Package ‘capushe’

February 19, 2015

Type Package
Title Capushe, data-driven slope estimation and dimension jump
Version 1.0
Date 2011-07-13
Author Vincent Brault, Jean-Patrick Baudry, Cathy Maugis and Bertrand Michel
Maintainer Vincent Brault <vincent.brault@math.u-psud.fr>
Description This package is devoted to the calibration of penalized criteria for model selection. The calibration methods available in this package are based on the slope heuristics.
License GPL (>= 2.0)
LazyLoad yes
Depends methods, graphics, MASS
Collate prog.R DDSE.R Djump.R capushe.R
Repository CRAN
Date/Publication 2012-02-17 17:18:33
NeedsCompilation no

R topics documented:
capushe-package .. 2
BICAICcapushe .. 3
capushe ... 4
datacapushe ... 6
DDSE ... 7
Djump ... 9
plot-methods .. 11
validation ... 12

Index 14
Description

This package includes functions for model selection via penalization. The model selection criterion has the following form: $\gamma_n(\hat{s}_m) + \text{scdf} \times \kappa \times \text{pen}_\text{shape}(m)$. Two algorithms based on the slope heuristics are proposed to calibrate the parameter κ in the penalty: the data-driven slope estimation algorithm (DDSE) and the dimension jump algorithm (Djump).

Details

The data-driven slope estimation algorithm and the dimension jump algorithm are respectively implemented into the DDSE function and the Djump function. Some classes are defined for the outputs of DDSE and Djump and a graphical display is available for each one of these two classes. DDSE and Djump are both included in the capushe function which is the main function of the package.

Author(s)

Vincent Brault, Jean-Patrick Baudry, Cathy Maugis and Bertrand Michel.
Maintainer: Vincent Brault <vincent.brault@math.u-psud.fr>

References

http://www.math.univ-toulouse.fr/~maugis/CAPUSHE.html

See Also

Djump and DDSE for model selection algorithms based on the slope heuristics. plot for a graphical display of the two algorithms. validation to check that the slope heuristics can be applied confidently.

Examples

data(datacapushe)
capushe returns the same model with DDSE and Djump:
capushe(datacapushe)
capushe also returns the model selected by AIC and BIC
capushe(datacapushe,n=1000)
Djump only
Djump(datacapushe)
DDSE only
DDSE(datacapushe)
Graphical representations
plot(Djump(datacapushe))
plot(DDSE(datacapushe))
BICAICcapushe

```r
plot(capushe(data(capushe)))
## Validation procedure
data(datapartialcapushe)
capushepartial=capushe(datapartialcapushe)
plot(capushepartial)
## Additional data
data(datavalidcapushe)
validation(capushepartial,datavalidcapushe) ## The slope heuristics should not
## be applied for datapartialcapushe.
```

BICAICcapushe
AICcapushe and BICcapushe

Description

These functions return the model selected by the Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC).

Usage

```r
AICcapushe(data, n)
BICcapushe(data, n)
```

Arguments

- `data`
 data is a matrix or a data.frame with four columns of the same length and each line corresponds to a model:
 1. The first column contains the model names.
 2. The second column contains the penalty shape values.
 3. The third column contains the model complexity values.
 4. The fourth column contains the minimum contrast value for each model.

- `n`
 `n` is the sample size.

Details

The penalty shape value should be increasing with respect to the complexity value (column 3). The complexity values have to be positive. `n` is necessary to compute AIC and BIC criteria. `n` is the size of sample used to compute the contrast values given in the data matrix. Do not confuse `n` with the size of the model collection which is the number of rows of the data matrix.

Value

- `model`
 The model selected by AIC or BIC.

- `AIC`
 The corresponding value of AIC (for AICcapushe only).

- `BIC`
 The corresponding value of BIC (for BICcapushe only).
Author(s)
Vincent Brault

References

http://www.math.univ-toulouse.fr/~maugis/CAPUSHE.html

See Also
capushe for a model selection function including AIC, BIC, the DDSE algorithm and the Djump algorithm.

