j=0}^{l_i} \beta^{(i)}_j x_{tm_i-j} + u_t,$$

estimate the parameters of the restriction

$$\beta^{(i)}_j = g^{(i)}(j, \lambda).$$

Such model is a generalisation of so called ADL-MIDAS regression. It is not required that all the coefficients should be restricted, i.e. the function $g^{(i)}$ might be an identity function. Model with no restrictions is called U-MIDAS model. The regressors $x^{(i)}_{t}$ must be of higher (or of the same) frequency as the dependent variable y_t.

MIDAS-AR* (a model with a common factor, see (Clements and Galvao, 2008)) can be estimated by specifying additional argument, see an example.

The restriction function must return the restricted coefficients of the MIDAS regression.

Value

a midas_r object which is the list with the following elements:
coefficients the estimates of parameters of restrictions

midas_coefficients
the estimates of MIDAS coefficients of MIDAS regression

model model data

unrestricted unrestricted regression estimated using midas_u

term_info the named list. Each element is a list with the information about the term, such as its frequency, function for weights, gradient function of weights, etc.

fn0 optimisation function for non-linear least squares problem solved in restricted MIDAS regression

rhs the function which evaluates the right-hand side of the MIDAS regression

gen_midas_coef the function which generates the MIDAS coefficients of MIDAS regression

opt the output of optimisation procedure

argmap_opt the list containing the name of optimisation function together with arguments for optimisation function

start_opt the starting values used in optimisation

start_list the starting values as a list

call the call to the function

terms terms object

gradient gradient of NLS objective function

hessian hessian of NLS objective function

gradD gradient function of MIDAS weight functions

zenv the environment in which data is placed

use_gradient TRUE if user supplied gradient is used, FALSE otherwise

nobs the number of effective observations

convergence the convergence message

fitted.values the fitted values of MIDAS regression

residuals the residuals of MIDAS regression

Author(s)
Virmantas Kvedaras, Vaidotas Zemlys

References

See Also
midas_r.midas_r
Examples

```r
# The parameter function
theta_h0 <- function(p, dk, ...) {
  i <- (1:dk-1)/100
  pol <- p[3]*i + p[4]*i^2
  (p[1] + p[2]*i)*exp(pol)
}

# Generate coefficients
theta0 <- theta_h0(c(-0.1,10,-10,-10),4*12)

# Plot the coefficients
plot(theta0)

# Generate the predictor variable
xx <- ts(arima.sim(model = list(ar = 0.6), 600 * 12), frequency = 12)

# Simulate the response variable
y <- midas.sim(500, xx, theta0)

x <- window(xx, start=start(y))

# Fit restricted model
mr <- midas_r(y=fmls(x,4*12-1,12,theta_h0)-1,
               list(y=y,x=x),
               start=list(x=c(-0.1,10,-10,-10)))

# Include intercept and trend in regression
mr_it <- midas_r(y=fmls(x,4*12-1,12,theta_h0)+trend,
                  list(data.frame(y=y,trend=1:500),x=x),
                  start=list(x=c(-0.1,10,-10,-10)))

data("USrealgdp")
data("USunempl")

y.ar <- diff(log(USrealgdp))
xx <- window(diff(USunempl), start = 1949)
trend <- 1:length(y.ar)

# Fit AR(1) model
mr_ar <- midas_r(y.ar ~ trend + mls(y.ar, 1, 1) +
                  fmls(xx, 11, 12, nealmon),
                  start = list(xx = rep(0, 3)))

# First order MIDAS-AR* restricted model
mr_arstar <- midas_r(y.ar ~ trend + mls(y.ar, 1, 1, "*")
                      + fmls(xx, 11, 12, nealmon),
                      start = list(xx = rep(0, 3)))
```

midas_r.fit Fit restricted MIDAS regression
Description

Workhorse function for fitting restricted MIDAS regression

Usage

```r
midas_r.fit(x)
```

Arguments

- `x` midas_r object

Value

midas_r object

Author(s)

Vaidotas Zemlys

midas_r_ic_table
Create a weight and lag selection table for MIDAS regression model

Description

Creates a weight and lag selection table for MIDAS regression model with given information criteria and minimum and maximum lags.

Usage

```r
midas_r_ic_table(formula, data = NULL, start = NULL, table, IC = c("AIC", "BIC"), test = c("hAh_test"), Ofunction = "optim", weight_gradients = NULL, show_progress = TRUE, ...)
```

Arguments

- `formula` the formula for MIDAS regression, the lag selection is performed for the last MIDAS lag term in the formula
- `data` a list containing data with mixed frequencies
- `start` the starting values for optimisation excluding the starting values for the last term
- `table` an wls_table object, see `expand_weights_lags`
- `IC` the names of information criteria which to compute
- `test` the names of statistical tests to perform on restricted model, p-values are reported in the columns of model selection table
- `Ofunction` see midasr
- `weight_gradients` see midas_r
- `show_progress` logical, TRUE to show progress bar, FALSE for silent evaluation
- `...` additional parameters to optimisation function, see midas_r
midas_r_np

Details

This function estimates models sequentially increasing the midas lag from \texttt{kmin} to \texttt{kmax} and varying the weights of the last term of the given formula.

