Package ‘discreteRV’

February 19, 2015

Maintainer Eric Hare <erichare@iastate.edu>
Author Andreas Buja
Version 1.1.4
Date 2015-02-02
License GPL-3
Title Functions to Create and Manipulate Discrete Random Variables
Description discreteRV implements a set of functions that allow computations involving discrete random variables. It uses a syntax which is familiar to that which is used in mathematical statistics and probability courses.
Imports plyr, MASS
Suggests testthat, roxygen2
NeedsCompilation no
Repository CRAN
Date/Publication 2015-02-03 06:38:33

R topics documented:

as.RV 2
Conditional 2
E 3
KURT 4
make.RV 4
margins 5
mult 6
multN 6
outcomes 7
P 8
plot.RV 8
plot.RVsim 9
print.RV 10
probs 10
Prop 11
as.RV

Turn a probability vector with possible outcome values in the 'names()' attribute into a random variable:

Description

Turn a probability vector with possible outcome values in the 'names()' attribute into a random variable:

Usage

as.RV(px, fractions = TRUE)

Arguments

px A probability vector with possible outcome values in the 'names()' attribute
fractions If TRUE, return the probabilities as fractions

Conditional

Compute the conditional probability of two events

Description

Compute the conditional probability of two events

Usage

S3 method for class 'RVresult'
vec1 | vec2
Arguments

vec1 an RVresult object
vec2 an RVresult object

Value

An RVcond object representing the conditional probability

Examples

xNfairNdie <- make.RV(1:6, rep(1/6, 6))
x.Nfair.coin <- make.RV(1:2, rep(1/2, 2))

P(X.fair.die == 4 | X.fair.die > 3)
P(X.fair.die == 5 | X.fair.die < 5)
P(X.fair.die == 4 | X.fair.coin == 1) # Independence

\[
E \quad \text{Expected value of a random variable}
\]

Description

Expected value of a random variable

Usage

E(X)

Arguments

X random variable

Examples

X.Bern <- make.RV(c(1,0), c(.5,.5))
E(X.Bern)

X.fair.die <- make.RV(1:6, rep(1/6, 6))
E(X.fair.die)
KURT

Kurtosis of a random variable

Description
Kurtosis of a random variable

Usage
KURT(X)

Arguments
X random variable

Examples
X.Bern <- make.RV(c(1,0), c(.5,.5))
KURT(X.Bern)

make.RV

Make a random variable consisting of possible outcome values and their probabilities or odds

Description
Make a random variable consisting of possible outcome values and their probabilities or odds

Usage
make.RV(outcomes, probs = NULL, odds = NULL, fractions = (class(probs) != "function"), range = any(is.infinite(outcomes)), verifyprobs = TRUE, ...)

Arguments
outcomes Vector of possible outcomes
probs Vector of probabilities or function defining probabilities
odds Vector of odds
fractions If TRUE, return the probabilities as fractions when printing
range If TRUE, outcomes specify a range of values in the form c(lower, upper)
verifyprobs If TRUE, verify that the probs sum to one
... Additional parameters passed to the function defining outcome probabilities
Value
random variable as RV object.

Examples

Make a 50:50 Bernoulli random variable:
X.Bern <- make.RV(c(1,0), c(0.5,0.5))

Make a fair coin flip game with payoffs +$1 and -$1:
X.fair.coin <- make.RV(c(1,-1), c(0.5,0.5))

Make a biased coin flip game with odds 1:2 and with fair payoffs +$2 and -$1:
X.biased.coin <- make.RV(c(2,-1), odds = c(1,2))

Make a fair die
X.fair.die <- make.RV(1:6, 1/6)

Make a loaded die, specifying odds 1:1:1:2:4 rather than probabilities:
X.loaded.die <- make.RV(1:6, odds = c(1,1,1,1,2,4))

Make a Poisson random variable
pois.func <- function(x, lambda) { lambda^x * exp(-lambda) / factorial(x) }
X.poiis <- make.RV(c(0, Inf), pois.func, lambda = 5)

margins
Marginal distribution of a joint random variable

Description
Extracts the marginal probability mass functions from a joint distribution.

