Package ‘biclust’

March 19, 2015

Version 1.1.0
Date 2015-03-19
Author Sebastian Kaiser, Rodrigo Santamaria, Tatsiana Khamiakova,
 Martin Sill, Roberto Theron, Luis Quintales, Friedrich
 Leisch and Ewoud De Troyer.
Maintainer Sebastian Kaiser <Sebastian.Kaiser@stat.uni-muenchen.de>
Title BiCluster Algorithms
Depends R (>= 2.10), MASS, grid, colorspace, lattice
Imports methods, flexclust
Suggests isa2
Description The main function biclust provides several algorithms to
 find biclusters in two-dimensional data: Cheng and Church,
 Spectral, Plaid Model, Xmotifs and Bimax. In addition, the
 package provides methods for data preprocessing (normalization
 and discretisation), visualisation, and validation of bicluster
 solutions.
License GPL-3
LazyLoad yes
Repository CRAN
Repository/R-Forge/Project biclust
Repository/R-Forge/Revision 220
Date/Publication 2015-03-19 14:57:19
NeedsCompilation yes
Repository/R-Forge/DateTimeStamp 2015-03-19 09:23:24

R topics documented:

BCBimax .. 2
BCCC ... 4
BCPlaid .. 5
BCBimax

The Bimax Bicluster algorithm

Description

Performs Bimax Biclustering based on the framework by Prelic et. al.(2006). It searches for submatrices of ones in a logical matrix. Uses the original C code of the authors.
BCBimax

Usage

```r
## S4 method for signature 'matrix,BCBimax'
biclust(x, method=BCBimax(), minr=2, minc=2, number=100)
## S4 method for signature 'matrix,BCrepBimax'
biclust(x, method=BCrepBimax(), minr=2, minc=2, number=100, maxc=12)
```

Arguments

- `x`: A logical matrix which represents the data.
- `method`: Here BCBimax, to perform Bimax algorithm
- `minr`: Minimum row size of resulting bicluster.
- `minc`: Minimum column size of resulting bicluster.
- `number`: Number of Bicluster to be found.
- `maxc`: Maximum column size of resulting bicluster.

Value

Returns an object of class Biclust.

Author(s)

Sebastian Kaiser <sebastian.kaiser@stat.uni-muenchen.de>

References

See Also

biclust, Biclust

Examples

```r
# Generate a test matrix
test <- matrix(rnorm(5000), 100, 50)
test[11:20,11:20] <- rnorm(100, 3, 0.1)
loma <- binarize(test, 2)
res <- biclust(x=loma, method=BCBimax(), minr=4, minc=4, number=10)
res
```
The CC Bicluster algorithm

Description

Performs CC Biclustering based on the framework by Cheng and Church (2000). Searches for submatrices with a score lower than a specific threshold in a standardized data matrix.

Usage

```r
# S4 method for signature 'matrix,BCCC'
biclust(x, method=BCCC(), delta = 1.0, alpha=1.5, number=100)
```

Arguments

- `x` Data matrix.
- `method` Here BCCC, to perform CC algorithm
- `delta` Maximum of accepted score.
- `alpha` Scaling factor.
- `number` Number of bicluster to be found.

Value

Returns an object of class `biclust`.

Author(s)

Sebastian Kaiser <sebastian.kaiser@stat.uni-muenchen.de>

References

Cheng, Y. & Church, G.M. Biclustering of Expression Data Proceedings of the Eighth International Conference on Intelligent Systems for Molecular Biology, 2000, 1, 93-103

See Also

`biclust`, `Biclust`

Examples

```r
test <- matrix(rbinom(400, 50, 0.4), 20, 20)
res <- biclust(test, method=BCCC(), delta=1.5, alpha=1, number=10)
res
```
BCPlaid

The Plaid Model Bicluster algorithm

Description

Performs Plaid Model Biclustering as described in Turner et al., 2003. This is an improvement of original 'Plaid Models for Gene Expression Data' (Lazzeroni and Owen, 2002). This algorithm models data matrices to a sum of layers, the model is fitted to data through minimization of error.

Usage

```r
## S4 method for signature 'matrix,BCPlaid'
biclust(x, method=BCPlaid(), cluster="b", fit.model = y ~ m + a + b,
  background = TRUE, background.layer = NA, background.df = 1, row.release = 0.7,
  col.release = 0.7, shuffle = 3, back.fit = 0, max.layers = 20, iter.startup = 5,
  iter.layer = 10, verbose = TRUE)
```

Arguments

- `x` The data matrix where biclusters have to be found
- `method` Here BCPlaid, to perform Plaid algorithm
- `cluster` ‘r’, ‘c’ or ‘b’, to cluster rows, columns or both (default ‘b’)
- `fit.model` Model (formula) to fit each layer. Usually, a linear model is used, that stimulates three parameters: m (constant for all elements in the bicluster), a (constant for all rows in the bicluster) and b (constant for all columns). Thus, default is: y ~ m + a + b.
- `background` If ‘TRUE’ the method will consider that a background layer (constant for all rows and columns) is present in the data matrix.
- `background.layer` If background=’TRUE’ a own background layer (Matrix with dimension of x) can be specified.
- `background.df` Degrees of Freedom of background layer if background.layer is specified.
- `shuffle` Before a layer is added, it’s statistical significance is compared against a number of layers obtained by random defined by this parameter. Default is 3, higher numbers could affect time performance.
- `iter.startup` Number of iterations to find starting values
- `iter.layer` Number of iterations to find each layer
- `back.fit` After a layer is added, additional iterations can be done to refine the fitting of the layer (default set to 0)
- `row.release` Scalar in [0,1](with interval recommended [0.5-0.7]) used as threshold to prune rows in the layers depending on row homogeneity
- `col.release` As above, with columns
- `max.layers` Maximum number of layer to include in the model
- `verbose` If ‘TRUE’ prints extra information on progress.
Value

Returns an Biclust object.