Examples

data(datacapushe)
AICcapushe(datacapushe,n=1000)
BICcapushe(datacapushe,n=1000)

capushe **CALibrating Penalties Using Slope HEuristics (CAPUSHE)**

Description
The capushe function proposes two algorithms based on the slope heuristics to calibrate penalties in the context of model selection via penalization.

Usage
capushe(data, n = 0, pct = 0.15, point = 0, psi.rlm = psi.bisquare, scoef = 2)

Arguments

data: data is a matrix or a data.frame with four columns of the same length and each line corresponds to a model:
1. The first column contains the model names.
2. The second column contains the penalty shape values.
3. The third column contains the model complexity values.
4. The fourth column contains the minimum contrast value for each model.
n: n is the sample size.
pct: Minimum percentage of points for the plateau selection. See DDSE for more details.
The model \(\hat{m} \) selected by the procedure fulfills

\[
\hat{m} = \arg\min \gamma_n(\hat{s}_m) + \text{scoef} \times \kappa \times \text{pen}_{\text{shape}}(m)
\]

where

- \(\kappa \) is the penalty coefficient.
- \(\gamma_n \) is the empirical contrast.
- \(\hat{s}_m \) is the estimator for the model \(m \).
- \(\text{scoef} \) is the ratio parameter.
- \(\text{pen}_{\text{shape}} \) is the penalty shape.

The capushe function calls the functions \texttt{DDSE} and \texttt{Djump} to calibrate \(\kappa \), see the description of these functions for more details. In the case of equality between two penalty shape values, only the model with the smallest contrast is considered.

Value

- \texttt{@DDSE} A list returned by the \texttt{DDSE} function.
- \texttt{@DDSE@model} The model selected by the \texttt{DDSE} function.
- \texttt{@DDSE@kappa} The vector of the successive slope values.
- \texttt{@DDSE@ModelHat} A list providing details about the model selected by the \texttt{DDSE} function.
- \texttt{@DDSE@interval} A list about the "slope interval" corresponding to the plateau selected in \texttt{DDSE}. See \texttt{DDSE} for more details.
- \texttt{@DDSE@graph} A list computed for the \texttt{plot} function.
- \texttt{@Djump} A list returned by the \texttt{Djump} function.
- \texttt{@Djump@model} The model selected by the \texttt{Djump} function.
- \texttt{@Djump@ModelHat} A list providing details about the model selected by the \texttt{Djump} function.
- \texttt{@Djump@graph} A list computed for the \texttt{plot} function.
- \texttt{@AIC_capushe} A list returned by the \texttt{AICcapushe} function.
- \texttt{@BIC_capushe} A list returned by the \texttt{BICcapushe} function.
- \(@n \) Sample size.

Author(s)

Vincent Brault
References

http://www.math.univ-toulouse.fr/~maugis/CAPUSHE.html

See Also

Djump, DDSE, AIC or BIC to use only one of these model selection functions. plot for graphical displays of DDSE and Djump.

Examples

data(datacapushe)
capushe(datacapushe)
capushe(datacapushe,1000)

datacapushe datacapushe

Description

A dataframe example for the capushe package based on a simulated Gaussian mixture dataset in \mathbb{R}^3.

Usage

data(datacapushe)

Format

A data frame with 50 rows (models) and the following 4 variables:

- `model` a character vector: model names.
- `pen` a numeric vector: model penalty shape values.
- `complexity` a numeric vector: model complexity values.
- `contrast` a numeric vector: model contrast values.

Details

The simulated dataset is composed of $n = 1000$ observations in \mathbb{R}^3. It consists of an equiprobable mixture of three large "bubble" groups centered at $\nu_1 = (0,0,0)$, $\nu_2 = (6,0,0)$ and $\nu_3 = (0,6,0)$ respectively. Each bubble group j is simulated from a mixture of seven components according to the following density distribution:

$$x \in \mathbb{R}^3 \rightarrow 0.4\Phi(x|\mu_1 + \nu_j, I_3) + \sum_{k=2}^{7} 0.1\Phi(x|\mu_k + \nu_j, 0.1I_3)$$
with \(\mu_1 = (0, 0, 0) \), \(\mu_2 = (0, 0, 1.5) \), \(\mu_3 = (0, 1.5, 0) \), \(\mu_4 = (1.5, 0, 0) \), \(\mu_5 = (0, 0, -1.5) \), \(\mu_6 = (0, -1.5, 0) \) and \(\mu_7 = (-1.5, 0, 0) \). Thus the distribution of the dataset is actually a 21-component Gaussian mixture.