Usage
margins(X, sep = "",")

Arguments
X a random variable
sep parameter specifying the separator between dimensions, defaults to ","

Author(s)
Heike Hofmann <hofmann@iastate.edu>

Examples
X <- make.RV(1:6, 1/6)
X3 <- multN(X, 3)
margins(X3)
mult

Joint probability mass function of random variables X and Y

Description

Joint probability mass function of random variables X and Y

Usage

```
mult(X, Y, sep = " ", fractions = (attr(X, "fractions") & attr(Y, "fractions")))
```

Arguments

- **X**: random variable
- **Y**: random variable
- **sep**: separator between items from marginal distributions, by default set to ",,"
- **fractions**: If TRUE, return the probabilities as fractions

Author(s)

Heike Hofmann <hofmann@iastate.edu>

Examples

```
d <- make.RV(c("A","B","C"), odds = c(3,5,11))
d2 <- mult(d,d)
probs(d2)
```

multN

Probability mass function of X^n

Description

Probability mass function of X^n

Usage

```
multN(X, n = 2, sep = ",", fractions = attr(X, "fractions"))
```

Arguments

- **X**: random variable
- **n**: power
- **sep**: separator between items from marginal distributions, by default set to ",,"
- **fractions**: If TRUE, return the probabilities as fractions
Author(s)
Heike Hofmann <hofmann@iastate.edu>

Examples

d <- make.RV(c("A","B","C"), odds = c(3,5,11))
d2 <- multN(d)
probs(d2)

outcomes

| outcomes | Outcomes of random variable X |

Description
Obtain the list of outcomes from a random variable

Usage
outcomes(X)

Arguments

| X | random variable |

Value
vector of outcomes of X

Examples

X.Bern <- make.RV(c(1,0), c(.5,.5))
outcomes(X.Bern)

X.fair.die <- make.RV(1:6, rep(1/6,6))
outcomes(X.fair.die)

X.loaded.die <- make.RV(1:6, odds = c(1,1,1,1,2,4))
outcomes(X.loaded.die)
P

Calculate probabilities of events

Description

Calculate probabilities of events

Usage

\[P(\text{event}) \]

Arguments

event
A logical vector

Examples

\begin{verbatim}
X.fair.die <- make.RV(1:6, rep(1/6,6))
P(X.fair.die>3)

X.loaded.die <- make.RV(1:6, odds = c(1,1,1,1,2,4))
P(X.loaded.die>3)
P(X.loaded.die==6)
\end{verbatim}

plot.RV

Plot a random variable of class "RV"

Description

Plot a random variable of class "RV"

Usage

\#
S3 method for class 'RV'
plot(x, ..., tol = 1e-10, pch = 16, cex = 1.2, lwd = 2,
col = "black", xlab = "Possible Values", ylab = "Probabilities")

Arguments

x
A random variable

...
Additional arguments to be passed to the "plot" function

tol
Only display outcomes with probabilities above tol

pch
Either an integer specifying a symbol or a single character to be used as the default in plotting points.
plot.RVsim

- **cex**: A numerical value giving the amount by which plotting text and symbols should be magnified relative to the default.
- **lwd**: The line width, a positive number, defaulting to 2.
- **col**: A specification for the default plotting color
- **xlab**: Label for the X axis
- **ylab**: Label for the Y axis

Examples

```r
fair.die <- make.RV(1:6, rep(1/6, 6))
plot(fair.die)
```

Description

Plot a simulated random vector

Usage

```r
## S3 method for class 'RVsim'
plot(x, ...)
```

Arguments

- **x**: A simulated data vector produced with the 'rsim()' function
- **...**: Additional arguments to be passed to the 'plot()' function

Examples

```r
X <- make.RV(c(100000, 10000, 0), c(0.00025, 0.005, 0.99475))
X.sim <- rsim(200000, X)
plot(X.sim)
```
print.RV

Print a random variable of class "RV"

Description

Print a random variable of class "RV"

Usage

```r
## S3 method for class 'RV'
print(x, odds = attr(x, "odds"), fractions = attr(x, "fractions"),
      all.outcomes = FALSE, digits = 3, ...)
```