Author(s)

Adaptation of original code from Heather Turner from Rodrigo Santamaria <rodri@usal.es>.

References

Examples

```r
# Random matrix with embedded bicluster
test <- matrix(rnorm(5000),100,50)
test[11:20,11:20] <- rnorm(100,3,0.3)
res <- biclust(test, method=BCPlaid())
res

# Microarray matrix
data(BicatYeast)
res <- biclust(BicatYeast, method=BCPlaid(), verbose=FALSE)
res
```

BCQuest

The Questmotif Bicluster algorithm

Description

Performs Questmotif Biclustering a Bicluster algorithm for questionnaires based on the framework by Murali and Kasif (2003). Searches subgroups of questionnaires with same or similar answer to some questions.

Usage

```r
## S4 method for signature 'matrix,BCQuest'
biclust(x, method=BCQuest(), ns=10, nd=10, sd=5, alpha=0.05, number=100)
## S4 method for signature 'matrix,BCQuestord'
biclust(x, method=BCQuestord(), d=1, ns=10, nd=10, sd=5, alpha=0.05, number=100)
## S4 method for signature 'matrix,BCQuestmet'
biclust(x, method=BCQuestmet(), quant=0.25, vari=1, ns=10, nd=10, sd=5,
         alpha=0.05, number=100)
```
Arguments

- `x` Data Matrix.
- `method` Here BCQuest, to perform Questmotif algorithm
- `ns` Number of questions choosen.
- `nd` Number of repetitions.
- `sd` Sample size in repetitions.
- `alpha` Scaling factor for column result.
- `number` Number of bicluster to be found.
- `d` Half margin of intervall question values should be in (Intervall is mean-d,mean+d).
- `quant` Which quantile to use on metric data
- `vari` Which varianz to use for metric data

Value

Returns an object of class `biclust`.

Extends

Class "BiclustMethod", directly.

Author(s)

Sebastian Kaiser <sebastian.kaiser@stat.uni-muenchen.de>

References

Murali, T. & Kasif, S. Extracting Conserved Gene Expression Motifs from Gene Expression Data Pacific Symposium on Biocomputing, sullivan.bu.edu, 2003, 8, 77-88

See Also

`biclust`, `Biclust`

Description

Performs Spectral Biclustering as described in Kluger et al., 2003. Spectral biclustering supposes that normalized microarray data matrices have a checkerboard structure that can be discovered by the use of svd decomposition in eigenvectors, applied to genes (rows) and conditions (columns).
Usage

```r
## S4 method for signature 'matrix,BCSpectral'
biclust(x, method=BCSpectral(), normalization="log", numberOfEigenvalues=3,
        minr=2, minc=2, withinVar=1)
```

Arguments

- `x` The data matrix where biclusters are to be found
- `method` Here BCSpectral, to perform Spectral algorithm
- `normalization` Normalization method to apply to mat. Three methods are allowed as described by Kluger et al.: "log" (Logarithmic normalization), "irrc" (Independent Rescaling of Rows and Columns) and "bistochastization". If "log" normalization is used, be sure you can apply logarithm to elements in data matrix, if there are values under 1, it automatically will sum to each element in mat (1+abs(min(mat))) Default is "log", as recommended by Kluger et al.
- `numberOfEigenvalues` the number of eigenValues considered to find biclusters. Each row (gene) eigenVector will be combined with all column (condition) eigenVectors for the first numberOfEigenvalues eigenvalues. Note that a high number could increase dramatically time performance. Usually, only the very first eigenvectors are used. With "irrc" and "bistochastization" methods, first eigenvalue contains background (irrelevant) information, so it is ignored.
- `minr` minimum number of rows that biclusters must have. The algorithm will not consider smaller biclusters.
- `minc` minimum number of columns that biclusters must have. The algorithm will not consider smaller biclusters.
- `withinVar` maximum within variation allowed. Since spectral biclustering outputs a checkerboard structure despite of relevance of individual cells, a filtering of only relevant cells is necessary by means of this within variation threshold.

Value

Returns an object of class Biclust.

Author(s)

Rodrigo Santamaria <rodri@usal.es>

References

Examples

```r
# Random matrix with embedded bicluster
test <- matrix(rnorm(5000), 100, 50)
test[11:20, 11:20] <- rnorm(100, 10, 0.1)
res1 <- biclust(test, method=BCSpectral(), numberOfEigenvalues=1)
res1
```

Description

Performs XMotifs Biclustering based on the framework by Murali and Kasif (2003). Searches for a submatrix where each row as a similar motif through all columns. The Algorithm needs a discret matrix to perform.

Usage

```r
## S4 method for signature 'matrix,BCXmotifs'
biclust(x, method=BCXmotifs(), ns=10, nd=10, sd=5, alpha=0.05, number=100)
```

Arguments

- `x`
 Data Matrix.
- `method`
 Here BCXmotifs, to perform Xmotifs algorithm
- `ns`
 Number of columns choosen.
- `nd`
 Number of repetitions.
- `sd`
 Sample size in repetitions.
- `alpha`
 Scaling factor for column result.
- `number`
 Number of bicluster to be found.

Value

Returns an object of class Biclust.

Extends

Class "BiclustMethod", directly.

Author(s)

Sebastian Kaiser <sebastian.kaiser@stat.uni-muenchen.de>
References

Murali, T. & Kasif, S. Extracting Conserved Gene Expression Motifs from Gene Expression Data Pacific Symposium on Biocomputing, sullivan.bu.edu, 2003, 8, 77-88

See Also

biclust, Biclust

Examples

data(BicatYeast)
x <- discretize(BicatYeast)
res <- biclust(x, method=BCXmotifs(), ns=20, nd=20, sd=5, alpha=0.01, number=10)
res

BicatYeast

BicAT Yeast

Description

Microarray data matrix for 80 experiments with Saccharomyces Cerevisiae organism extracted from BicAT example data set.