A model collection of spherical Gaussian mixtures is considered and the dataframe `datacapushe` contains the maximum likelihood estimations for each of these models. The number of free parameters of each model is used for the complexity values and \(\text{penshape} \) is defined by this complexity divided by \(n \).

datapartialcapushe and datavalidcapushe can be used to run the `validation` function. datapartialcapushe only contains the models with less than 21 components. datavalidcapushe contains three models with 30, 40 and 50 components respectively.

Source

http://www.math.univ-toulouse.fr/~maugis/CAPUSHE.html

References

Examples

```r
data(datacapushe)
capushe(datacapushe,n=1000)
## BIC, DDSE and Djump all three select the true model
plot(capushe(datacapushe))
## Validation:
data(datapartialcapushe)
capushepartial=capushe(datapartialcapushe)
data(datavalidcapushe)
validation(capushepartial,datavalidcapushe) ## The slope heuristics should not
## be applied for datapartialcapushe.
```

DDSE Model selection by Data-Driven Slope Estimation

Description

DDSE is a model selection function based on the slope heuristics.

Usage

```r
DDSE(data, pct = 0.15, point = 0, psi.rlm = psi.bisquare, scoef = 2)
```
Arguments

data
data is a matrix or a data.frame with four columns of the same length and each line corresponds to a model:
1. The first column contains the model names.
2. The second column contains the penalty shape values.
3. The third column contains the model complexity values.
4. The fourth column contains the minimum contrast value for each model.
pct
Minimum percentage of points for the plateau selection. It must be between 0 and 1. Default value is 0.15.
point
Minimum number of point for the plateau selection. If point is different from 0, pct is obsolete.
psi.rlm
Weight function used by rlm. psi.rlm="lm" for non robust linear regression.
scoef
Ratio parameter. Default value is 2.

Details

Let M be the model collection and $P = \{pen\text{shape}(m), m \in M\}$. The DDSE algorithm proceeds in four steps:

1. If several models in the collection have the same penalty shape value (column 2), only the model having the smallest contrast value $\gamma_n(\hat{s}_m)$ (column 4) is considered.
2. For any $p \in P$, the slope $\hat{\kappa}(p)$ (argument @kappa) of the linear regression (argument psi.rlm) on the couples of points $\{(pen\text{shape}(m), -\gamma_n(\hat{s}_m)); pen\text{shape}(m) \geq p\}$ is computed.
3. For any $p \in P$, the model fulfilling the following condition is selected:
 $$\hat{m}(p) = \arg\min \gamma_n(\hat{s}_m) + scoef \times \hat{\kappa}(p) \times pen\text{shape}(m).$$
 This gives an increasing sequence of change-points $(p_i)_{1 \leq i \leq I+1}$ (output @modelhatDpoint_breaking). Let $(N_i)_{1 \leq i \leq I}$ (output @modelhatDnumber_plateau) be the lengths of each "plateau".
4. If point is different from 0, let $\hat{i} = \max \{1 \leq i \leq I; N_i \geq point\}$ else let $\hat{i} = \max \{1 \leq i \leq I; N_i \geq pct \sum_{l=1}^{I} N_l\}$ (output @modelhatDimax). The model $\hat{m}(p_{\hat{i}})$ (output @model) is finally returned.

The "slope interval" is the interval $[a, b]$ where $a = \inf\{\hat{\kappa}(p), p \in [p_i, p_{i+1}] \cap \Pi\}$ and $b = \sup\{\hat{\kappa}(p), p \in [p_i, p_{i+1}] \cap \Pi\}$.