Value

A \texttt{midas_r_ic_table} object which is the list with the following elements:

- **table**: the table where each row contains calculated information criteria for both restricted and unrestricted MIDAS regression model with given lag structure.
- **candlist**: the list containing fitted models.
- **IC**: the argument \texttt{IC}.

Author(s)

Virmantas Kvedaras, Vaidotas Zemlys

Examples

```r
data("USunempr")
data("USrealgdp")
y <- diff(log(USrealgdp))
x <- window(diff(USunempr), start=1949)
trend <- 1:length(y)

mwlr <- midas_r_np(y ~ trend + fmls(x, 12, 12, nealmon),
  table=list(x=list(weights=as.list(c("nealmon","nealmon","nbeta"))),
  lags=list(0:4,0:5,0:6),
  starts=list(rep(0,3),rep(0,3),c(1,1,1,0))))

mwlr
```

midas_r_np

Estimate non-parametric MIDAS regression

Description

Estimates non-parametric MIDAS regression.

Usage

`midas_r_np(formula, data, lambda = NULL)`
Arguments

- **formula**: formula specifying MIDAS regression
- **data**: a named list containing data with mixed frequencies
- **lambda**: smoothing parameter, defaults to NULL, which means that it is chosen by minimizing AIC.

Details

Estimates non-parametric MIDAS regression according to Breitung et al.

Value

A `midas_r_np` object

Author(s)

Vaidotas Zemlys

References

Examples

```r
data("USunempr")
data("USrealgdp")
y <- diff(log(USrealgdp))
x <- window(diff(USunempr), start=1949)
trend <- 1:length(y)
midas_r_np(y=trend+fmls(x,12,12))
```

midas_r_simple
Restricted MIDAS regression

Description

Function for fitting MIDAS regression without the formula interface.

Usage

```r
midas_r_simple(y, X, z = NULL, weight, grw = NULL, startx, startz = NULL, method = c("Nelder-Mead", "BFGS"), ...)
```
Arguments

y model response
X prepared matrix of high frequency variable lags
z additional low frequency variables
weight the weight function
grw the gradient of weight function
startx the starting values for weight function
startz the starting values for additional low frequency variables
method a method passed to optimx
... additional parameters to optimx

Value

an object similar to midas_r object

Author(s)

Virmantas Kvedaras, Vaidotas Zemlys

Examples

data("USunempr")
data("USrealgdp")
y <- diff(log(USrealgdp))
x <- window(diff(USunempr), start=1949)
trend <- 1:length(y)

X <- fmls(x, 11, 12)

midas_r_simple(y, X, trend, weight=nealmon, startx=c(0, 0, 0))

midas_sim Simulate simple MIDAS regression response variable

Description

Given the predictor variable and the coefficients simulate MIDAS regression response variable.

Usage

midas_sim(n, x, theta, rand_gen = rnorm, innov = rand_gen(n, ...), ...)
Arguments

- **n**: The sample size
- **x**: a `ts` object with MIDAS regression predictor variable
- **theta**: a vector with MIDAS regression coefficients
- **rand_gen**: the function which generates the sample of innovations, the default is `rnorm`
- **innov**: the vector with innovations, the default is NULL, i.e. innovations are generated using argument `rand_gen`
- **...**: additional arguments to `rand_gen`.

Details

MIDAS regression with one predictor variable has the following form:

\[y_t = \sum_{j=0}^{h} \theta_j x_{tm-j} + u_t, \]

where \(m \) is the frequency ratio and \(h \) is the number of high frequency lags included in the regression.

MIDAS regression involves times series with different frequencies. In R the frequency property is set when creating time series objects `ts`. Hence the frequency ratio \(m \) which figures in MIDAS regression is calculated from frequency property of time series objects supplied.

Value

- a `ts` object

Author(s)

Virmantas Kvedaras, Vaidotas Zemlys

Examples

```r
## The parameter function
theta_h0 <- function(p, dk) {
  i <- (1:dk-1)/100
  pol <- p[3]*i + p[4]*i^2
  (p[1] + p[2]*i)*exp(pol)
}

## Generate coefficients
theta0 <- theta_h0(c(-0.1,10,-10,-10),4*12)

## Plot the coefficients
plot(theta0)

## Generate the predictor variable, leave 4 low frequency lags of data for burn-in.
xx <- ts(arima.sim(model = list(ar = 0.6), 600 * 12), frequency = 12)

## Simulate the response variable
```
midas_u

\[
y \leftarrow \text{midas_sim}(500, xx, \theta_0)
\]
\[
x \leftarrow \text{window}(xx, \text{start=start}(y))
\]
\[
\text{midas_r}(y - \text{mls}(y, 1, 1) + \text{fmls}(x, 4*12-1, 12, \theta_0), \text{start} = \text{list}(x = c(-0.1, 10, -10, -10))
\]

midas_u Estimate unrestricted MIDAS regression

Description
Estimate unrestricted MIDAS regression using OLS. This function is a wrapper for \texttt{lm}.