Usage

data(BicatYeast)

Format

Data structure with information about the expression levels of 419 probesets over 70 conditions
Row names follow Affymetrix probeset notation

Source

BicAT datasets at http://www.tik.ee.ethz.ch/sop/bicat/
biclust

The biclust Method

Description

The function biclust is the main function of the package. It calculates the bicluster in a data matrix using the algorithm specified in the method-argument. Currently the package contains 5 different methods for the use in biclust. For each algorithm see the class help files for further details. For some algorithms preprocessing is necessary, e.g. BCBimax only runs with a logical matrix.

Usage

```r
## S4 method for signature 'matrix,BiclustMethod'
biclust(x, method, ...)

## S4 method for signature 'matrix,character'
biclust(x, method, ...)
```

Arguments

- `x` Data matrix.
- `method` An object of class "BiclustMethod" or a character string with the name of a "BiclustMethod"-class.
- `...` Additional Parameters of the "BiclustMethod"

Value

Returns an object of class Biclust.

Author(s)

Sebastian Kaiser <sebastian.kaiser@stat.uni-muenchen.de>

See Also

Biclust-class, BCCC, BCXmotifs, BCPlaid, BCSpectral, BCBimax, BCQuest, BiclustMethod-class

Examples

```r
test <- matrix(rbinom(400, 50, 0.4), 20, 20)
res1 <- biclust(test, method=BCCC(), delta=1.5, alpha=1, number=10)
```
Biclust-class

The Biclust Class

Description

Biclust is the class structure for results of a bicluster algorithm. It contains all information needed for further processing. The show Method gives the Name of the Algorithm used and the first Bicluster found. The summary Method gives sizes of all bicluster found.

Objects from the Class

Objects can be created by performing a bicluster algorithm via the biclust() function.

Slots

Objects of class Biclust have the following slots:

- **Parameters**: Saves input Parameters in a list
- **RowxNumber**: Logical Matrix which contains 1 in [i,j] if Row i is in Bicluster j
- **NumberxCol**: Logical Matrix which contains 1 in [i,j] if Col j is in Bicluster i
- **Number**: Number of Bicluster
- **info**: Additional Outputs from the different bicluster algorithms

Details

RowxNumber and NumberxCol are named after the arrangement of the data they contain. The column results are transposed in order to ensure a easy processing.

Author(s)

Sebastian Kaiser <sebastian.kaiser@stat.uni-muenchen.de>

See Also

biclust, BiclustMethod-class
biclustbarchart

Bicluster Barchart

Description

Draws a barchart for a Bicluster result representing the columns

Usage

biclustbarchart(x, Bicres, which=NULL, ...)

Arguments

x The data matrix

Bicres BiclustResult object with a bicluster result set. If this value is set to NULL, the data matrix is drawn as a heatmap, without any reordering. Default NULL.

which If specified gives the plotting order of the columns from bottom to top

... Additional plot options passed to barchart

Author(s)

Sebastian Kaiser <sebastian.kaiser@stat.uni-muenchen.de>

See Also

bubbleplot for simultaneous representation of biclusters, parallelCoordinates for single representation of biclusters as lines of gene or condition profiles, drawHeatmap for Heatmap representation of biclusters and biclustmember for a membership graph.

Examples

set.seed(1)
x = matrix(rnorm(900), 30, 30)
x[1:5,1:5]=rnorm(25,3,0.3)
x[11:15,11:15]=rnorm(25,-3,0.3)
x[21:25,21:25]=rnorm(25,6,0.3)
colnames(x)<-paste("Var.",1:30)
bics <- biclust(x,BCPlaid(), back.fit = 2, shuffle = 3, fit.model = -m + a + b, iter.startup = 5, iter.layer = 30, verbose = TRUE)
biclustbarchart(x,bics, col="#A3E0D8")
ord<-bicorder(bics, cols=TRUE, rev=TRUE)
biclustbarchart(x,bics,which=ord)
bicluster *Extract Bicluster*

Description

Function to extract the bicluster or the row and column numbers from a given bicluster result

Usage

```r
bicluster(x, BicRes, number = 1:BicRes@Number)
biclusterNumber(BicRes, number = 1:BicRes@Number)
```

Arguments

- `x` The data matrix
- `BicRes` BiclustResult object
- `number` Which bicluster to be extracted

Value

Returns a list containing all extracted bicluster

Author(s)

Sebastian Kaiser <sebastian.kaiser@stat.uni-muenchen.de>

See Also

`writeclust`, `writeBiclusterResults`

Examples

```r
s2 <- matrix(rnorm(400), 20, 20)
s2[12:16,12:16] <- rnorm(25,3,0.3)
set.seed(1)
bics <- biclust(s2,BCPlaid(), back.fit = 2, shuffle = 3, fit.model = ~m + a + b, iter.startup = 5, iter.layer = 30, verbose = TRUE)
bicluster(s2, bics)
biclusterNumber(bics)
```
biclustmember

Bicluster Membership Graph

Description

Draws a membership graph cluster x columns

Usage

```r
biclustmember(bicResult, x, mid = T, cl_label = "", which=NA, 
               main = "Bicluster Membership Graph", xlab="Cluster", 
               color=diverge_hcl(101, h = c(0, 130)), ...)

clustmember(res, x, mid = T, cl_label = "", which=NA, 
             main = "Cluster Membership Graph", xlab="Cluster", 
             color=diverge_hcl(101, h = c(0, 130)), ...)

bicorder(bicResult, cols=TRUE, rev=FALSE)
```

Arguments

- `x` The data matrix
- `bicResult` BiclustResult object with a bicluster result set.
- `res` Cluster Result (is converted into a kcca object)
- `mid` If TRUE, shows the value of the remaining objects inside the cluster value, else shows both aside each other.
- `cl_label` Ticks of x-axis
- `which` If specified gives the plotting order of the columns from bottom to top
- `main` Gives the title of the plot
- `xlab` Label of x-axis
- `color` Range of colors for the plot
- `...` Additional plot options or if neccessary option for as.kcca
- `cols` If TRUE orders the column by appearance in the bicluster, else orders the rows.
- `rev` If TRUE reverses the order