Value

@model
The model selected by the DDSE algorithm.
@kappa
The vector of the successive slope values.
@modelhat
A list describing the algorithm.
@modelhat$model_hat
The vector of preselected models $\hat{m}(p)$.
@modelhat$point_breaking
The vector of the breaking points $(p_i)_{1 \leq i \leq I+1}$.
@modelhat$number_plateau
The vector of the lengths $(N_i)_{1 \leq i \leq I}$.
@ModelHatsimax The rank \hat{i} of the selected plateau.
@interval A list about the "slope interval".
@interval(interval) The slope interval.
@interval$percent_of_points The proportion $N_i/\sum_{l=1}^{I} N_l$.
@graph A list computed for the plot method.

Author(s)

Vincent Brault

References

http://www.math.univ-toulouse.fr/~maugis/CAPUSHE.html

See Also
capushe for a model selection function including AIC, BIC, the DDSE algorithm and the Djump algorithm. plot for graphical displays of the DDSE algorithm and the Djump algorithm.

Examples

data(datacapushe)
DDSE(datacapushe)
plot(DDSE(datacapushe))
DDSE with "lm" for the regression
DDSE(datacapushe,psi.rlm="lm")

Djump Model selection by dimension jump

Description

Djump is a model selection function based on the slope heuristics.

Usage

Djump(data,scoef=2)
Arguments

data data is a matrix or a data.frame with four columns of the same length and each line corresponds to a model:
1. The first column contains the model names.
2. The second column contains the penalty shape values.
3. The third column contains the model complexity values.
4. The fourth column contains the minimum contrast value for each model.

scoef Ratio parameter. Default value is 2.

Details

The Djump algorithm proceeds in three steps:

1. For all $\kappa > 0$, compute
 \[m(\kappa) \in \arg\min_{m \in M} \left\{ \gamma_n(\hat{s}_m) + \kappa \times \text{pen}_\text{shape}(m) \right\} \]
 This gives a decreasing step function $\kappa \mapsto C_m(\kappa)$.
2. Find $\hat{\kappa}$ such that $C_m(\hat{\kappa})$ corresponds to the greatest jump of complexity.
3. Select $\hat{m} = m(scoef \times \hat{\kappa})$ (output @model).

Value

@model The model selected by the dimension jump method.
@ModelHat A list describing the algorithm.
@ModelHat$jump The vector of jump heights.
@ModelHat$kappa The vector of the values of κ at each jump.
@ModelHat$model_hat The vector of the selected models $m(\kappa)$ by the jump.
@ModelHat$JumpMax The location of the greatest jump.
@ModelHat$Kopt $\kappa_{opt} = scoef \hat{\kappa}$.
@graph A list computed for the plot method.

Author(s)

Vincent Brault

References

http://www.math.univ-toulouse.fr/~maugis/CAPUSHE.html

plot-methods

See Also
 capushe for a model selection function including AIC, BIC, the DDSE algorithm and the Djump algorithm. plot for a graphical display of the DDSE algorithm and the Djump algorithm.

Examples
 data(datacapushe)
 Djump(datacapushe)
 plot(Djump(datacapushe))

Description
 The plot methods allow the user to check that the slope heuristics can be applied confidently.

Usage
 plot(x,newwindow=TRUE,ask=TRUE) for capushe.
 plot(x,newwindow=TRUE) for DDSE and Djump.

Arguments
 x Output of DDSE, Djump or capushe.
 newwindow If newwindow=TRUE, a new window is created for each plot.
 ask If ask=TRUE, plot waits for the user to press a key to display the next plot (only for the class capushe).

Details
 The graphical window of DDSE is composed of three graphics (see DDSE for more details):
 left The left plot shows $-\gamma_n(\hat{s}_m)$ with respect to the penalty shape values.
 topright Successive slope values $\hat{\kappa}(p)$.
 bottomright The bottomright plot shows the selected models $\hat{m}(p)$ with respect to the successive slope values. The plateau in blue is selected.

 The graphical window of Djump shows the complexity $C_m(\kappa)$ of the selected model with respect to κ. $\hat{\kappa}^{dj}$ corresponds to the greatest jump. κ_{opt} is defined by $\kappa_{opt} = scoef \times \hat{\kappa}^{dj}$. The red line represents the slope interval computed by the DDSE algorithm (only for capushe). See Djump for more details.