Usage
\texttt{midas_u(formula, data, ...)}

Arguments
\begin{itemize}
 \item \texttt{formula} MIDAS regression model formula
 \item \texttt{data} a named list containing data with mixed frequencies
 \item \texttt{...} further arguments, which could be passed to \texttt{lm} function.
\end{itemize}

Details
MIDAS regression has the following form:

\[
y_t = \sum_{j=1}^{p} \alpha_j y_{t-j} + \sum_{i=0}^{k} \sum_{j=0}^{l_i} \beta_{j}^{(i)} x_{{t}_{i,j}-j} + u_t,
\]

where \(x_{{t}_{i,j}}, i = 0, \ldots, k\) are regressors of higher (or similar) frequency than \(y_t\). Given certain assumptions the coefficients can be estimated using usual OLS and they have the familiar properties associated with simple linear regression.

Value
\texttt{lm} object.

Author(s)
Virmantas Kvedaras, Vaidotas Zemlys

References
Examples

```r
## The parameter function
theta_h0 <- function(p, dk, ...) {
  i <- (1:dk-1)/100
  pol <- p[3]*i + p[4]*i^2
  (p[1] + p[2]*i)*exp(pol)
}

## Generate coefficients
theta0 <- theta_h0(c(-0.1,10,-10,10),4*12)

## Plot the coefficients
## Do not run
#plot(theta0)

##' ## Generate the predictor variable
xx <- ts(arima.sim(model = list(ar = 0.6), 600 * 12), frequency = 12)

## Simulate the response variable
y <- midas_sim(500, xx, theta0)

x <- window(xx, start=start(y))

## Create low frequency data.frame
ldt <- data.frame(y=y, trend=1:length(y))

## Create high frequency data.frame
hdt <- data.frame(x=window(x, start=start(y)))

## Fit unrestricted model
mu <- midas_u(y=fmls(x,2,12)-1, list(ldt, hdt))

## Include intercept and trend in regression
mu_it <- midas_u(y=fmls(x,2,12)+trend, list(ldt, hdt))

## Pass data as partially named list
mu_it <- midas_u(y=fmls(x,2,12)+trend, list(ldt, x=hdt$x))
```

mls

MidAS lag structure

Description

Create a matrix of selected MIDAS lags

Usage

```r
mls(x, k, m, ...)
```
modsel

Select the model based on given information criteria

Arguments

- **x**: a vector
- **k**: a vector of lag orders, zero denotes contemporaneous lag.
- **m**: frequency ratio
- **...**: further arguments used in fitting MIDAS regression

Details

The function checks whether high frequency data is complete, i.e. \(m \) must divide \(\text{length}(x) \).

Value

A matrix containing the lags

Author(s)

Virmantas Kvedaras, Vaidotas Zemlys

Examples

```r
## Quarterly frequency data
dx <- 1:16
## Create MIDAS lag for use with yearly data
mls(x, 0:3, 4)

## Do not use contemporaneous lag
mls(x, 1:3, 4)

## Compares with embed when m=1
embed(x, 2)
mls(x, 0:1, 1)
```

Description

Selects the model with minimum of given information criteria and model type

Usage

```r
modsel(x, IC = x$IC[1], test = x@test[1], type = c("restricted", "unrestricted"), print = TRUE)
```
Arguments

- **x**: and output from iclagtab function
- **IC**: the name of information criteria to base the choosing of the model
- **test**: the name of the test for which to print out the p-value
- **type**: the type of MIDAS model, either restricted or unrestricted
- **print**: logical, if TRUE, prints the summary of the best model.

Details

This function selects the model from the model selection table for which the chosen information criteria achieves the smallest value. The function works with model tables produced by functions `lf_lags_table`, `hf_lags_table`, `amidas_table` and `midas_r_ic_table`.