Arguments

- `x`: A random variable
- `odds`: If TRUE, print as odds instead of probs
- `fractions`: If TRUE, print probs as fractions instead of decimals
- `all.outcomes`: If TRUE, print all outcomes rather than the first ten
- `digits`: Number of digits to print for probabilities
- `...`: Additional arguments to be passed to the "format" function

Author(s)

Eric Hare <erichare@iastate.edu>

Examples

```r
fair.die <- make.RV(1:6, rep(1/6,6))
print(fair.die)
```

probs

Probability mass function of random variable X

Description

Obtain the list of probabilities from a random variable: p(x)

Usage

`probs(X)`

Arguments

- `X`: random variable
Value

named vector of probabilities for each element of the random variable

Examples

```r
X.Bern <- make.RV(c(1,0), c(.5,.5))
probs(X.Bern)

X.fair.die <- make.RV(1:6, rep(1/6,6))
probs(X.fair.die)

X.loaded.die <- make.RV(1:6, odds = c(1,1,1,1,2,4))
probs(X.loaded.die)
```

Description

Proportion of an event observed in a vector of simulated trials

Usage

```r
Prop(X.sim)
```

Arguments

- `X.sim` A simulated data vector produced with the `rsim()` function

Examples

```r
X <- make.RV(c(100000,10000,0), c(0.00025,0.005,0.99475))
X.sim <- rsim(200000, X)

Prop(X.sim>0)
Prop(X.sim==100000)
Prop(X.sim==2000)
```
props

Description
Proportions of observed outcomes in one or more vectors of simulated trials

Usage
props(...)

Arguments
...

Simulation data produced with the 'rsim()' function

Examples
X.Bern <- make.RV(c(1,0), c(.5,.5))
X.Bern.sim100 <- rsim(100, X.Bern)

X.loaded.die <- make.RV(1:6, odds = c(1,1,1,1,2,4))
X.loaded.die.sim100 <- rsim(100, X.loaded.die)
props(X.Bern.sim100)
props(X.loaded.die.sim100)

Note: 'props()' is the analog of 'probs()', but
'props()' applies to SIMULATION DATA and tabulates them, whereas
'probs()' applies to RANDOM VARIABLES and lists their probabilities.
By the LLN the results of 'props()' will be close to 'probs()' for
for large simulations.

qqnorm.RV

Normal quantile plot for RVs to answer the question how close to normal it is

Description
Normal quantile plot for RVs to answer the question how close to normal it is

Usage
S3 method for class 'RV'
qqnorm(y, ..., pch = 16, cex = 0.5, add = FALSE,
xlab = "Normal Quantiles", ylab = "Random Variable Quantiles",
tol = 1e-10)
Arguments

- **y**
 - A random variable
- **...**
 - Additional arguments to be passed to the "plot" or "points" function
- **pch**
 - Either an integer specifying a symbol or a single character to be used as the default in plotting points.
- **cex**
 - A numerical value giving the amount by which plotting text and symbols should be magnified relative to the default.
- **add**
 - A logical indicating whether to add to an existing plot
- **xlab**
 - Label for the X axis
- **ylab**
 - Label for the Y axis
- **tol**
 - Tolerance for the zero probability case

Examples

```r
fair.die <- make.RV(1:6, rep(1/6,6))
qqnorm(fair.die)
```

rsim

Simulate n independent trials from a random variable X:

Description

Simulate n independent trials from a random variable X:

Usage

`rsim(n, X)`

Arguments

- **n**
 - The number of independent trials to simulate
- **X**
 - A random variable

Examples

```r
X.Bern <- make.RV(c(1,0), c(.5,.5))
X.Bern.sim100 <- rsim(100, X.Bern)

X.loaded.die <- make.RV(1:6, odds = c(1,1,1,1,2,4))
X.loaded.die.sim100 <- rsim(100, X.loaded.die)
```

The function 'rsim()' attaches the probabilities as names to the random draws.
To get the values only, use 'as.vector()':

```r
as.vector(X.Bern.sim100)
as.vector(X.loaded.die.sim100)
```
SD
Standard deviation of a random variable

