Package ‘faoutlier’

February 19, 2015

Version 0.4
Date 2013-04-15
Type Package
Title Influential case detection methods for factor analysis and SEM
Maintainer Phil Chalmers <rphilip.chalmers@gmail.com>
Description Tools for detecting and summarize influential cases that can affect exploratory and confirmatory factor analysis models as well as structural equation models more generally.
Depends R (>= 2.14), parallel, sem
Imports lattice, lavaan, MASS
Suggests testthat
ByteCompile yes
LazyLoad yes
LazyData yes
Repository CRAN
License GPL (>= 2)
URL https://github.com/philchalmers/faoutlier
Author Phil Chalmers [aut, cre]
NeedsCompilation no
Date/Publication 2014-05-24 08:18:50

R topics documented:

 faoutlier ... 2
 forward.search ... 2
 gCD ... 4
 holzinger ... 6
 holzinger.outlier ... 7
 LD ... 7
 obs.resid .. 9
 robustMD ... 11
 setCluster ... 12
faoutlier

Influential case detection methods for FA and SEM

Details

Implements robust Mahalanobis methods, generalized Cook’s distances, likelihood ratio tests, model implied residuals, and various graphical methods to help detect and summarize influential cases that can affect exploratory and confirmatory factor analyses.

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

forward.search

Forward search algorithm for outlier detection

Description

The forward search algorithm begins by selecting a homogeneous subset of cases based on a maximum likelihood criteria and continues to add individual cases at each iteration given an acceptance criteria. By default the function will add cases that contribute most to the likelihood function and that have the closest robust Mahalanobis distance, however model implied residuals may be included as well.

Usage

forward.search(data, model, criteria = c("LD", "mah"), n.subsets = 1000, p.base = 0.4, print.messages = TRUE, ...)

S3 method for class 'forward.search'
print(x, stat = "X2", ...)

S3 method for class 'forward.search'
plot(x, y = NULL, stat = "X2", main = "Forward Search", type = c("p", "h"), ylab = "obs.resid", ...)
forward.search

Arguments

- **data**: matrix or data.frame
- **model**: if a single numeric number declares number of factors to extract in exploratory factor analysis. If `class(model)` is a sem (semmod), or lavaan (character), then a confirmatory approach is performed instead
- **criteria**: character strings indicating the forward search method. Can contain 'LD' for likelihood distance, 'mah' for Mahalanobis distance, or 'res' for model implied residuals
- **n.subsets**: a scalar indicating how many samples to draw to find a homogeneous starting base group
- **p.base**: proportion of sample size to use as the base group
- **print.messages**: logical; print how many iterations are remaining?
- **x**: an object of class forward.search
- **...**: additional parameters to be passed
- **y**: a null value ignored by plot
- **main**: the main title of the plot
- **type**: type of plot to use, default displays points and lines
- **ylab**: the y label of the plot

Details

Note that `forward.search` is not limited to confirmatory factor analysis and can apply to nearly any model being studied where detection of influential observations is important.

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

See Also

- `gcd`, `ld`, `robustMD`, `setCluster`

Examples

```r
## Not run:

# run all internal gcd and ld functions using multiple cores
setCluster()

# Exploratory
nfact <- 3
(FS <- forward.search(holzinger, nfact))
(FS.outlier <- forward.search(holzinger.outlier, nfact))
```
plot(FS)
plot(FS.outlier)

Confirmatory with sem
model <- specifyModel()
F1 <- ~ Remndrs, lam11
F1 <- ~ SntComp, lam21
F1 <- ~ WrdMean, lam31
F2 <- ~ MissNum, lam41
F2 <- ~ MxdArit, lam52
F2 <- ~ OddWrds, lam62
F3 <- ~ Boots, lam73
F3 <- ~ Gloves, lam83
F3 <- ~ Hatchts, lam93
F1 <- F1, NA, 1
F2 <- F2, NA, 1
F3 <- F3, NA, 1

(FS <- forward.search(holzinger, model))
(FS.outlier <- forward.search(holzinger.outlier, model))
plot(FS)
plot(FS.outlier)