Author(s)

Sebastian Kaiser <sebastian.kaiser@stat.uni-muenchen.de>

See Also

- `bubbleplot` for simultaneous representation of biclusters, `parallelCoordinates` for single representation of biclusters as lines of gene or condition profiles, `drawHeatmap` for Heatmap representation of biclusters and `biclustbarchart` for a barchart.
Examples

```r
set.seed(1)
x = matrix(rnorm(900), 30, 30)
x[1:5, 1:5] = rnorm(25, 3, 0.3)
x[11:15, 11:15] = rnorm(25, -3, 0.3)
x[21:25, 21:25] = rnorm(25, 6, 0.3)
colnames(x) = paste("Var.", 1:30)
bics <- biclust(x, BCPlaid(), back.fit = 2, shuffle = 3, fit.model = \(-m + a + b\), iter.startup = 5, iter.layer = 30, verbose = TRUE)

biclustmember(bics, x)

ord = bicorder(bics, cols = TRUE, rev = TRUE)

biclustmember(bics, x, which = ord)
```

BiclustMethod-class

The BiclustMethod Virtual Class

Description

BiclustMethod is the virtual class structure for algorithms provided in the package. In order to use the biclust() function a algorithm has to have a class inherit from here.

Algorithms

Currently 6 classes inherit from BiclustMethod: BCCC, BCXmotifs, BCPlaid, BCSpectral, BCBimax, BCQuest

Author(s)

Sebastian Kaiser <sebastian.kaiser@stat.uni-muenchen.de>

See Also

biclust, Biclust-class, BCCC, BCXmotifs, BCPlaid, BCSpectral, BCBimax, BCQuest, BiclustMethod-class
bimax.grid

Parameter Grid for BCBimax Biclustering

Description
Generates a list containing parameter settings for the ensemble algorithm.

Usage
```r
bimax.grid(method = "BCBimax", minr = c(10, 11), minc = c(10, 11), number = 10)
```

Arguments
- `method`: Here BCBimax, to perform Bimax algorithm
- `minr`: Minimum row size of resulting bicluster.
- `minc`: Minimum column size of resulting bicluster.
- `number`: Number of Bicluster to be found.

Value
A list containing parameter settings

Author(s)
Sebastian Kaiser <sebastian.kaiser@stat.uni-muenchen.de>

See Also
ensemble, BCBimax

Examples
```r
bimax.grid()
```

binarize

Binarize

Description
Methods to convert a real matrix to a binary matrix.

Usage
```r
binarize(x, threshold=NA)
binarizeByPercentage(x, percentage, error=0.2, gap=0.1)
densityOnes(x)
```
Arguments

x
- The data matrix to be binarized.
threshold
- Threshold used to binarize. Values over threshold will be set to 1, the rest to 0. If threshold is NA, median is used as threshold. Default NA.
percentage
- Percentage of ones against zeros desired in the binary matrix.
error
- Percentage of ones against zeros in the final matrix will be in [percentage-error, percentage+error]. Default 0.2
gap
- Value used for incremental search of threshold. Default 0.1

Details

The binarize function returns a matrix binarized by input threshold, or by the median if no threshold is given.
The binarizeByPercentage function returns a matrix binarize by input percentage, given as desired density of ones against zeros.
The densityOnes function returns the percentage of ones against zeros in a logical matrix.

Author(s)

Rodrigo Santamaria <rodri@usal.es>

Examples

data(BicatYeast)
m1=binarize(BicatYeast)
m2=binarize(BicatYeast, 0.2)
m3=binarizeByPercentage(BicatYeast, 5)
densityOnes(m3)
densityOnes(m2)
densityOnes(m1)
drawHeatmap(BicatYeast)
drawHeatmap(m1)
drawHeatmap(m2)
drawHeatmap(m3)

bubbleplot

Description

Draws a bubble plot where each bicluster is represented as a circle (bubble). Color represents the bicluster set to which bicluster pertains (up to three bicluster sets can be represented simultaneously). Brightness represents the bicluster homogeneity (darker, less homogeneous). Size represents the size of the bicluster, as (number of genes)x(number of conditions). Location is a 2D-projection of gene and condition profiles.
bubbleplot

Usage

bubbleplot(x, bicResult1, bicResult2=NULL, bicResult3=NULL, projection="mean", showLabels=FALSE)

Arguments

- **x**: The data matrix from which biclusters were identified.
- **bicResult1**: BiclustResult object with a bicluster result set whose biclusters will be drawn in green.
- **bicResult2**: BiclustResult object with an optional second bicluster result set. Will be drawn in red (default NULL)
- **bicResult3**: BiclustResult object with an optional third bicluster result set. Will be drawn in blue (default NULL)
- **projection**: Projection algorithm used to position bubbles. Allowed projections are 'mean', 'isomds' and 'cmdscale' (default 'mean'). See details section for a broader explanation.
- **showLabels**: If 'TRUE', puts a label over each bubble that tells the number within the corresponding bicluster result (default 'FALSE').

Details

Position of circles depend on a 2D projection of the multidimensional point formed by rows and columns present in the bicluster. For example, if we have a 3x3 matrix to analyze and we find a bicluster with rows 1 and 3 and columns 2 and 3, the corresponding multidimensional point will be p=(1,0,1,0,1,1). For this example, 'mean' projection will map the bicluster with the point x=(1+3)/2=2 and y=(2+3)/2=2.5. Other projections will take the point p and project it following the corresponding algorithms (see the corresponding help pages for details)

Note

Bubbleplot 2D-projection, as any multidimensional scaling, loses information, trying to take the main relationships and trends of n-dimensional data. Thus, locations and intersections between bubbles-biclusters are only an estimate of its similarity. This visualization should be used just as a help to understand overall behavior of biclustering methods, detect trends and outliers, etc.