Value

(invisibly) the best model based on information criteria, `midas_r` object

Author(s)

Virmantas Kvedaras, Vaidotas Zemlys

Examples

```r
data("USunempr")
data("USrealgdp")
y <- diff(log(UStrealgdp))
x <- window(diff(UStunempr), start=1949)
trend <- 1:length(y)

mhfr <- hf_lags_table(y~trend+fmls(x,12,12,nealmon),
                      start=list(x=rep(0,3)),
                      from=list(x=0), to=list(x=c(4,6)))

mlfr <- lf_lags_table(y~trend+fmls(x,12,12,nealmon),
                      start=list(x=rep(0,3)),
                      from=list(x=0), to=list(x=c(2,3)))

modsel(mhfr,"BIC","unrestricted")
modsel(mlfr,"BIC","unrestricted")
```
nakagamip

Normalized Nakagami probability density function MIDAS weights specification Calculate MIDAS weights according to normalized Nakagami probability density function specification

Description

Normalized Nakagami probability density function MIDAS weights specification Calculate MIDAS weights according to normalized Nakagami probability density function specification

Usage

`nakagamip(p, d, m)`

Arguments

- `p`: parameters for normalized Nakagami probability density function
- `d`: number of coefficients
- `m`: the frequency ratio, currently ignored

Value

vector of coefficients

Author(s)

Julius Vainora

nakagamip_gradient

Gradient function for normalized Nakagami probability density function MIDAS weights specification Calculate gradient function for normalized Nakagami probability density function specification of MIDAS weights.

Description

Gradient function for normalized Nakagami probability density function MIDAS weights specification Calculate gradient function for normalized Nakagami probability density function specification of MIDAS weights.

Usage

`nakagamip_gradient(p, d, m)`
Arguments

\(p \) parameters for normalized Nakagami probability density function

\(d \) number of coefficients

\(m \) the frequency ratio, currently ignored

Value

vector of coefficients

Author(s)

Julius Vainora

\textit{nbeta} \hspace{1cm} \textit{Normalized beta probability density function MIDAS weights specification Calculate MIDAS weights according to normalized beta probability density function specification}

Description

Normalized beta probability density function MIDAS weights specification Calculate MIDAS weights according to normalized beta probability density function specification

Usage

\texttt{nbeta(p, d, m)}

Arguments

\(p \) parameters for normalized beta probability density function

\(d \) number of coefficients

\(m \) the frequency ratio, currently ignored

Value

vector of coefficients

Author(s)

Virmantas Kvedaras, Vaidotas Zemlys
| nbetaMT | Normalized beta probability density function MIDAS weights specification (MATLAB toolbox compatible) Calculate MIDAS weights according to normalized beta probability density function specification. Compatible with the specification in MATLAB toolbox. |

Description

Normalized beta probability density function MIDAS weights specification (MATLAB toolbox compatible) Calculate MIDAS weights according to normalized beta probability density function specification. Compatible with the specification in MATLAB toolbox.

Usage

\[
nbetaMT(p, d, m)
\]

Arguments

- \(p\) parameters for normalized beta probability density function
- \(d\) number of coefficients
- \(m\) the frequency ratio, currently ignored

Value

vector of coefficients

Author(s)

Virmantas Kvedaras, Vaidotas Zemlys

| nbetaMT_gradient | Gradient function for normalized beta probability density function MIDAS weights specification (MATLAB toolbox compatible) Calculate gradient function for normalized beta probability density function specification of MIDAS weights. |

Description

Gradient function for normalized beta probability density function MIDAS weights specification (MATLAB toolbox compatible) Calculate gradient function for normalized beta probability density function specification of MIDAS weights.

Usage

\[
nbetaMT_gradient(p, d, m)
\]
Arguments

\(p \)
parameters for normalized beta probability density function

\(d \)
number of coefficients

\(m \)
the frequency ratio, currently ignored

Value

vector of coefficients

Author(s)

Virmantas Kvedaras, Vaidotas Zemlys

\texttt{nbeta_gradient}
\textit{Gradient function for normalized beta probability density function MIDAS weights specification Calculate gradient function for normalized beta probability density function specification of MIDAS weights.}

Description

Gradient function for normalized beta probability density function MIDAS weights specification Calculate gradient function for normalized beta probability density function specification of MIDAS weights.

Usage

\texttt{nbeta_gradient(p, d, m)}

Arguments

\(p \)
parameters for normalized beta probability density function

\(d \)
number of coefficients

\(m \)
the frequency ratio, currently ignored

Value

vector of coefficients

Author(s)

Virmantas Kvedaras, Vaidotas Zemlys
Description

Calculate normalized exponential Almon lag coefficients given the parameters and required number of coefficients.

Usage

nealmon(p, d, m)

Arguments

p parameters for Almon lag
d number of the coefficients
m the frequency, currently ignored.

Details

Given unrestricted MIDAS regression

\[y_t = \sum_{h=0}^{d} \theta_h x_{tm-h} + z_t\beta + u_t \]

normalized exponential Almon lag restricts the coefficients \(\theta_h \) in the following way:

\[\theta_h = \delta \frac{\exp(\lambda_1(h+1) + \ldots + \lambda_r(h+1)^r)}{\sum_{s=0}^{d} \exp(\lambda_1(s+1) + \ldots + \lambda_r(h+1)^r)} \]

The parameter \(\delta \) should be the first element in vector \(p \). The degree of the polynomial is then decided by the number of the remaining parameters.

