Package ‘ecp’

February 19, 2015

Type Package

Title Nonparametric Multiple Change-Point Analysis of Multivariate Data

Version 1.6.2

Date 2014-12-31

Author Nicholas A. James and David S. Matteson

Maintainer Nicholas A. James <nj89@cornell.edu>

Description Implements hierarchical procedures to find multiple change-points through the use of U-statistics. The procedures do not make any distributional assumptions other than the existence of certain absolute moments. Both agglomerative and divisive procedures are included. These methods return the set of estimated change-points as well as other summary information.

License GPL (>= 2)

Depends R (>= 2.10), Rcpp

Suggests mvtnorm,MASS,combinat, R.rsp

LinkingTo Rcpp

NeedsCompilation yes

Repository CRAN

VignetteBuilder R.rsp

Date/Publication 2015-01-04 23:55:19

R topics documented:

ACGH 2
DJIA 3
e.agglo 3
e.divisive 5

Index 8
ACGH

Bladder Tumor Micro-Array Data

Description

Micro-array data for 43 different individuals with a bladder tumor.

Usage

`data(ACGH)`

Format

A list with the following components.

- `data`: The micro-array data for 43 individuals. This information is stored in a 2215 by 43 matrix.
- `individual`: A numeric vector indicating which individuals’ micro-array data are present.

Source

Bleakley K., Vert J.-P. (2011), The group fused Lasso for multiple change-point detection

References

Bleakley K., Vert J.-P. (2011), The group fused Lasso for multiple change-point detection

Examples

`data(ACGH, package="ecp")`

DJIA

* *Dow Jones Industrial Average Index*

Description

The weekly log returns for the Dow Jones Industrial Average index from April 1990 to January 2012.

Usage

```r
data(DJIA)
```

Format

A list with the following components.

- **dates**: A character vector of dates associated with each observation in the returns series.
- **index**: Weekly log returns from April 1990 to January 2012 of the DOW 30 index.
- **market**: Weekly log returns from April 1990 to January 2012, for the companies in the DOW 30 apart from Kraft.

Source

http://research.stlouisfed.org/fred2/series/DJIA/downloaddata

References

Examples

```r
data(DJIA, package="ecp")
```

e.agglo

ENERGY AGGLOMERATIVE

Description

An agglomerative hierarchical estimation algorithm for multiple change point analysis.

Usage

```r
e.agglo(X, member=1:nrow(X), alpha=1, penalty=function(cps){0})
```
Arguments

- **x**: A T x d matrix containing the length T time series with d-dimensional observations.
- **member**: Initial membership vector for the time series.
- **alpha**: Moment index used for determining the distance between and within clusters.
- **penalty**: Function used to penalize the obtained goodness-of-fit statistics. This function takes as its input a vector of change point locations (cps).

Details

Homogeneous clusters are created based on the initial clustering provided by the `member` argument. In each iteration, clusters are merged so as to maximize a goodness-of-fit statistic. The computational complexity of this method is $O(T^2)$, where T is the number of observations.

Value

Returns a list with the following components.

- **merged**: A (T-1) x 2 matrix indicating which segments were merged at each step of the agglomerative procedure.
- **fit**: Vector showing the progression of the penalized goodness-of-fit statistic.
- **progression**: A T x (T+1) matrix showing the progression of the set of change points.
- **cluster**: The estimated cluster membership vector.
- **estimates**: The location of the estimated change points.

