Package ‘glmvsd’

February 19, 2015

Type Package

Title Variable Selection Deviation Measures and Instability Tests for High-Dimensional Generalized Linear Models

Version 1.2

Date 2014-09-19

Author
 Ying Nan <nanx0006@gmail.com>, Yi Yang <yiyang@umn.edu>, Yuhong Yang <yyang@stat.umn.edu>

Maintainer Yi Yang <yiyang@umn.edu>

Depends stats, glmnet, ncvreg, MASS

Description Variable selection deviation (VSD) measures and instability tests for high-dimensional model selection methods such as LASSO, SCAD and MCP, etc., to decide whether the sparse patterns identified by those methods are reliable.

License GPL-2

URL https://github.com/emeryyi(glmvsd

Date/Publication 2015-02-14 00:50:14

NeedsCompilation no

Repository CRAN

R topics documented:

 glmvsd ... 2
 stability.test ... 5

Index 7
glmvsd

Description

The package calculate the variable selection deviation (VSD) to measure the uncertainty of the selection in terms of inclusion of predictors in the model.

Usage

```r
glmvsd(x, y, n_train = ceiling(n/2),
no_rep = 100, model_check,
psi = 1, family = c("gaussian", "binomial"),
method = c("union", "customize"),
candidate_models,
weight_function = c("ARM", "BIC"), prior = TRUE)
```

Arguments

- `x`: Matrix of predictors.
- `y`: Response variable.
- `n_train`: Size of training set when the weight function is ARM or ARM with prior. The default value is `n_train = ceiling(n/2)`.
- `no_rep`: Number of replications when the weight function is ARM and ARM with prior. The default value is `no_rep = 100`.
- `model_check`: The index of the model to be assessed by calculating the VSD measures.
- `psi`: A positive number to control the improvement of the prior weight. The default value is 1.
- `family`: Choose the family for GLM models. So far only `gaussian`, `binomial` and `tweedie` are implemented. The default is `gaussian`.
- `method`: User chooses one of the `union` and `customize`. If `method = "union"`, then the program automatically provides the candidate models as a union of solution paths of Lasso, SCAD, and MCP; If `method = "customize"`, the user must provide their own set of candidate models in the input argument `candidate_models` as a matrix, each row of which is a 0/1 index vector representing whether each variable is included/excluded in the model.
- `candidate_models`: Only available when `method = "customize"`. It is a matrix of candidate models, each row of which is a 0/1 index vector representing whether each variable is included/excluded in the model.
- `weight_function`: Options for computing weights for VSD measure. User chooses one of the `ARM`, `BIC`. The default is `ARM`.
- `prior`: Whether use prior in the weight function. The default is `TRUE`.
Details
See Reference section.

Value
A "glmvsd" object is returned. The components are:

- **VSD**: Variable selection deviation (VSD) value.
- **VSD_minus**: The lower VSD value of model_check, representing the number of predictors in the model (model_check) not quite justified at the present sample size.
- **VSD_plus**: The upper VSD value of model_check model, representing the number of predictors missed by the model (model_check).
- **weight**: The weight for each candidate model.
- **DIFF**: Counting the variable differences between candidate models and model_check.
- **candidate_models_cleaned**: Cleaned candidate models: the duplicated candidate models are cleaned; When computing VSD weights using BIC, the models with more than n-2 variables are removed (n is the number of observations); When computing VSD weights using ARM, the models with more than n_train-2 variables are removed (n_train is the number of training observations).