Value

vector of coefficients

Author(s)

Virmantas Kvedaras, Vaidotas Zemlys
Examples

```r
# Load data
data("USunempr")
data("USrealgdp")

y <- diff(log(USrealgdp))
x <- window(diff(USunempr), start=1949)
t <- 1:length(y)

midas_r(y-t+fmls(x, 11, 12, nealmon), start=list(x=c(0, 0, 0)))
```

nealmon_gradient Gradient function for normalized exponential Almon lag weights

Description

Gradient function for normalized exponential Almon lag weights

Usage

```r
nealmon_gradient(p, d, m)
```

Arguments

- `p` hyperparameters for Almon lag
- `d` number of coefficients
- `m` the frequency ratio, currently ignored

Value

the gradient matrix

Author(s)

Vaidotas Zemlys
Description

The code in the example generates the out-of-sample prediction precision data for correctly and incorrectly constrained MIDAS regression model compared to unconstrained MIDAS regression model.

Format

A data frame object with four columns. The first column indicates the sample size, the second the type of constraint, the third the value of the precision measure and the fourth the type of precision measure.

Examples

```r
## Do not run:
## set.seed(1001)

## gendata<-function(n) {
##     trend<-c(1:n)
##     z<-rnorm(12*n)
##     fn.z <- nealmon(p=c(2,0.5,-0.1),d=17)
##     y<-2+0.1*trend+mld(z,0:16,12)*%*%fn.z+rnorm(n)
##     list(y=as.numeric(y),z=z,trend=trend)
## }

## nn <- c(50,100,200,300,500,750,1000)
## data_sets <- lapply(n,gendata)

## mse <- function(x) {
##     mean(residuals(x)^2)
## }

## bnorm <- function(x) {
##     sqrt(sum((coef(x, midas = TRUE)-c(2,0.1,nealmon(p=c(2,0.5,-0.1),d=17))))^2))
## }

## repl <- function(n) {
##     dt <- gendata(round(1.25*n))
##     ni <- n
##     ind <- 1:ni
##     mind <- 1:(ni*12)
##     indt<-list(y=dt$y[ind],z=dt$z[mind],trend=dt$trend[ind])
##     outdt <- list(y=dt$y[-ind],z=dt$z[-mind],trend=dt$trend[-ind])
##     um <- midas_r(y=trend+mld(z,0:16,12),data=indt,start=NULL)
##     rm <- midas_r(y=trend+mld(z,0:16,12,nealmon),data=indt,start=list(z=c(1,-1,0)))
##     am <- midas_r(y=trend+mld(z,0:16,12,almonp),data=indt,start=list(z=c(1,0,0,0)))
```
plot_midas_coef

Plot MIDAS coefficients

Description

Plots MIDAS coefficients of a MIDAS regression for a selected term.

Usage

plot_midas_coef(x, term_name = NULL, title = NULL, vcov. = sandwich, unrestricted = x$unrestricted, ...)

Arguments

x midas_r object
term_name the term name for which the coefficients are plotted. Default is NULL, which selects the first MIDAS term
title the title string of the graph. The default is NULL for the default title.
vcov. the covariance matrix to calculate the standard deviation of the coefficients
unrestricted the unrestricted model, the default is unrestricted model from the x object. Set NULL to plot only the weights.
... additional arguments passed to vcov.
Details

Plots MIDAS coefficients of a selected MIDAS regression term together with corresponding MIDAS coefficients and their confidence intervals of unrestricted MIDAS regression.

Value

a data frame with restricted MIDAS coefficients, unrestricted MIDAS coefficients and lower and upper confidence interval limits. The data frame is returned invisibly.

Author(s)

Virmantas Kvedaras, Vaidotas Zemlys

Examples

data("USrealgdp")
data("USunempr")

y <- diff(log(USrealgdp))
x <- window(diff(USunempr), start = 1949)
trend <- 1:length(y)

##24 high frequency lags of x included
mr <- midas_r(y ~ trend + fmls(x, 23, 12, mealmon), start = list(x = rep(0, 3)))

plot_midas_coef(mr)

polystep

Step function specification for MIDAS weights

Description

Step function specification for MIDAS weights

Usage

polystep(p, d, m, a)

Arguments

p vector of parameters
d number of coefficients
m the frequency ratio, currently ignored
a vector of increasing positive integers indicating the steps

Value

vector of coefficients
Author(s)
Vaidotas Zemlys

polystep_gradient
Gradient of step function specification for MIDAS weights

Description
Gradient of step function specification for MIDAS weights

Usage
polystep_gradient(p, d, m, a)

Arguments
p vector of parameters
d number of coefficients
m the frequency ratio, currently ignored
a vector of increasing positive integers indicating the steps

Value
vector of coefficients

Author(s)
Vaidotas Zemlys

predict.midas_r
Predict method for MIDAS regression fit

Description
Predicted values based on midas_r object.