Author(s)

Rodrigo Santamaria <rodri@usal.es>

See Also

drawHeatmap for single representation of biclusters inside data matrix, parallelCoordinates for single representation of biclusters as lines of gene or condition profiles, cmdscale, isomds for multidimensional scaling and plot for other point representations.
Examples

```r
# Simplified yeast microarray data
## Not run:
data(BicatYeast)
set.seed(1)
bics1 <- biclust(BicatYeast, BCPlaid(), back.fit = 2, shuffle = 3, fit.model = ~m + a + b,
row.release = 0.7, col.release = 0.7,
verbose = FALSE, max.layers = 10, iter.startup = 5,
iter.layer = 30)
bubbleplot(BicatYeast, bics1, showLabels=TRUE)

loma=binarize(BicatYeast,2)
bics2=biclust(loma, BCBimax(), minr=4, minc=4, number=10)
bubbleplot(BicatYeast, bics1, bics2)

## End(Not run)
```

ChiaKaruturi
Chia and Karuturi Function

Description

Function computing scores as described in the paper of Chia and Karuturi (2010)

Usage

```r
ChiaKaruturi(x, bicResult, number)
```

Arguments

- `x`: Data Matrix
- `bicResult`: Biclust object from biclust package
- `number`: Number of bicluster in the output for computing the scores

Details

The function computes row (T) and column (B) effects for a chosen bicluster. The scores for columns within bicluster have index 1, the scores for columns outside the bicluster have index 2. Ranking score is SB, stratification score is TS.

Value

Data.Frame with 6 slots: T, B scores for within and outside bicluster, SB and TS scores

Author(s)

Tatsiana KHAMIKA Kova <tatsiana.khamiakova@uhasselt.be>
coherence

References

goodness of biclusters and compare biclustering algorithms. Algorithms for Molecular Biology, 5, 23.

See Also
diagnosticPlot, computeObservedFstat, diagnoseColRow

Examples

```r
#---simulate dataset with 1 bicluster ---#
pmat <- matrix(rnorm(20*50, 0, 0.25), 50, 50) # background noise only
rowsize <- 20 # number of rows in a bicluster
colsize <- 10 # number of columns in a bicluster
a <- rnorm(rowsize, 1, 0.1) # sample row effect from N(0, 0.1) # adding a coherent values bicluster:
b <- rnorm(colsizesize, 2, 0.25) # sample column effect from N(0, 0.05)
mui <- 0.01 # constant value signal
for (i in 1: rowsize)
  for (j in 1: colsizesize)
    xmat[i, j] <- xmat[i, j] + mui + a[i] + b[j]

#---obtain a bicluster by running an algorithm---#
plaidmab <- biclust(x=xmat, method=BCPlaid(), cluster="b", fit.model = y ~ m + a + b, background = TRUE, row.release = 0.6, col.release = 0.7, shuffle = 50, back.fit = 5, max.layers = 1, iter.startup = 100, iter.layer = 100, verbose = TRUE)

# Get Chia and Karuturi scores:
ChiaKaruturi(x=xmat, bicResult = plaidmab, number = 1)
```

<table>
<thead>
<tr>
<th>coherence</th>
<th>Coherence measures</th>
</tr>
</thead>
</table>

Description

Different preliminary measures of how much constant or (additive, multiplicative, sign) coherent a bicluster is, following Madeira and Oliveira classification of biclusters.

Usage

```r
classVariances(x, resultset, number, dimension="both")
additiveVariances(x, resultset, number, dimension="both")
multiplicativeVariances(x, resultset, number, dimension="both")
signVariances(x, resultset, number, dimension="both")
```
coherence

Arguments

- **x**: The data matrix from which biclusters were identified
- **resultSet**: BiclustResult object with a bicluster result set where is the bicluster to measure
- **number**: Number of the bicluster within the result set
- **dimension**: "both" for determining overall variance, "row" for gene variance and "col" for column variance. Default "both"

Details

Returns the corresponding variance of genes or conditions as the average of the sum of euclidean distances between all rows and/or columns of the bicluster. For additive, multiplicative and sign variance first a transformation of the bicluster is done, so variance is computed on a matrix that reflects difference, rest or change of sign between rows, columns or both.

The lower the value returned, the more constant or coherent the bicluster is. If the value returned is 0, the bicluster is ideally constant or coherent. Usually, a value above 1-1.5 is enough to determine the bicluster is not constant or coherent.

Note

There are preliminary measures for coherence. Since transformations are different, measures are not normalized and comparison between, for example, additive and multiplicative variance is not meaningful. Only comparisons between different measures of the same kind of variance are reliable by now.

Author(s)

Rodrigo Santamaria <rodri@usal.es>

Examples

```r
#Simplified yeast microarray data
data(BicatYeast)
set.seed(1)
bics1 <- biclust(BicatYeast, BCPlaid(), back.fit = 2, shuffle = 3, fit.model = ~m + a + b, row.release = 0.7, col.release = 0.7, verbose = FALSE, max.layers = 10, iter.startup = 5, iter.layer = 30)

constantVariance(BicatYeast, bics1,1,"row")
constantVariance(BicatYeast, bics1,1,"col")
constantVariance(BicatYeast, bics1,1,"both")
additiveVariance(BicatYeast, bics1,1,"both")
multiplicativeVariance(BicatYeast, bics1,1,"both")
signVariance(BicatYeast, bics1,1,"both")
```
computeObservedFstat Diagnostic F Statistic Calculation

Description
Functions for obtaining F statistics within bicluster and the significance levels. The main effects considered are row, column and interaction effect.

Usage
```
computeObservedFstat(x, bicResult, number)
```

Arguments
- `x` : Data Matrix
- `bicResult` : Biclust object from biclust package
- `number` : Number of bicluster in the output for computing observed statistics

Details
F-statistics are calculated from the two-way ANOVA mode with row and column effect. The full model with interaction is undentifiable, thus, Tukey’s test for non-additivity is used to detect an interaction within a bicluster. p-values are obtained from asymptotic F distributions.