References

BugReport: https://github.com/emeryyi(glmvsd)

Examples

```r
# REGRESSION CASE

# generate simulation data
n <- 50
p <- 8
beta <- c(3,1.5,0,0,2,0,0,0)
sigma <- matrix(0,p,p)
for(i in 1:p){
  for(j in 1:p) sigma[i,j] <- 0.5*abs(i-j)
}
x <- mvrnorm(n, rep(0,p), sigma)
e <- rnorm(n)
y <- x %*% beta + e

# user provide a model to be checked
model_check <- c(0,1,1,1,0,0,0,1)

# compute VSD for model_check using ARM with prior
```
v_ARM <- glmvsd(x, y, n_train = ceiling(n/2),
no_rep=50, model_check = model_check, psi=1,
family = "gaussian", method = "union",
weight_function = "ARM", prior = TRUE)

compute VSD for model_check using BIC
v_BIC <- glmvsd(x, y,
model_check = model_check,
family = "gaussian", method = "union",
weight_function = "BIC", prior = TRUE)

user supplied candidate models
candidate_models = rbind(c(0,0,0,0,0,0,0,1),
c(0,1,0,0,0,0,1), c(0,1,1,0,0,0,1),
c(0,1,1,0,0,0,1), c(1,1,0,1,1,0,0,0),
c(1,1,0,1,0,0,0))

v1_BIC <- glmvsd(x, y,
model_check = model_check, psi=1,
family = "gaussian",
method = "customize",
candidate_models = candidate_models,
weight_function = "BIC", prior = TRUE)

CLASSIFICATION CASE

generate simulation data
n = 300
p = 8
b <- c(1,1,1,-3*sqrt(2)/2)
x=matrix(rnorm(n*p, mean=0, sd=1), n, p)
feta=x[, 1:4]*%*%b
fprob=exp(feta)/(1+exp(feta))
y=rbinom(n, 1, fprob)

user provide a model to be checked
model_check <- c(0,1,1,1,0,0,0,1)

compute VSD for model_check using BIC with prior
b_BIC <- glmvsd(x, y, n_train = ceiling(n/2),
family = "binomial",
no_rep=50, model_check = model_check, psi=1,
method = "union", weight_function = "BIC",
prior = TRUE)

candidate_models =
rbind(c(0,0,0,0,0,0,0,1),
c(0,1,0,0,0,0,1),
c(1,1,1,0,0,0,0),
c(0,1,1,0,0,0,1),
c(1,1,0,1,1,0,0,0),
c(1,1,0,1,0,0,0),
c(0,0,0,0,0,0,0),
c(0,0,0,0,0,0,0),
c(0,0,0,0,0,0,0))

c(1,1,1,1,0,0,0)

compute VSD for model_check using BIC
user supplied candidate models
b_BIC <- glmvsd(x, y,
family = "binomial",
model_check = model_check, psi=1,
method = "customize",
candidate_models = candidate_models,
weight_function = "BIC")

stability.test Instability tests

Description
This function calculates the sequential, parametric bootstrap and perturbation instability measures for linear regression with Lasso, SCAD and MCP penalty.

Usage

stability.test(x, y,
method = c("seq", "bs", "perturb"),
penalty = c("lasso", "scad", "mcp"),
nrep = 50, remove = 0.2, tau = 0.5, nfolds = 5)

Arguments

x Matrix of predictors.
y Response variable.
method Type of instability measures. seq = sequential instability, bs = parametric bootstrap instability, and perturb = perturbation instability.
penalty Penalty function.
nrep Number of repetition for calculating instability, default is 50.
remove The portion of observation to be removed when the sequential instability is calculated, default is 0.2.
tau The size of perturbation when perturbation instability is calculated. The range of tau is (0,1), default is 0.5
nfolds number of folds - default is 5.

Details
See Reference section.

Value
Return the instability index according to the type of instability measures.
References

http://dx.doi.org/10.1080/10618600.2013.829780

BugReport: https://github.com/emeryyi/glmvsd

Examples

```r
# generate simulation data
n <- 50
p <- 8
beta <- c(2.5, 1.5, 0.5, rep(0, 5))
sigma <- matrix(0, p, p)
for(i in 1:p){
  for(j in 1:p) sigma[i, j] <- 0.5*abs(i-j)
}
x <- mvrnorm(n, rep(0, p), sigma)
e <- rnorm(n)
y <- x %*% beta + e

ins_seq <- stability.test(x, y, method = "seq",
penalty = "scad", nrep = 20,
remove = 0.1, tau = 0.2, nfolds = 5)
```
Index

glmvsd, 2

stability.test, 5