Package `chords`

February 19, 2015

Type Package

Title Estimation in respondent driven samples.

Version 0.90

Date 2014-08-28

Author Jonathan Rosenblatt

Maintainer Jonathan Rosenblatt <john.ros@gmail.com>

Description Maximum likelihood estimation in respondent driven samples.

License GPL-2

Imports MASS

Repository CRAN

Repository/R-Forge/Project rds2

Repository/R-Forge/Revision 113

Repository/R-Forge/DateTimeStamp 2014-08-31 08:52:15

Date/Publication 2014-08-31 15:03:54

NeedsCompilation no

R topics documented:

<table>
<thead>
<tr>
<th>Package</th>
<th>R topics documented</th>
</tr>
</thead>
<tbody>
<tr>
<td>chords</td>
<td></td>
</tr>
<tr>
<td></td>
<td>chords-package</td>
</tr>
<tr>
<td></td>
<td>brazil</td>
</tr>
<tr>
<td></td>
<td>estimate.b.k</td>
</tr>
<tr>
<td></td>
<td>getTheta</td>
</tr>
<tr>
<td></td>
<td>initializeRdsObject</td>
</tr>
<tr>
<td></td>
<td>makeRdsSample</td>
</tr>
<tr>
<td></td>
<td>thetaSmoothingNks</td>
</tr>
</tbody>
</table>

Index

1
chords-package Population size estimation for respondent driven sampling

Description

Estimates population size and degree distribution in respondent driven samples (RDS).

Details

Maximum likelihood estimation of population size using the methodology in the reference. The fundamental idea is of modeling the sampling as an epidemic process. See estimate.b.k for details.

Author(s)

Jonathan D. Rosenblatt <john.ros.work@gmail.com>

References

brazil Heavy Drug Users in Curitiba

Description

A respondent driven sample of heavy drug users in Curitiba.

Usage

data("brazil")

Format

A data frame with 303 observations on the following 8 variables.

myuniid Subject’s ID.
ns1 Subject’s self reported degree.
refCoupNum Reference coupon no.
coup1 Supplied coupon.
coup2 Supplied coupon.
coup3 Supplied coupon.
interview0t Time of interview. See details.
interview0t2 Deprecated.

The RDS format has been augmented with the time of interview (interviewdt variable) required for the methodology in [1].

The interviewdt variable encodes the time of interview. For the purpose of calling estimate.b.k the scale and origin are imaterial. We thus use an arbitrary efficient encoding which might not adhere to the original scale.

For full details see the Source section.

Source

And http://opr.princeton.edu/archive/nnum/

References

Examples

see estimate.b.k()

estimate.b.k Estimate population size from RDS sample

Description

Performs maximum likelihood estimation of a population size from a respondent driven sample. The underlying idea is that the sample spreads like an epidemic in the target population as described in the reference.

Usage

estimate.b.k(rds.object, const=1, impute.Nks=TRUE)
Arguments

- **rds.object**: A object of class rds-object as constructed by `initializeRdsObject`
- **const**: A scaler value for numerical stability. Should not be altered.
- **impute.Nks**: Should inestimable values be imputed?

Details

See the reference for a description of the likelihood problem solved. Optimization is performed by noting that likelihood is coordinate-wise convex, thus amounts to a series of line-searches.

If `impute.Nk` is enabled (default), a simple heuristic is used to estimate degree frequencies which are inestimable using maximum likelihood. This essentially consists of scaling the observed degree by the average observed-to-estimated factor over all estimable frequencies.

Value

A list with the following components:

- **call**: The function call.
- **Nk.estimates**: The estimated degree frequencies.
- **log.bk.estimates**: The estimated sampling rates for each degree.

Note

This function replaces the `estimate.rds` function from versions prior to 0.8 which is now deprecated. Differences between the functions include: 1- Likelihood is now computed in continuous time. The sample data is thus assumed to have an `interviewDt` column. 2- Optimization now exploits the coordinate-wise convexity of the likelihood function for efficient solving.

Author(s)

Jonathan D. Rosenblatt <john.ros.work@gmail.com>

References

See Also

`initializeRdsObject, makeRdsSample, getTheta`
getTheta

Examples

```r
# Import data in RDS file format:
data(brazil)
# Initialize RDS object:
rds.object2 <- initializeRdsObject(brazil)
# Estimate:
rds.object2$estimates <- estimate.b.k(rds.object = rds.object2)

# View estimates:
plot(rds.object2$estimates$Nk.estimates, type='h')
# Population size estimate:
sum(rds.object2$estimates$Nk.estimates)
plot(rds.object2$estimates$log.bk.estimates, type='h')

## Recover theta assuming b.k=b_0+k*theta
getTheta(rds.object2)

# How many degrees were imputed?:
table(rds.object2$estimates$convergence)
```

getTheta
Recover the "discoverability coefficient".

Description

Estimates the effect of the degree on the rate of sampling. Also known as the "coefficient of discoverability" in the oil-discovery literature [2]. Formally, we estimate \(\theta \) and \(\beta_0 \) assuming that
\[
\beta_k := \beta_0 \times k^\theta.
\]

Usage

```r
getTheta(rds.object, bin=1, robust=TRUE)
```

Arguments

- **rds.object**
 A `rds`-object with a `estimates` component as returned by `estimate.b.k`

- **bin**
 Bin degree counts. See Note.

- **robust**
 Should \(\beta_0 \) and \(\theta \) be recovered from \(\beta_k \) using a robust method (default) or not.

Value

A list including the following components:

- **log.beta_0**
 The log of \(\beta_0 \) in \(\beta_k := \beta_0 \times k^\theta \).