Value
Data frame with three rows ("Row Effect", "Column Effect", "Tukey test") and 2 columns for corresponding statistics (Fstat) and their p-values (PValue).

Author(s)
Tatsiana KHAMIAKOVA <tatsiana.khamiakova@uhasselt.be>

See Also
`chiakaruturi`, `diagnoseColRow`

Examples
```
#---simulate dataset with 1 bicluster ---#
xmat<-matrix(rnorm(20*50,0,0.25),50,50) # background noise only
rowsize <- 20 #number of rows in a bicluster
colsize <- 10 #number of columns in a bicluster
a1<-rnorm(rowsize,1,0.1) #sample row effect from N(0,0.1) #adding a coherent values bicluster:
b1<-rnorm(colsize),2,0.25) #sample column effect from N(0,0.05)
mu<-0.01 #constant value signal
for (i in 1 : rowsize){
  for(j in 1 : (colsizsize)){
```

```r
xmat[i,j] <- xmat[i,j] + mu + a[i] + b[j]
)

#--obtain a bicluster by running an algorithm---#
plaidmab <- biclust(x=xmat, method=BCPlaid(), cluster="b", fit.model = y ~ m + a + b,
background = TRUE, row.release = 0.6, col.release = 0.7, shuffle = 50, back.fit = 5,
max.layers = 1, iter.startup = 100, iter.layer = 100, verbose = TRUE)

#Calculate statistics and their p-values to infer about the structure within bicluster:
Structure <- computeObservedFstat(x=xmat, bicResult = plaidmab, number = 1)
```

diagnoseColRow

Bootstrap Procedure for Bicluster Diagnostics

Description

Calculate the significance of the discovered pattern in the data based on the bootstrapping procedure.

Usage

```r
diagnoseColRow(x, bicResult, number, nResamplings, replace = TRUE)
```

Arguments

- `x`: data matrix, which biclust function was applied to
- `bicResult`: object of class biclust, containing result of a biclustering algorithm
- `number`: number of bicluster from the output for the diagnostics
- `nResamplings`: number of bootstrap replicates
- `replace`: logical flag for bootstrap (TRUE), or sampling without replacement (FALSE)

Details

The function computes observed F statistics for row and column effect based on two-way ANOVA model. Bootstrap procedure is used to evaluate the significance of discovered bicluster. Based on `nResamplings` replicates, the distribution of F statistics for row and column effects are obtained. The p-value is computed as

\[
P(A) = \frac{\# \{ F^*(A)b > F(A)^{obs} \}}{nResamplings + 1}
\]

Low p-values denote non-random selection of columns for a given bicluster. Large p-values show that in other columns for a given set of genes in the bicluster structure is similar. Hence, bicluster columns were just randomly picked by an algorithm for a set of co-regulated genes.
diagnoseColRow

Value

`bootstrapFstats`
matrix with two columns, containing values of bootstrap F-statistics. The first
column corresponds to row, the second column corresponds to column.

`observedFstatRow`
observed F-statistics for the row effect

`observedFstatCol`
observed F-statistics for the column effect

`bootstrapPvalueRow`
bootstrap p value for row effect

`bootstrapPvalueCol`
bootstrap p value for column effect

Author(s)

Tatsiana KHAMIAKOVA <tatsiana.khamiakova@uhasselt.be>

See Also

diagnosticPlot, computeObservedFstat, ChiaKaruturi

Examples

```r
#--- simulate dataset with 1 bicluster ---#
# background noise only
xmat <- matrix(rnorm(20*50,0,0.25),50,50)
rowSize <- 20 # number of rows in a bicluster
colSize <- 10 # number of columns in a bicluster
a1 <- rnorm(rowSize,1,0.1) # sample row effect from N(0,0.1)
# adding a coherent values bicluster:
b1 <- rnorm((colSize),2,0.25) # sample column effect from N(0,0.05)
mu <- 0.01 # constant value signal
for (i in 1 : rowSize){
  for(j in 1 : (colSize)){
    xmat[i,j] <- xmat[i,j] + mu + a1[i] + b1[j]
  }
}

#--- obtain a bicluster by running an algorithm---#
plaidmab <- biclust(x=xmat, method=BCPlaid(), cluster="b", fit.model = y ~ m + a + b,
background = TRUE, row.release = 0.6, col.release = 0.7, shuffle = 50, back.fit = 5,
max.layers = 1, iter.startup = 100, iter.layer = 100, verbose = TRUE)

# Run bootstrap procedure:
Bootstrap <- diagnoseColRow(x=xmat, bicResult = plaidmab, number = 1, nResamplings = 999,
replace = TRUE)
diagnosticPlot(bootstrapOutput = Bootstrap) # plotting distribution of bootstrap replicates
```
diagnosticPlot

Diagnostic F Statistics Visualization

Description

Plots distributions of bootstrap replicates of F-statistics for row and column effect and highlights the observed statistics.

Usage

diagnosticPlot(bootstrapOutput)

Arguments

- bootstrapOutput: output of diagnoseColRow function, containing bootstrap replicates and observed F-statistics.

Value

No value is returned. The plot is constructed in a current device.