Methods
 signature(x = "Capushe") This graphical function displays the DDSE plot and the Djump plot.
 signature(x = "DDSE") This graphical function displays the DDSE plot.
 signature(x = "Djump") This graphical function displays the Djump plot.
validation

Note
Use newwindow=FALSE to produce a PDF files (for an object of class capushe, use moreover ask=FALSE).

validation validation

Description
validation checks that the slope heuristics can be applied confidently.

Usage
validation(x,data2,...)

Arguments
x x must be an object of class capushe or DDSE, in practice an output of the capushe function or the DDSE function.
data2 data2 is a matrix or a data.frame with four columns of the same length and each line corresponds to a model:
1. The first column contains the model names.
2. The second column contains the penalty shape values.
3. The third column contains the model complexity values.
4. The fourth column contains the minimum contrast value for each model.
... • If newwindow=TRUE, a new window is created for the plot.

Details
The validation function plots the additional and more complex models data2 to check that the linear relation between the penalty shape values and the contrast values (which is recorded in x) is valid for the more complex models.

Author(s)
Vincent Brault

References
http://www.math.univ-toulouse.fr/~maugis/CAPUSHE.html

See Also
capushe for a more general model selection function including AIC, BIC, the DDSE algorithm and the Djump algorithm.
Examples

data(datapartialcapushe)
capushepartial=capushe(datapartialcapushe)
data(datavalidcapushe)
validation(capushepartial,datavalidcapushe) ## The slope heuristics should not
be applied for datapartialcapushe.
data(datacapushe)
plot(capushe(datacapushe))
Index

*Topic datasets
datacapushe, 6

*Topic methods
plot-methods, 11

*Topic models
BICAICcapushe, 3
capushe, 4
DDSE, 7
Djump, 9
validation, 12

*Topic package
capushe-package, 2
capushe.packages (capushe-package), 2
capushepackage (capushe-package), 2

Data-Driven (DDSE), 7
Data-driven (DDSE), 7
data-driven (DDSE), 7
data-driven slope estimation algorithm (DDSE), 2
datacapushe, 6
datapartialcapushe (datacapushe), 6
datavalidcapushe (datacapushe), 6
DDSE, 2, 4–6, 7, 11, 12
Ddse (DDSE), 7
ddse (DDSE), 7
DDSE-class (DDSE), 7
dimension jump algorithm (Djump), 2
Dimension_Jump (Djump), 9
Dimension_jump (Djump), 9
DimensionJump (Djump), 9
Dimensionjump (Djump), 9
DJUMP (Djump), 9
Djump, 2, 4–6, 9, 11, 12
djump (Djump), 9
Djump-class (Djump), 9

graphical, 2

heuristic (capushe-package), 2

plot, 2, 5, 6, 9–11
plot, Capushe-method (capushe), 4
plot, DDSE-method (DDSE), 7
plot, Djump-method (Djump), 9
plot-methods, 11
plot.capushe (plot-methods), 11
plot.DDSE (plot-methods), 11
plot.Djump (plot-methods), 11
plotcapushe (plot-methods), 11
plotDDSE (plot-methods), 11
plotDjump (plot-methods). 11
print, Capushe-method (capushe). 4
print, DDSE-method (DDSE). 7
print, Djump-method (Djump). 9
print.capushe (capushe). 4
print. DDSE (DDSE). 7
print. Djump (Djump). 9

rlm, 5, 8

show, Capushe-method (capushe). 4
show, DDSE-method (DDSE). 7
show, Djump-method (Djump). 9
show, capushe (capushe). 4
show, DDSE (DDSE). 7
show, Djump (Djump). 9
slope (capushe-package). 2
summary, Capushe-method (capushe). 4
summary, DDSE-method (DDSE). 7
summary, Djump-method (Djump). 9
summary, capushe (capushe). 4
summary, DDSE (DDSE). 7
summary, Djump (Djump). 9

validation, 2, 7, 12
validation, Capushe-method (capushe). 4
validation, DDSE-method (DDSE). 7
validation-methods (validation). 12
validation, capushe (validation). 12
validation, DDSE (validation). 12
validation, capushe (validation). 12
validation, DDSE (validation). 12