Confirmatory with lavaan
model <- 'F1 =~ Remndrs + SntComp + WrdMean
F2 =~ MissNum + MxdArit + OddWrds
F3 =~ Boots + Gloves + Hatchts'

(FS <- forward.search(holzinger, model))
(FS.outlier <- forward.search(holzinger.outlier, model))
plot(FS)
plot(FS.outlier)

End(Not run)

gCD

Generalized Cook’s Distance

Description

Compute generalize Cook’s distances (gCD’s) for exploratory and confirmatory FA. Can return DFBETA matrix if requested.

Usage

`gCD(data, model, ...)`
Arguments

- **data**: matrix or data.frame
- **model**: if a single numeric number declares number of factors to extract in exploratory factor analysis (requires complete dataset, i.e., no missing). If `class(model)` is a sem (semmod), or lavaan (character), then a confirmatory approach is performed instead
- **x**: an object of class `gcd`
- **head**: a ratio of how many extreme gCD cases to display
- **DFBETAS**: logical; attach DFBETA matrix attribute to returned result?
- **...**: additional parameters to be passed
- **y**: a NULL value ignored by the plotting function
- **main**: the main title of the plot
- **type**: type of plot to use, default displays points and lines
- **ylab**: the y label of the plot

Details

Note that gCD is not limited to confirmatory factor analysis and can apply to nearly any model being studied where detection of influential observations is important.

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

See Also

LD, obs.resid, robustMD, setCluster
Examples

```r
## Not run:

#run all gCD functions using multiple cores
setCluster()

#Exploratory
nfact <- 3
(gCDresult <- gCD(holzinger, nfact))
(gCDresult.outlier <- gCD(holzinger.outlier, nfact))
plot(gCDresult)
plot(gCDresult.outlier)

#---------------------------------------------
#Confirmatory with sem
model <- specifyModel()
  F1 -> Remndrs, lam11
  F1 <- SntComp, lam21
  F1 <- WrdMean, lam31
  F2 -> MissNum, lam41
  F2 -> MxdArit, lam52
  F2 -> OddWrds, lam62
  F3 -> Boots, lam73
  F3 -> Gloves, lam83
  F3 -> Hatchts, lam93
  F1 <- F1, NA, 1
  F2 <- F2, NA, 1
  F3 <- F3, NA, 1
(gCDresult2 <- gCD(holzinger, model))
(gCDresult2.outlier <- gCD(holzinger.outlier, model))
plot(gCDresult2)
plot(gCDresult2.outlier)

#Confimatory with lavaan
model <- 'F1 =~ Remndrs + SntComp + WrdMean
  F2 =~ MissNum + MxdArit + OddWrds
  F3 =~ Boots + Gloves + Hatchts'
(gCDresult2 <- gCD(holzinger, model, orthogonal=TRUE))
(gCDresult2.outlier <- gCD(holzinger.outlier, model, orthogonal=TRUE))
plot(gCDresult2)
plot(gCDresult2.outlier)

## End(Not run)

holzinger  Description of holzinger data
Description

A sample of 100 simulated cases from the infamous Holzinger dataset using 9 variables, but with 1 outlier added to the dataset. The first row was replaced by adding 2 to five of the observed variables (odd-numbered items) and subtracting 2 from the other four observed variables (even-numbered items).

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

---

Description

A sample of 100 simulated cases from the infamous Holzinger dataset using 9 variables.

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

---

Likelihood Distance

Compute likelihood distances between models when removing the $i_{th}$ case.

Usage

LD(data, model, ...)

## S3 method for class 'LD'
print(x, ncases = 10, digits = 5, ...)

## S3 method for class 'LD'
plot(x, y = NULL, main = "Likelihood Distance", type = c("p", "h"), ylab = "LD", absolute = FALSE, ...)
Arguments

- **data**: matrix or data.frame
- **model**: if a single numeric number declares number of factors to extract in exploratory factor analysis (requires complete dataset, i.e., no missing). If class(model) is a sem (semmod), or lavaan (character), then a confirmatory approach is performed instead
- **x**: an object of class LD
- **ncases**: number of extreme cases to display
- **digits**: number of digits to round in the printed result
- **...**: additional parameters to be passed
- **y**: a NULL value ignored by the plotting function
- **type**: type of plot to use, default displays points and lines
- **main**: the main title of the plot
- **ylab**: the y label of the plot
- **absolute**: logical; use absolute values instead of deviations?

Details

Note that LD is not limited to confirmatory factor analysis and can apply to nearly any model being studied where detection of influential observations is important.

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References


See Also

gCD, obs.resid, robustMD, setCluster

Examples