Usage
S3 method for class 'midas_r'
predict(object, newdata, na.action = na.omit, ...)
predict.midas_r

Arguments

object midas_r object
newdata a named list containing data for mixed frequencies. If omitted, the in-sample values are used.
na.action function determining what should be done with missing values in newdata. The most likely cause of missing values is the insufficient data for the lagged variables. The default is to omit such missing values.
... additional arguments, not used

Details

predict.midas_r produces predicted values, obtained by evaluating regression function in the frame newdata. This means that the appropriate model matrix is constructed using only the data in newdata. This makes this function not very convenient for forecasting purposes. If you want to supply the new data for forecasting horizon only use the function forecast.midas_r. Also this function produces only static predictions, if you want dynamic forecasts use the forecast.midas_r.

Value

a vector of predicted values

Author(s)

Virmantas Kvedaras, Vaidotas Zemlys

Examples

data("USrealgdp")
data("USunempr")
y <- diff(log(USSrealgdp))
x <- window(diff(USSunempr), start = 1949)
#24 high frequency lags of x included
mr <- midas_r(y ~ fmls(x, 23, 12, nealmon), start = list(x = rep(0, 3)))
#Declining unemployment
xn <- rnorm(2 * 12, -0.1, 0.1)
#Only one predicted value, historical values discarded
predict(mr, list(x = xn))
#Historical values taken into account
forecast(mr, list(x = xn))
prep_hAh

Calculate data for hAh_test and hAhr_test

Description

Workhorse function for calculating necessary matrices for hAh_test and hAhr_test. Takes the same parameters as hAh_test.

Usage

```r
prep_hAh(x)
```

Arguments

- `x` : midas_r object

Value

A list with necessary matrices

Author(s)

Virmantas Kvedaras, Vaidotas Zemlys

See Also

hAh_test, hAhr_test

rvsp500

Realized volatility of S&P500 index

Description

Realized volatility of S&P500(Live) index of the period 2000 01 03 - 2013 11 22

Format

A data.frame object with two columns. First column contains date id, and the second the realized volatility for S&P500 index.

Source

http://realized.oxford-man.ox.ac.uk/media/1366/oxfordmanrealizedvolatilityindices.zip
References

Examples

```r
## Do not run:
## Download the data from
## http://realized.oxford-man.ox.ac.uk/media/1366/oxfordmanrealizedvolatilityindices.zip
## It contains the file OxfordManRealizedVolatilityIndices.csv.

## rvi <- read.csv("OxfordManRealizedVolatilityIndices.csv",check.names=FALSE,skip=2)
## ii <- which(rvi$DateID=="20131112")
## rvsp500 <- na.omit(rvi[1:ii,c("DataID","SPX.rv")])
```

select_and_forecast
Create table for different forecast horizons

Description

Creates tables for different forecast horizons and table for combined forecasts

Usage

```r
select_and_forecast(formula, data, from, to, insample, outsample, weights, wstart, start = NULL, IC = "AIC", seltype = c("restricted", "unrestricted"), test = "hAh_test", ftype = c("fixed", "recursive", "rolling"), measures = c("MSE", "MAPE", "MASE"), fweights = c("EW", "BICW", "MSFE", "DMSFE"), ...)
```

Arguments

- **formula**: initial formula for the
- **data**: list of data
- **from**: a named list of starts of lags from where to fit. Denotes the horizon
- **to**: a named list for lag selections
- **insample**: the low frequency indexes for in-sample data
- **outsample**: the low frequency indexes for out-of-sample data
- **weights**: names of weight function candidates
- **wstart**: starting values for weight functions
- **start**: other starting values
- **IC**: name of information criteria to choose model from
- **seltype**: argument to modsel, “restricted” for model selection based on information criteria of restricted MIDAS model, “unrestricted” for model selection based on unrestricted (U-MIDAS) model.
select_and_forecast

test argument to modsel
ftype which type of forecast to use.
measures the names of goodness of fit measures
fweights names of weighting schemes
... additional arguments for optimisation method, see midas_r

Details

Divide data into in-sample and out-of-sample. Fit different forecasting horizons for in-sample data. Calculate accuracy measures for individual and average forecasts.