- **theta**
 \(\theta \) in \(\beta_k := \beta_0 \times k^\theta \).
Note

If degree counts have been binned by `initializeRdsObject` (for variance reduction), the same value has to be supplied to `getTheta` for correct estimation.

Author(s)

Jonathan D. Rosenblatt <john.ros.work@gmail.com>

References

See Also

`estimate.b.k, initializeRdsObject, makeRdsSample`

Examples

```r
# See in estimate.b.k()
```

`initializeRdsObject` *Construct a rds-object from a data.frame.*

Description

Given a data frame with the appropriate variables, initializes a rds-object with the components required by the `estimate.b.k` function for estimation.

Usage

`initializeRdsObject(rds.sample, bin=1L, seeds=1L)`

Arguments

- `rds.sample` A data frame with required columns. See Details.
- `bin` The number of degrees for bin together. See details.
- `seeds` The number of seed recruiters. See details.
Details

The essence of the function is in recovering the sampling snowball required by \texttt{estimate.b.k}. The function allows for recruiters to enter and exit the sampling snowball. The number of seed recruiters is typically not specified in an RDS file. The \texttt{seeds} argument is a workaround that allows to specify directly this number.

The \texttt{rds.sample} object is assumed to be a data frame with the following column names:

1. \texttt{MyUniID} an identifier of the sampling unit. [not required]
2. \texttt{NS1} the reported degree. [required]
3. \texttt{refCoupNum} the number of the referring coupon.
4. \texttt{coup1} the number of the 1st supplied coupon. NA if none. [required].
5. \texttt{coupX} the number of the \texttt{X}th supplied coupon. NA if none. [not required]
6. \texttt{interviewDt} the time of the interview. In numeric representation from some origin. Ties are not allowed.

See \texttt{brazil} for a sample data.frame.

If the sample is short, stabilization of degree estimates can be achieved by binning degrees together. This can be done with the \texttt{bin} argument. Note however that the interpretation of the estimated degree counts is now different as the k'th degree is actually the k'th bin, which is only proportional to k. An exception is the function \texttt{getTheta} which also accepts a \texttt{bin} argument for proper estimation of \texttt{theta}.

Value

A list with the following components.

- \texttt{rds.sample} the input data frame. After ordering along time of arrival.
- \texttt{I.t} the sampling snowball. A list including the following items: \texttt{I.t} an integer of the count of the sampling individuals at the moments of recruitment. \texttt{degree.in} an integer with the degree of an added recruiter at the moments of recruitment. \texttt{degree.out} an integer with the degree of a removed recruiter at the moment of recruitment.
- \texttt{original.ordering} the order of the arrivals as was inputed in \texttt{rds.sample$interviewDt}
- \texttt{estimates} a placeholder for the future output of \texttt{estimate.b.k}

Author(s)

Jonathan D. Rosenblatt <john.ros.work@gmail.com>

References

See Also

\texttt{estimate.b.k, makeRdsSample, brazil}
Examples

See examples in estimate.b.k()

makeRdsSample

Generate a synthetic (simulated) RDS sample.

Description

Generates a sample from the sampling process assumed in the reference. Well, actually, only the sufficient statistics required by \texttt{estimate.b.k} are returned.

Usage

\texttt{makeRdsSample(n.k, b.k, sample.length)}

Arguments

\begin{itemize}
 \item \texttt{n.k} An integer vector with the population frequency of each degree.
 \item \texttt{b.k} A numeric vector of the sampling rates of each degree.
 \item \texttt{sample.length} The length of the sample. Specified as the number of recruitees before termination.
\end{itemize}

Value

An object of class \texttt{rds-object} suitable for applying \texttt{estimate.b.k}.

Note

The simulator does not produce a whole RDS sample, but rather the sufficient statistics required for applying \texttt{estimate.b.k}.

Author(s)

Jonathan D. Rosenblatt <john.ros.work@gmail.com>

References

See Also

\texttt{estimate.b.k}
thetaSmoothingNks

Examples

Generate data:
true.Nks <- rep(0, 100); true.Nks[c(2, 100)] <- 1000
theta <- 1e-1
true.log.bks <- rep(-Inf, 100); true.log.bks[c(2, 100)] <- theta*log(c(2, 100))
sample.length <- 1000L
rds.simulated.object <- makeRdsSample(
 N.k = true.Nks,
 b.k = exp(true.log.bks),
 sample.length = sample.length)

Estimate:
rds.simulated.object$estimates <- estimate.b.k(rds.object = rds.simulated.object)
chords:::compareNkEstimate(rds.simulated.object$estimates$Nk.estimate, true.Nks)

thetaSmoothingNks Smooth estimates degree frequencies.

Description

Smoothes estimated \(N_k \) by assuming that \(\beta_k = \beta_0 * k^\theta \).

Usage

thetaSmoothingNks(rds.object,...)

Arguments

rds.object A rds-object class object as returned by estimate.b.k
...

Value

A numeric vector of smoothed \(N_k \) values.

Author(s)

Jonathan D. Rosenblatt <john.ros.work@gmail.com>

See Also

estimate.b.k; getTheta

Examples

See estimate.b.k()
Index

*Topic datasets
 brazil, 2
brazil, 2, 7
chords (chords-package), 2
chords-package, 2
estimate.b.k, 2, 3, 3, 5–9
getTheta, 4, 5, 7, 9
initializeRdsObject, 4, 6, 6
makeRdsSample, 4, 6, 7, 8
thetaSmoothingNks, 9