Author(s)

Nicholas A. James

References

See Also

e.divisive
Examples

```r
set.seed(100)
mem = rep(c(1,2,3,4),times=c(10,10,10,10))
x = as.matrix(c(rnorm(10,0,1),rnorm(20,2,1),rnorm(10,-1,1)))
y = e.agglo(X=x,member=mem,alpha=1,penalty=function(cp,Xts) 0)
y$estimates
```

```r
## Not run:
# Multivariate spatio-temporal example
# You will need the following packages:
# mvtnorm, combinat, and MASS
library(mvtnorm); library(combinat); library(MASS)
set.seed(2013)
lambda = 1500 #overall arrival rate per unit time
mua = c(-7,-7); mub = c(0,0); muc = c(5,5,0)
cova = 25*diag(2); covb = matrix(c(9,0,0,1),2); covc = matrix(c(9,9,.9),2)
time.interval = matrix(c(0,1,3.4,5,1,3,4,5,7,4,2),6)
#mixing coefficients
mixing.coef = rbind(c(1/3,1/3,1/3),c(.2,.5,.3),c(.35,.3,.35),c(.2,.3,.5))
stppData = NULL
for(i in 1:4){
count = rpois(1, lambda*diff(time.interval[i,]))
Z = rmult22(n = count, p = mixing.coef[i,])
S = rbind(rmvnorm(Z[1],mua,cova), rmvnorm(Z[2],mub,covb),rmvnorm(Z[3],muc,covc))
X = cbind(rep(i,count), runif(n = count, time.interval[i,1], time.interval[i,2]), S)
stppData = rbind(stppData, X[order(X[,2]),])
}member = as.numeric(cut(stppData[,2], breaks = seq(0,7,by=1/12)))
output = e.agglo(X=stppData[,3:4],member=member,alpha=1,penalty=function(cp,Xts) 0)
## End(Not run)
```

e.divisive

ENERGY DIVISIVE

Description

A divisive hierarchical estimation algorithm for multiple change point analysis.

Usage

```r
e.divisive(X, sig.lvl=.05, R=199, k=NULL, min.size=30, alpha=1)
```

Arguments

- **X** | A T x d matrix containing the length T time series with d-dimensional observations.
The level at which to sequentially test if a proposed change point is statistically significant.

R

The maximum number of random permutations to use in each iteration of the permutation test. The permutation test p-value is calculated using the method outlined in Gandy (2009).

k

Number of change point locations to estimate, suppressing the permutation based testing. If k=NULL then only the statistically significant estimated change points are returned.

min.size

Minimum number of observations between change points.

alpha

The moment index used for determining the distance between and within segments.

Details

Segments are found through the use of a binary bisection method and a permutation test. The computational complexity of this method is $O(kT^2)$, where k is the number of estimated change points, and T is the number of observations.

Value

The returned value is a list with the following components.

k.hat

The number of clusters within the data created by the change points.

order.found

The order in which the change points were estimated.

estimates

Locations of the statistically significant change points.

considered.last

Location of the last change point, that was not found to be statistically significant at the given significance level.

permutations

The number of permutations performed by each of the sequential permutation test.

cluster

The estimated cluster membership vector.

p.values

Approximate p-values estimated from each permutation test.

Author(s)

Nicholas A. James

References

tending ward’s minimum variance method. Journal of Classification.

Rizzo M.L., Szekely G.L. (2010). Disco analysis: A nonparametric extension of analysis of vari-

See Also

e.agglo

Examples

```r
set.seed(100)
x1 = matrix(c(rnorm(100),rnorm(100,3),rnorm(100,0,2)))
y1 = e.divisive(x=x1,sig.1v1=0.05,R=199,k=NULL,min.size=30,alpha=1)
x2 = rbind(MASS::mvnrm(100,c(0,0),diag(2)),MASS::mvnrm(100,c(2,2),diag(2)))
y2 = e.divisive(x=x2,sig.1v1=0.05,R=499,k=NULL,min.size=30,alpha=1)
```
Index

*Topic agglomerative
 e.agglo, 3
*Topic datasets
 ACGH, 2
 DJIA, 3
*Topic divisive
 e.divisive, 5
*Topic hierarchical
 e.agglo, 3
 e.divisive, 5

ACGH, 2

DJIA, 3

e.agglo, 3, 7
e.divisive, 4, 5