Package ‘dissUtils’

February 19, 2015

Type Package
Title Utilities for making pairwise comparisons of multivariate data
Version 1.0
Date 2012-12-06
Author Benjamin N. Taft
Maintainer Benjamin N. Taft <ben.taft@landmarkacoustics.com>
Depends R (>= 2.14)
Suggests MASS (>= 1.0)
SuggestsNote the examples use mvrnorm() from MASS
Description This package has extensible C++ code for computing dissimilarities between vec-
tors. It also has a number of C++ functions for assembling collections of dissimilarities. In par-
ticular, it lets you find a matrix of dissimilarities between the rows of two input matri-
ces. There are also functions for finding the nearest neighbors of each row of a matrix, ei-
ther within the matrix itself or within another matrix.
License GPL (>= 2) | file LICENSE
NeedsCompilation yes
Repository CRAN
Date/Publication 2014-06-02 14:50:54

R topics documented:

dissUtils-package .. 2
diss ... 2
diss.index .. 3
groupwise.density .. 4
neighbor.density .. 5
neighbors ... 6
neighbors.identify ... 6
unit.hypersphere.volume ... 7

Index 8
dissUtils-package
Utilities for making pairwise comparisons of multivariate data

Description

This package has extensible C++ code for computing dissimilarities between vectors. It also has a number of C++ functions for assembling collections of dissimilarities. In particular, it lets you find a matrix of dissimilarities between the rows of two input matrices. There are also functions for finding the nearest neighbors of each row of a matrix, either within the matrix itself or within another matrix.

Details

Package: dissUtils
Type: Package
Version: 0.1
Date: 2012-12-06
License: GPL (>= 2)

diss Dissimilarities Between Vectors
diss.index Convert Indices from Distance Object to Matrix
groupwise.density Compare Spatial Densities Between Groups
neighbors.identify Find Neighbor Indices
neighbor.density N-Dimensional Neighbor Density
neighbors Find Nearest Neighbor Distances
unit.hypersphere.volume Helps When Calculating Densities

Description

This function will create a distance object corresponding to the dissimilarities between rows in a matrix `X`, or a matrix of dissimilarities between the rows of matrices `X` and `Y`

Usage

diss(X, Y = NULL, method = "euclidean", init.info = NULL)
Arguments

- **X** a matrix of numeric data
- **Y** a second matrix of numeric data, which must have the same number of columns as **X**
- **method** a character string that uniquely matches one of the following:
 - braycurtis: Bray-Curtis difference, should use proportions
 - canberra: Canberra difference, should use proportions
 - chebyshev: Largest difference in any one dimension, like in chess
 - covariance: You may want to transpose the data before using this
 - euclidean: multivariate 2-norm
 - equality: the sum of exactly equal elements in each row
 - hellinger: Hellinger difference
 - jaccard: Jaccard distance
 - mahalanobis: Euclidean distance after scaling and removing covariance, which you can supply with `init.info`
 - manhattan: The sum of each dimension, no diagonal movement allowed
 - minkowski: arbitrary n-norm, so that `init.info=2` yields "euclidean" and `init.info = Inf` yields "chebyshev" (but don’t do the latter!)
 - pearson: Pearson product-moment correlation, you may want to transpose the data
 - procrustes: Doesn’t scale or rotate, just treats the vectors as matrices with `init.info` columns and calculates total distance

- **init.info** some methods require additional information. see above

Value

- if `is.null(Y)`, returns a distance object containing pairwise dissimilarities between the points in **X**.
- if `is.matrix(Y)`, returns a `nrow(X)` by `nrow(Y)` matrix containing pairwise dissimilarities between each point in **X** and each point in **Y**.

diss.index

Convert Indices from Distance Object to Matrix

Description

Given an index into a distance object of Size N, finds the coordinates of the same pairwise dissimilarity in an N by N matrix of dissimilarities

Usage

`diss.index(index, N)`

Arguments

- **index** the position of the item in the distance object
- **N** the Size of the distance object, the number of points it compares
groupwise.density

See Also
dist

Examples

the function is currently defined as
function (index, N)
{
 i <- floor(.raw.i(n, ix));
 return(c(i = i, j = .calc.j(i, n, ix)));}

Description

In order to compare the distributions of different groups within the same multivariate space, calculates the nearest-neighbor densities of each point in the whole data set according to the distribution of each subset.