```r
Not run:

#run all LD functions using multiple cores
setCluster()

#Exploratory
nfact <- 3
(LDresult <- LD(holzinger, nfact))
(LDresult.outlier <- LD(holzinger.outlier, nfact))
plot(LDresult)
```
obs.resid

```
plot(LDresult.outlier)

Confirmatory with sem
model <- specifyModel()
F1 ~ Remndrs, lam11
F1 ~ SntComp, lam21
F1 ~ WrdMean, lam31
F2 ~ MissNum, lam42
F2 ~ MxdArit, lam52
F2 ~ OddWrds, lam62
F3 ~ Boots, lam73
F3 ~ Gloves, lam83
F3 ~ Hatchts, lam93
F1 ~< F1, NA, 1
F2 ~< F2, NA, 1
F3 ~< F3, NA, 1

(LDresult <- LD(holzinger, model))
(LDresult.outlier <- LD(holzinger.outlier, model))
plot(LDresult)
plot(LDresult.outlier)

Confirmatory with lavaan
model <- 'F1 =~ Remndrs + SntComp + WrdMean
F2 =~ MissNum + MxdArit + OddWrds
F3 =~ Boots + Gloves + Hatchts'

(LDresult <- LD(holzinger, model, orthogonal=TRUE))
(LDresult.outlier <- LD(holzinger.outlier, model, orthogonal=TRUE))
plot(LDresult)
plot(LDresult.outlier)

End(Not run)
```

---

### obs.resid

Model predicted residual outliers

---

**Description**

Compute model predicted residuals for each variable using regression estimated factor scores.

**Usage**

```r
obs.resid(data, model, ...)
```

## S3 method for class 'obs.resid'

print(x, restype = "obs", ...)
## S3 method for class 'obs.resid'
plot(x, y = NULL, main = "Observed Residuals",
     type = c("p", "h"), restype = "obs", ...)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>data</td>
<td>matrix or data.frame</td>
</tr>
<tr>
<td>model</td>
<td>if a single numeric number declares number of factors to extract in exploratory factor analysis. If class(model) is a sem (semmod), or lavaan (character), then a confirmatory approach is performed instead</td>
</tr>
<tr>
<td>x</td>
<td>an object of class obs.resid</td>
</tr>
<tr>
<td>restype</td>
<td>type of residual used, either 'obs' for observation value (inner product), 'res' or 'std_res' for unstandardized and standardized for each variable, respectively</td>
</tr>
<tr>
<td>...</td>
<td>additional parameters to be passed</td>
</tr>
<tr>
<td>y</td>
<td>a NULL value ignored by the plotting function</td>
</tr>
<tr>
<td>main</td>
<td>the main title of the plot</td>
</tr>
<tr>
<td>type</td>
<td>type of plot to use, default displays points and lines</td>
</tr>
</tbody>
</table>

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References


See Also

gCD, LD, robustMD

Examples

```r
Not run:
data(holzinger)
data(holzinger.outlier)