Author(s)

Tatsiana KHAMIAKOVA <tatsiana.khamiakova@uhasselt.be>

See Also

diagnoseColRow, computeObservedFstat

Examples

```r
###---simulate dataset with 1 bicluster ---#
rowSize <- 20 #number of rows in a bicluster
colSize <- 10 #number of columns in a bicluster
a <- rnorm(rowSize,1,0.1) #sample row effect from N(0, 0.1) #adding a coherent values bicluster:
b <- rnorm(colSize,2,0.25) #sample column effect from N(0,0.05)
mus <- 0.01 #constant value signal
for (i in 1 : rowSize){
  for(j in 1 : (colSize)){
    xmat[i,j] <- xmat[i,j] + mu + a[i] + b[j]
  }
}
###---obtain a bicluster by running an algorithm---#
plaidmab <- biclust(x=xmat, method=BCPlaid(), cluster="b", fit.model = y ~ m + a+ b, 
background = TRUE, row.release = 0.6, col.release = 0.7, shuffle = 50, back.fit = 5, 
max.layers = 7, iter.startup = 100, iter.layer = 100, verbose = TRUE)
```
discretize

Create a discret matrix

Description
Some biclustering algorithms need a discret matrix to perform well. This function delivers a discret matrix with either a given number of levels of equally spaced intervals from minimum to maximum, or levels of same size using the quantiles.

Usage

discretize(x,nof=10,quant=FALSE)

Arguments

x The data matrix from which should be dicretized
nof Number of levels
quant If TRUE using the quantiles, else using equally spaced levels

Author(s)

Sebastian Kaiser <sebastian.kaiser@stat.uni-muenchen.de>

Examples

#Discretize yeast microarray data
data(BicatYeast)
discretize(BicatYeast[1:10,1:10])
drawHeatmap

Draw Heatmap

Description

Draws a microarray data matrix as a heatmap, with rows and columns reordered so the rows and columns of the input bicluster will be at top-left of the matrix.

Usage

\[
\text{drawHeatmap}(x, \text{bicResult}=\text{NULL}, \text{number}=\text{NA}, \text{local}=\text{TRUE}, \text{beamercolor}=\text{FALSE}, \text{paleta}, \ldots) \\
\text{drawHeatmap2}(x, \text{bicResult}=\text{NULL}, \text{number}=\text{NA}, \text{plotAll}=\text{FALSE})
\]

Arguments

- **x**: The data matrix where the bicluster is to be drawn.
- **bicResult**: BiclustResult object with a bicluster result set. If this value is set to NULL, the data matrix is drawn as a heatmap, without any reordering. Default NULL.
- **number**: Bicluster to be drawn from the result set 'bicResult'. If bicResult is set to NULL, this value is ignored. Default NA
- **local**: If TRUE, only rows and columns of the bicluster were drawn.
- **plotAll**: If TRUE, all Bicluster of result set 'bicResult' were drawn.
- **beamercolor**: If TRUE, palete colors are used.
- **paleta**: Colors
- **...**: Additional plot options

Details

'plotAll' only works if there is a exclusive rows and column Result!

Author(s)

Rodrigo Santamaria <rodri@usal.es>, Sebastian Kaiser

See Also

- bubbleplot for simultaneous representation of biclusters
- parallelCoordinates for single representation of biclusters as lines of gene or condition profiles.
EisenYeast

Examples

```r
# Random 100x50 matrix with a single, up-regulated 10x10 bicluster
s2 = matrix(rnorm(5000), 100, 50)
s2[11:20, 11:20] = rnorm(100, 3, 0.3)
set.seed(1)
bics <- biclust(s2, BCplaid(), back.fit = 2, shuffle = 3, fit.model = "m + a + b",
iter.startup = 5, iter.layer = 30, verbose = TRUE)
drawHeatmap(s2, bics, 1)
```

EisenYeast

Eisen Yeast

Description

Microarray data matrix for 80 experiments with Saccharomyces Cerevisiae organism by Eisen Lab.

Usage

```r
data(EisenYeast)
```

Format

Data frame with information about the expression levels of 6221 genes over 80 conditions. Missing values have been imputed using k-nearest neighbor averaging implemented in impute.knn() from library 'impute' (using default k=10). Gene names follow ORF (Open Reading Format) notation.

Source

Eisen Lab at http://rana.lbl.gov/EisenData.htm

ensemble

Ensemble Methods for Bicluster Algorithms

Description

Calculates an ensemble of biclusters from different parameter setting of possible different bicluster algorithms.

Usage

```r
ensemble(x, confs, rep = 1, maxNum = 5, similar = jaccard2, thr = 0.8, simthr = 0.7,
subs = c(1, 1), bootstrap = FALSE, support = 0, combine=firstcome, ...)
```
Arguments

- **x**: Data Matrix
- **confs**: Matrix containing parameter sets
- **rep**: Number of repetitions for each parameter set
- **maxNum**: Maximum number of biclusters taken from each run
- **similar**: Function to produce a similarity matrix of bicluster
- **thr**: Threshold for similarity
- **simthr**: Proportion of row column combinations in bicluster
- **subs**: Vector of proportion of rows and columns for subsampling. Default c(1,1) means no subsampling.
- **bootstrap**: Should bootstrap sampling be used (logical: replace=bootstrap).
- **support**: Which proportion of the runs must contain the bicluster to have enough support to report it (between 0 and 1).
- **combine**: Function to combine the single bicluster only firstcome and hcl for hierarchical clustering are possible at the moment.
 - ... Arguments past to the combine function.

Details

Two different kinds (or both combined) of ensemblebling is possible. Ensemble of repeated runs or ensemble of runs on subsamples.

Value

Return an object of class Biclust

Author(s)

Sebastian Kaiser <sebastian.kaiser@stat.uni-muenchen.de>

See Also

- Biclust-class, plaid.grid, bimax.grid

Examples

data(BicatYeast)
ensemble.plaid <- ensemble(BicatYeast, plaid.grid())[1:5], rep=1, maxNum=2, thr=0.5, subs = c(1,1))
ensemble.plaid
x <- binarize(BicatYeast)
ensemble.bimax <- ensemble(x, bimax.grid(), rep=10, maxNum=2, thr=0.5, subs = c(0.8,0.8))
ensemble.bimax
Description

Other than `drawHeatmap` this function plots all or a chosen number of bicluster in one plot even if they were overlapping.

