Package ‘distrom’

February 19, 2015

Title Distributed Multinomial Regression
Version 0.3-1
Date 2014
Author Matt Taddy <taddy@chicagobooth.edu>
Depends R (>= 2.15), Matrix, gamlr, parallel, methods
Suggests MASS, textir
Description Estimation for a multinomial logistic regression factorized into independent Poisson log regressions. See the textir package for applications in multinomial inverse regression analysis of text.
Maintainer Matt Taddy <taddy@chicagobooth.edu>
License GPL-3
URL http://faculty.chicagobooth.edu/matt.taddy/research/index.html
 http://github.com/TaddyLab/distrom
References Taddy (2013), Distributed Multinomial Regression.
 http://arxiv.org/abs/1311.6139
NeedsCompilation no
Repository CRAN
Date/Publication 2014-10-01 09:52:43

R topics documented:
collapse ... 2
dmr ... 3
dmrcodef-class ... 5

Index 7
collapse

Data checking and binning

Description

Collapses counts along equal levels of binned covariates.

Usage

collapse(v, counts, mu=NULL, bins=NULL)

Arguments

v
Either matrix or Matrix of covariates (matches covars in dmr).

counts
Either matrix or Matrix of multinomial counts, or a factor (matches counts in dmr).

mu
Possible pre-specified fixed effects for dmr; otherwise they are calculated here.

bins
The number of quantile bins into which we collapse v. bins=NULL does no collapsing.

Details

For each column of v, aggregates the observations into bins defined by their average value. Both v and counts are then collapsed according to levels of the interaction across implied bin-factors, and the number of observations in each bin is recorded as n. Look at the code of the dmr function to see collapse used in practice.

Value

A list containing collapsed and formatted v, counts, and nbin, along with mu = log(rowSums(counts)), the plug-in fixed effect estimates for dmr.

Author(s)

Matt Taddy <taddy@chicagobooth.edu>

See Also

we8there
Description

Gamma-lasso path estimation for a multinomial logistic regression factorized into independent Poisson log regressions.

Usage

```r
dmr(cl, covars, counts, mu=NULL, bins=NULL, verb=0, cv=FALSE, ...)
## S3 method for class 'dmr'
coef(object, ...)
## S3 method for class 'dmr'
predict(object, newdata,
type=c("link","response","class"), ...)
```

Arguments

- **cl**
 - A parallel library socket cluster. If `is.null(cl)`, everything is done in serial. See `help(parallel)`, `help(makeCluster)`, and our examples here for details.

- **covars**
 - A dense matrix or sparse `Matrix` of covariates. This should not include the intercept.

- **counts**
 - A dense matrix or sparse `Matrix` of response counts.

- **mu**
 - Pre-specified fixed effects for each observation in the Poisson regression linear equation. If `mu=NULL`, then we use `log(rowSums(x))`. Note that if `bins` is non-null then this argument is ignored and `mu` is recalculated on the collapsed data.

- **bins**
 - Number of bins into which we will attempt to collapse each column of `covars`. Since sums of multinomials with equal probabilities are also multinomial, the model is then fit to these collapsed ‘observations’. `bins=NULL` does no collapsing.

- **verb**
 - Whether to print some info. `max(0, verb-1)` is passed on to `gamlr` and will print if you created an outfile when specifying `cl`.

- **cv**
 - A flag for whether to use `cv.gamlr` instead of `gamlr` for each Poisson regression.

- **type**
 - For `predict.dmr`, this is the scale upon which you want prediction. Under “link”, just the linear map `newdata` times `object`, under “response” the fitted multinomial probabilities, under “class” the max-probability class label. For sufficient reductions see the `srproj` function of the `textir` library.

- **newdata**
 - A `Matrix` with the same number of columns as `covars`.

- **...**
 - Additional arguments to `gamlr`, `cv.gamlr`, and their associated methods.

- **object**
 - A `dmr` list of fitted `gamlr` models for each response category.
Details

dmr fits multinomial logistic regression by assuming that, unconditionally on the 'size' (total count across categories) each individual category count has been generated as a Poisson

\[x_{ij} \sim Po(\exp(\mu_i + \alpha_j + \beta v_i)). \]

We [default] plug-in estimate \[\hat{\mu}_i = \log(m_i) \], where \[m_i = \sum_j x_{ij} \] and \(p \) is the dimension of \(x_i \). Then each individual is outsourced to Poisson regression in the gamlr package via the parLapply function of the parallel library. The output from dmr is a list of gamlr fitted models.

coeff.dmr builds a matrix of multinomial logistic regression coefficients from the length(object) list of gamlr fits. Default selection under cv=FALSE uses an information criteria via AICc on Poisson deviance for each individual response dimension (see gamlr). Combined coefficients across all dimensions are then returned as a dmrcoef s4-class object.

predict.dmr takes either a dmr or dmrcoef object and returns predicted values for newdata on the scale defined by the type argument.

Value

dmr returns the dmr s3 object: an ncol(counts)-length list of fitted gamlr objects, with the added attributes nlambda, mu, and nobs.

Author(s)

Matt Taddy <taddy@chicagobooth.edu>

References

Taddy (2013) Distributed Multinomial Regression
Taddy (2013) The Gamma Lasso

See Also

dmrcoef-class, cv.dmr, AICc, and the gamlr and textir packages.

Examples

library(MASS)
data(fgl)

make your cluster
FORK is faster but memory heavy, and doesn't work on windows.
c1 <- makeCluster(2, type = ifelse(.Platform$OS.type == "unix", "FORK", "PSOCK"))
print(c1)

fit in parallel
fits <- dmr(c1, fgl[,1:9], fgl$type, verb=1)
dmrcoef-class

Description

The extended dgCMatrix class for output from coef.dmr.

Details

This is the class for a covariate matrix from dmr regression; it inherits the dgCMatrix class as defined in the Matrix library. In particular, this is the ncol(covars) by ncol(counts) matrix of logistic regression coefficients chosen in coef.dmr from the regularization paths for each category.

Objects from the Class

Objects can be created only by a call to the coef.dmr function.

Slots

- `i`: From dgCMatrix: the row indices.
- `p`: From dgCMatrix: the column pointers.
- `Dim`: From dgCMatrix: the dimensions.
- `Dimnames`: From dgCMatrix: the list of labels.
- `x`: From dgCMatrix: the nonzero entries.
- `factors`: From dgCMatrix.
Extends

Class `dgCMatrix`, directly.

Methods

`predict` signature(object = "dmrcoef"): Prediction for a given `dmrcoef` matrix. Takes the same arguments as `predict.dmr`, but will be faster (since `coef.dmr` is called inside `predict.dmr`).

Author(s)

Matt Taddy <taddy@chicagobooth.edu>

See Also

dmr, coef.dmr, predict.dmr

Examples

`showClass("dmrcoef")`
Index

*Topic **classes**
 dmrcoef-class, 5

coef.dmr (dmr), 3
collapse, 2
dgCMatrix, 6
distrom (dmr), 3
dmr, 3
dmrcoef-class, 5

predict.dmrcoef-method (dmrcoef-class), 5
predict.dmr (dmr), 3