Value

a list containing forecasts, tables of accuracy measures and the list with selected models

Author(s)

Virmantas Kvedaras, Vaidotas Zemlys

Examples

```r
### Sets a seed for RNG ###
set.seed(1001)
## Number of low-frequency observations
n<-250
## Linear trend and higher-frequency explanatory variables (e.g. quarterly and monthly)
trend<-c(1:n)
x<-rnorm(4*n)
z<-rnorm(12*n)
## Exponential Almon polynomial constraint-consistent coefficients
fn.x <- nealmon(p=c(1,-0.5),d=8)
fn.z <- nealmon(p=c(2,0.5,-0.1),d=17)
## Simulated low-frequency series (e.g. yearly)
y<2+0.1*trend+mls(x,0:7,4)*%*fn.x+mls(z,0:16,12)*%*fn.z+rnorm(n)
## Do not run
## cbfc<-select_and_forecast(y~trend+mls(x,0,4)+mls(z,0,12),
## from=list(x=c(4,8,12),z=c(12,24,36)),
## to=list(x=rbind(c(14,19),c(18,23),c(22,27)),z=rbind(c(22,27),c(34,39),c(46,51))),
## insample=1:200,outsample=201:250,
## weights=list(x=c("nealmon","almonp"),z=c("nealmon","almonp")),
## wstart=list(nealmon=rep(1,3),almonp=rep(1,3)),
## IC="AIC",
## seltype="restricted",
## ftype="fixed",
## measures=c("MSE","MAPE","MASE"),
## fweights=c("EW","BICW","MSFE","DMSFE")
## )
```
simulate.midas_r Simulate MIDAS regression response

Description

Simulates one or more responses from the distribution corresponding to a fitted MIDAS regression object.

Usage

S3 method for class 'midas_r'
simulate(object, nsim = 999, seed = NULL, future = TRUE,
 newdata = NULL, insample = NULL, method = c("static", "dynamic"),
 innov = NULL, show_progress = TRUE, ...)

Arguments

- `object` midas_r object
- `nsim` number of simulations
- `seed` either NULL or an integer that will be used in a call to set.seed before simulating the time series. The default, NULL will not change the random generator state.
- `future` logical, if TRUE forecasts are simulated, if FALSE in-sample simulation is performed.
- `newdata` a named list containing future values of mixed frequency regressors. The default is NULL, meaning that only in-sample data is used.
- `insample` a list containing the historic mixed frequency data
- `method` the simulation method, if "static" in-sample values for dependent variable are used in autoregressive MIDAS model, if "dynamic" the dependent variable values are calculated step-by-step from the initial in-sample values.
- `innov` a matrix containing the simulated innovations. The default is NULL, meaning, that innovations are simulated from model residuals.
- `show_progress` logical, TRUE to show progress bar, FALSE for silent evaluation
- `...` not used currently

Details

Only the regression innovations are simulated, it is assumed that the predictor variables and coefficients are fixed. The innovation distribution is simulated via bootstrap.

Value

a matrix of simulated responses. Each row contains a simulated response.
split_data

Split mixed frequency data into in-sample and out-of-sample

Description

Splits mixed frequency data into in-sample and out-of-sample datasets given the indexes of the low frequency data

Usage

split_data(data, insample, outsample)

Arguments

data a list containing mixed frequency data
insample the low frequency indexes for in-sample data
outsample the low frequency indexes for out-of-sample data

Details

It is assumed that data is a list containing mixed frequency data. Then given the indexes of the low frequency data the function splits the data into two subsets.
update_weights

Value

a list with elements `indata` and `outdata` containing respectively in-sample and out-of-sample data sets

Author(s)

Virmantas Kvedaras, Vaidotas Zemlys

Examples

```r
#Monthly data
x <- 1:24
#Quarterly data
z <- 1:8
#Yearly data
y <- 1:2
split_data(list(y=y,x=x,z=z),insample=1,outsample=2)
```

update_weights
Updates weights in MIDAS regression formula

Description

Updates weights in a expression with MIDAS term

Usage

```r
update_weights(expr, tb)
```

Arguments

- `expr`
 expression with MIDAS term
- `tb`
 a named list with redefined weights

Details

For a MIDAS term `fmls(x, 6, 1, nealmon)` change weight `nealmon` to another weight.

Value

an expression with changed weights

Author(s)

Vaidotas Zemlys

Examples

```r
update_weights(y~trend+mls(x,0:7,4,nealmon)+mls(z,0:16,12,nealmon),list(x = "nbeta", z = ""))
```
USpayems

United States total employment non-farms payroll, monthly, seasonally adjusted.

Description

Format

A \texttt{ts} object.

Source

FRED, Federal Reserve Economic Data, from the Federal Reserve Bank of St. Louis

Examples

Do not run:
library(quantmod)
USpayems <- ts(getSymbols("PAYEMS", src="FRED", auto.assign=FALSE), start=c(1939,1), frequency=12)

USqgdp

United States gross domestic product, quarterly, seasonally adjusted annual rate.

Description

Format

A \texttt{ts} object.

Source

FRED, Federal Reserve Economic Data, from the Federal Reserve Bank of St. Louis

Examples

Do not run:
library(quantmod)
USqgdp <- ts(getSymbols("GDP", src="FRED", auto.assign=FALSE), start=c(1947,1), frequency=4)
USrealgdp

<table>
<thead>
<tr>
<th>USrealgdp</th>
<th>US annual gross domestic product in billions of chained 2005 dollars</th>
</tr>
</thead>
</table>

Description

Format

A `ts` object.