Usage

groupwise.density(X, groups, method = "euclidean", p.neighbors = 0.01, init.info = NULL)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>a matrix of numeric data</td>
</tr>
<tr>
<td>groups</td>
<td>a factor or vector that can be coerced into a factor, specifying which group each row of X belongs to.</td>
</tr>
<tr>
<td>method</td>
<td>see diss</td>
</tr>
<tr>
<td>p.neighbors</td>
<td>the proportion of each groups neighbors that should be visited. Proportions are necessary when groups have different sizes because otherwise the densities aren’t as comparable.</td>
</tr>
<tr>
<td>init.info</td>
<td>see diss</td>
</tr>
</tbody>
</table>

Value

an nrow(X) by nlevels(as.factor(groups)) matrix of nearest-neighbor density estimates.
neighbor.density

Calculate Multidimensional Densities from Neighbor Distances

Description

neighbor.density estimates the density around a point by accounting for the dimensionality of the space the neighbors are in, the total number of points in the space, and how many neighbors are found at least as close to the point as the density given.

Usage

```r
neighbor.density(neighNdists, D, k, N)
```

Arguments

- `neighNdists`: a vector of distances between members of a multivariate data set and their kth-nearest neighbor
- `D`: the number of dimensions of the multivariate space
- `k`: the number of neighbors found around each point within the hyperspheres with radii given in `neighNdists`
- `N`: the total number of points in the data set from which the neighbors are drawn. This may not be equal to `length(neighNdists)` if the neighbors are in a separate data set from the points of interest.

Value

a numeric vector of densities

References

http://en.wikipedia.org/wiki/N-sphere

Examples

```r
## The function is currently defined as
function (neigh.dists, D, k, N)
{
    radius <- unit.hypersphere.volume(D)
    return(k/(N * radius * neigh.dists))
}
```
neighbors

Find Nearest Neighbor Distances

Description
Given one (or two) multivariate data sets, a difference method, and k neighbors to search for, neighbors finds the k points in the data set (or the second data set) that are closest to each point in the data set (or the first data set).

Usage
neighbors(x, y = NULL, method = "euclidean", n.neighbors = 1, init.info = NULL)

Arguments
- `x` a matrix of numeric values
- `y` an optional second matrix that must have the same number of columns as `x`
- `method` one of the method choices from `diss`
- `n.neighbors` an integer between 1 and nrow(X) (or nrow(Y), if it is not null)
- `init.info` some difference methods require additional information. see `diss`

Value
returns an nrow(x) by n.neighbors matrix of distances

neighbors.identify

Find Neighbor Indices

Description
Uses a distance object and a vector of known distances to identify the neighbors that correspond to those distances.

Usage
neighbors.identify(neighbor.matrix, all.dists)

Arguments
- `neighbor.matrix` a matrix of distances to neighbors
- `all.dists` either a distance object or a matrix of distances such as is produced by `diss`
unit.hypersphere.volume

Value

a dim(neighbor.matrix) matrix of integer indices between 1 and all.dists$Size or ncol(all.dists)

See Also
diss, dist

Description

Finds the volume of a hypersphere in \(R^D \) with radius one.

Usage

unit.hypersphere.volume(D)

Arguments

D

the number of dimensions that the hypersphere extends into

Value

the volume of the unit hypersphere

References

http://en.wikipedia.org/wiki/N-sphere
Index

*Topic** multivariate
 diss, 2
 diss.index, 3
 dissUtils-package, 2
 groupwise.density, 4
 neighbor.density, 5
 neighbors, 6
 neighbors.identify, 6
 unit.hypersphere.volume, 7

*Topic** package
 dissUtils-package, 2

 diss, 2, 4, 6, 7
 diss.index, 3
 dissUtils (dissUtils-package), 2
 dissUtils-package, 2
 dist, 4, 7

 groupwise.density, 4

 neighbor.density, 5
 neighbors, 6
 neighbors.identify, 6

 unit.hypersphere.volume, 7