#Exploratory
nfact <- 3
(ORresult <- obs.resid(holzinger, nfact))
(ORresult.outlier <- obs.resid(holzinger.outlier, nfact))
plot(ORresult)
plot(ORresult.outlier)
```

#---------------------------------------------
Confirmatory with sem
model <- specifyModel()
F1 <- Remndrs, lam11
F1 <- SntComp, lam21
F1 <- WrdrMean, lam31
F2 <- MissNum, lam41
F2 <- MxdArit, lam52
F2 <- OddWrds, lam62
F3 <- Boots, lam73
F3 <- Gloves, lam83
F3 <- Hatchts, lam93
F1 <-> F1, NA, 1
F2 <-> F2, NA, 1
F3 <-> F3, NA, 1

(ORresult <- obs.resid(holzinger, model))
(ORresult.outlier <- obs.resid(holzinger.outlier, model))
plot(ORresult)
plot(ORresult.outlier)

# Confirmatory with lavaan
model <- 'F1 =~ Remndrs + SntComp + WrdrMean
F2 =~ MissNum + MxdArit + OddWrds
F3 =~ Boots + Gloves + Hatchts'

(obs.resid2 <- obs.resid(holzinger, model, orthogonal=TRUE))
(obs.resid2.outlier <- obs.resid(holzinger.outlier, model, orthogonal=TRUE))
plot(obs.resid2)
plot(obs.resid2.outlier)

## End(Not run)

---

robustMD

### Robust Mahalanobis

**Description**

Obtain Mahalanobis distances using the robust computing methods found in the MASS package. This function is generally only applicable to models with continuous variables.

**Usage**

robustMD(data, method = "mve", ...)

## S3 method for class 'robmah'
print(x, gt = 0, digits = 5, ...)

## S3 method for class 'robmah'
plot(x, y = NULL, type = "xyplot", main, ...)
setCluster

Define a parallel cluster object to be used in internal functions

Description

This function defines a object that is placed in a relevant internal environment defined in faoutlier. Internal functions will utilize this object automatically to capitalize on parallel processing architecture. The object defined is a call from parallel::makeCluster(). Note that if you are defining other parallel objects (for simulation designs, for example) it is not recommended to define a cluster.

Arguments

- **data**: matrix or data.frame
- **method**: type of estimation for robust means and covariance (see `cov.rob`)
- **digits**: number of digits to round in the final result
- **x**: an object of class `robmah`
- **gt**: only print values with MD’s greater than `gt`
- **...**: additional arguments to pass to MASS::cov.rob()
- **y**: empty parameter passed to plot
- **type**: type of plot to display, can be either ’qqplot’ or ’xyplot’
- **main**: title for plot. If missing titles will be generated automatically

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References


See Also

`gcd`, `obs.resid`, `LD`

Examples

```r
Not run:
data(holzinger)
output <- robustMD(holzinger)
plot(output)
plot(output, type = 'qqplot')
End(Not run)
```
Usage

`setCluster(ncores, remove = FALSE)`

Arguments

- `ncores` : number of cores to be used in the returned object which is passed to `parallel::makeCluster()`. If no input is given the maximum number of available cores will be used.
- `remove` : logical; remove previously defined cluster object?

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

Examples

```r
Not run:

make 4 cores available for parallel computing
setCluster(4)

#' # stop and remove cores
setCluster(remove = TRUE)

use all available cores
setCluster()

End(Not run)
```
Index

*Topic **cooks**
gCD, 4
LD, 7

*Topic **covariance**
obs.resid, 9
robustMD, 11

*Topic **data**
holzinger, 6
holzinger.outlier, 7

*Topic **forward.search**
forward.search, 2

*Topic **package**
faoutlier, 2

*Topic **parallel**
setCluster, 12

cov.rob, 12
faoutlier, 2
faoutlier-package (faoutlier), 2
forward.search, 2

gCD, 3, 4, 8, 10, 12
holzinger, 6
holzinger.outlier, 7

LD, 3, 5, 7, 10, 12

obs.resid, 5, 8, 9, 12

plot.forward.search (forward.search), 2
plot.gCD (gCD), 4
plot.LD (LD), 7
plot.obs.resid (obs.resid), 9
plot.robmah (robustMD), 11
print.forward.search (forward.search), 2
print.gCD (gCD), 4
print.LD (LD), 7
print.obs.resid (obs.resid), 9
print.robmah (robustMD), 11