Description
Standard deviation of a random variable

Usage
SD(X)

Arguments
X random variable

Examples
X.Bern <- make.RV(c(1, 0), c(.5, .5))
E(X.Bern)

SKEW
Skewness of a random variable

Description
Skewness of a random variable

Usage
SKEW(X)

Arguments
X random variable

Examples
X.Bern <- make.RV(c(1, 0), c(.5, .5))
SKEW(X.Bern)
skewSim

Skew of the empirical distribution of simulated data

Description

Skew of the empirical distribution of simulated data

Usage

```r
skewSim(x.sim)
```

Arguments

- `x.sim`: A simulated data vector produced with the `rsim()` function

Examples

```r
x <- make.RV(c(100000,10000,0), c(0.00025,0.005,0.99475))
x.sim <- rsim(200000, x)
skewSim(x.sim)
```

SofI

Sum of independent random variables

Description

Sum of independent random variables

Usage

```r
SofI(..., fractions = attr(list(...)[[1]], "fractions"))
```

Arguments

- `...`: Arbitrary number of random variables
- `fractions`: If TRUE, return the probabilities as fractions

Examples

```r
X.Bern <- make.RV(c(1,0), c(.5,.5))
X.fair.die <- make.RV(1:6, rep(1/6,6))

S.mix <- SofI(X.Bern, X.fair.die)  # Independent but not IID
```
SofIID

Sum of independent identically distributed random variables

Description

Sum of independent identically distributed random variables

Usage

\[\text{SofIID}(X, n = 2, \text{progress} = \text{TRUE}, \text{fractions} = \text{attr}(X, "fractions")) \]

Arguments

- **x**: A random variable
- **n**: The number of Xs to sum
- **progress**: If TRUE, display a progress bar
- **fractions**: If TRUE, return the probabilities as fractions

Examples

```r
X.Bern <- make.RV(c(1,0), c(.5,.5))
S5 <- SofIID(X.Bern, 5)
S128 <- SofIID(X.Bern, 128)
```

V

Variance of a random variable

Description

Variance of a random variable

Usage

\[V(X) \]

Arguments

- **x**: random variable

Examples

```r
X.Bern <- make.RV(c(1,0), c(.5,.5))
E(X.Bern)
```
Compute the logical AND of two events

Description
Compute the logical AND of two events

Usage
\[x \ %\text{AND}\% \ y \]

Arguments
\begin{itemize}
 \item \textbf{x} \quad \text{RVcond object}
 \item \textbf{y} \quad \text{RVcond object}
\end{itemize}

Value
An RVresult object which is two events ANDed together

Examples
\begin{verbatim}
X.fair.die <- make.RV(1:6, rep(1/6,6))
P((X.fair.die == 4 \ %\text{AND}\% \ (X.fair.die == 3))
\end{verbatim}

Compute the logical OR of two events

Description
Compute the logical OR of two events

Usage
\[x \ %\text{OR}\% \ y \]

Arguments
\begin{itemize}
 \item \textbf{x} \quad \text{RVcond object}
 \item \textbf{y} \quad \text{RVcond object}
\end{itemize}

Value
An RVresult object which is two events ORed together
Examples

X.fair.die <- make.RV(1:6, rep(1/6, 6))
P((X.fair.die == 4) %in% (X.fair.die == 3))

%in%

Generic method for in operator function

Description

Generic method for in operator function

Usage

e1 %in% e2

Arguments

e1 First vector
e2 Second vector

Value

A logical vector indicating which elements of e1 are in e2
Index

%AND%, 17
%OR%, 17
%in%, 18

as.RV, 2

Conditional, 2

E, 3

KURT, 4

make.RV, 4
make.RV-package (make.RV), 4
margins, 5
mult, 6
multN, 6

outcomes, 7

P, 8
plot.RV, 8
plot.RVsim, 9
print.RV, 10
probs, 10
Prop, 11
props, 12

qqnorm.RV, 12

rsim, 13

SD, 14
SKEW, 14
skewSim, 15
SofI, 15
SofIID, 16

V, 16