Source

U.S. Department of Commerce, Bureau of Economic Analysis

USunempr

<table>
<thead>
<tr>
<th>USunempr</th>
<th>US monthly unemployment rate</th>
</tr>
</thead>
</table>

Description

The monthly unemployment rate for United States from 1948 to 2011.

Format

A `ts` object.

Source

U.S. Bureau of Labor Statistics

weights_table

<table>
<thead>
<tr>
<th>weights_table</th>
<th>Create a weight function selection table for MIDAS regression model</th>
</tr>
</thead>
</table>

Description

Creates a weight function selection table for MIDAS regression model with given information criteria and weight functions.

Usage

```r
weights_table(formula, data, start = NULL, IC = c("AIC", "BIC"),

               test = c("hAh_test"), Ofunction = "optim", weight_gradients = NULL, ...)
```
Arguments

- **formula**: the formula for MIDAS regression, the lag selection is performed for the last MIDAS lag term in the formula.
- **data**: a list containing data with mixed frequencies.
- **start**: the starting values for optimisation.
- **IC**: the information criteria which to compute.
- **test**: the names of statistical tests to perform on restricted model, p-values are reported in the columns of model selection table.
- **Ofunction**: see midasr.
- **weight_gradients**: see midas_r.
- **...**: additional parameters to optimisation function, see midas_r.

Details

This function estimates models sequentially increasing the midas lag from \(k_{\text{min}} \) to \(k_{\text{max}} \) of the last term of the given formula.

Value

A `midas_r_ic_table` object which is the list with the following elements:

- **table**: the table where each row contains calculated information criteria for both restricted and unrestricted MIDAS regression model with given lag structure.
- **candlist**: the list containing fitted models.
- **IC**: the argument IC.

Author(s)

Virmantas Kvedaras, Vaidotas Zemlys.

Examples

```r
data("USunempr")
data("USrealgdp")
y <- diff(log(USrealgdp))
x <- window(diff(USunempr), start=1949)
trend <- 1:length(y)
mwr <- weights_table(y-trend+fmls(x,12,12,nealmon),
    start=list(x=list(nealmon=rep(0,3),
    nbeta=c(1,1,1,0))))
```
Index

*Topic datasets
 oos_prec, 53
 rvsp500, 58
 USpayems, 64
 USagdp, 64
 USrealgdp, 65
 USunempl, 65

*Topic package
 midasr-package, 3
 +.lws_table, 3
 agk.test, 4
 almonp, 5
 almonp_gradient, 6
 amidas_table, 6, 46
 amweights, 7, 8, 15
 average_forecast, 9
 check_mixfreq, 11
 coef.midas_r, 11
 deriv_tests, 13
 deviance.midas_r, 13
 dmls, 14
 expand_amidas, 15
 expand_weights_lags, 16, 38
 fmls, 17, 28, 35
 forecast(forecast.midas_r), 17
 forecast.midas_r, 17, 57
 get_estimation_sample, 19
 gompertz, 20
 gompertzp_gradient, 21
 hah_test, 23, 58
 hAhr_test, 21, 58
 harstep, 25
 harstep_gradient, 26
 hf_lags_table, 27, 46
 imidas_r, 28
 lcauchyp, 31
 lcauchyp_gradient, 31
 lf_lags_table, 32, 46
 lm, 43
 midas_auto_sim, 33
 midas_r, 4, 7, 13, 14, 21, 23, 27, 29, 33, 34, 38, 46, 57, 60, 61, 66
 midas_r.fit, 37
 midas_r.ic_table, 16, 38, 46
 midas_r_np, 39
 midas_r_simple, 40
 midas_sim, 41
 midas_u, 29, 36, 43
 midasr, 7, 27, 33, 38, 66
 midasr (midasr-package), 3
 midasr-package, 3
 mls, 44
 modsel, 45
 nakagamip, 47
 nakagamip_gradient, 47
 nbeta, 48
 nbeta_gradient, 50
 nbetaMT, 49
 nbetaMT_gradient, 49
 nealmon, 51
 nealmon_gradient, 52
 nls, 28, 35
 oos_prec, 53
 optim, 28, 35
 optimx, 41
 plot_midas_coef, 54
 polystep, 55
 polystep_gradient, 56
 predict.midas_r, 56
 prep_hAhr, 58
rnorm, 42
rvsp500, 58

select_and_forecast, 59
simulate(simulate.midas_r), 61
simulate.midas_r, 61
split_data, 62

ts, 42, 64, 65

update_weights, 63
USpayems, 64
USqgdp, 64
USrealgdp, 65
USunempr, 65

weights_table, 65