Usage

```r
heatmapBC(x, bicResult, number = 0, local = FALSE, order = FALSE,
          axes = FALSE, outside = FALSE, zlim = c(min(x), max(x)), ...)
```

Arguments

- `x`: The data matrix where the bicluster is to be drawn.
- `bicResult`: BiclustResult object with a bicluster result set.
- `number`: Number of bicluster to be drawn from the result set `bicResult`. If the default 0 is chosen all bicluster of the bicResult are drawn.
- `local`: If TRUE, only rows and columns of the bicluster were drawn.
- `order`: If TRUE, rows and columns are ordered by there values.
- `axes`: Argument passed to `image()`.
- `outside`: Boxes were drawn for overlapping.
- `zlim`: Argument passed to `image()`.
- `...`: Additional plot options.

Details

Overlap plotting only works for two neighbor bicluster defined by the order in the number slot.

Author(s)

Sebastian Kaiser

See Also

drawHeatmap, parallelCoordinates

Examples

```r
set.seed(1234)
data(BicatYeast)
resplaid <- biclust(BicatYeast, BCPlaid(), verbose = FALSE)
heatmapBC(x = BicatYeast, bicResult = resplaid)
```
isooverlapp
Is Bicresult overlapping?

Description

Checks if Biclusterresult includes overlapping rows or columns

Usage

`isooverlapp(bicResult)`

Arguments

- `bicResult`: Result of biclust function

Value

- **Overlapping**
 - **Max.bicluster.Rows**
 - Maximal number of bicluster a single row is in
 - **Max.bicluster.Cols**
 - Maximal number of bicluster a single col is in

Author(s)

Sebastian Kaiser <sebastian.kaiser@stat.uni-muenchen.de>

See Also

`drawHeatmap`

jaccardind
Jaccardind

Description

An adaption of the Jaccard Index for clustering is calculated.

Usage

`jaccardind(bicres1,bicres2)`
`jaccard2(Rows, Cols)`
Argument
bicres1 A object of class Biclust
bicres2 A object of class Biclust
Rows Matrix containing rows of biclusters
Cols Matrix containing cols of biclusters

Details
The function calculates the percentage of datapoints in the same bicluster structure from all datapoints at least included in one bicluster.

Value
jaccardind calculates the Jaccard index jaccard2 returns a similarity matrix containing the Jaccard index between all biclusters (upper triangle matrix)

Author(s)
Sebastian Kaiser <sebastian.kaiser@stat.uni-muenchen.de>

Examples
```r
## Not run:
data(BicatYeast)
res1<-biclust(BicatYeast, method=BCPlaid(), back.fit = 2, shuffle = 3,
  fit.model = m + a + b, iter.startup = 5, iter.layer = 30, verbose = TRUE)
res2<-biclust(BicatYeast, method=BCCC())
jaccardind(res1,res2)

## End(Not run)
```

parallelCoordinates Parallel Coordinates

Description
Represents expression levels through gene and/or condition profiles in a bicluster as lines.

Usage
```r
parallelCoordinates(x, bicResult, number, plotBoth = FALSE, plotcol = TRUE,
  compare = TRUE, info = F, bothlab = c("Rows", "Columns"), order = FALSE,
  order2 = 0, ylab = "Value", col=1,...)
```
Arguments

- **x**: The data matrix of the bicluster to be drawn
- **bicResult**: BiclustResult object with a bicluster result set
- **number**: Bicluster to be drawn from the result set 'bicResult'
- **plotBoth**: If 'TRUE', Parallel Coordinates of rows (Genes) and columns (Conditions) were drawn one below the other.
- **plotcol**: If 'TRUE', columns profiles are drawn, so each line represents one of the columns in the bicluster. Otherwise, row profiles are drawn. Default 'TRUE'
- **compare**: If 'TRUE', values of the complete data matrix are considered and drawn as shaded lines. Default 'TRUE'
- **info**: If 'TRUE', a prepared Title is drawn
- **bothlab**: Names of the x Axis if PlotBoth
- **order**: Rows and/or Columns are in increasing order.
- **order2**: Which ordering.
- **ylab**: ylab
- **col**: col
- **...**: Plot Parameters

Author(s)

Rodrigo Santamaria, Martin Sill and Sebastian Kaiser <sebastian.kaiser@stat.uni-muenchen.de>

See Also

- **drawHeatmap** for alternative representation of biclusters and **bubbleplot** for simultaneous representation of biclusters.

Examples

```r
# Random 100x50 matrix with a single, up-regulated 10x10 bicluster
s2 = matrix(rnorm(5000), 100, 50)
s2[11:20, 11:20] = rnorm(100, 3, 0.3)
set.seed(1)
bics <- biclust(s2, BCP, fit = 2, shuffle = 3, fit.model = ~m + a + b,
iter.startup = 5, iter.layer = 30, verbose = TRUE)
parallelCoordinates(x = s2, bicResult = bics, number = 1, plotBoth = TRUE,
plotcol = TRUE, compare = TRUE, info = TRUE, bothlab = c("Genes Bicluster 1","Conditions Bicluster 1"), order = TRUE)
```

```r
parallelCoordinates(x = s2, bicResult = bics, number = 1, plotBoth = FALSE, plotcol = TRUE,
compare = FALSE, info = TRUE)
```
Parameter Grid for BCPlaid Biclustering

Description

Generates a list containing parameter settings for the ensemble algorithm.

Usage

plaid.grid(method = "BCPlaid", cluster = "b", fit.model = y ~ m + a + b,
background = TRUE, background.layer = NA, background.df = 1,
row.release = c(0.5, 0.6, 0.7), col.release = c(0.5, 0.6, 0.7),
shuffle = 3, back.fit = 0, max.layers = 20, iter.startup = 5,
iter.layer = 10, verbose = FALSE)

Arguments

- **method**: Here BCPlaid, to perform Plaid algorithm
- **cluster**: 'r', 'c' or 'b', to cluster rows, columns or both (default 'b')
- **fit.model**: Model (formula) to fit each layer. Usually, a linear model is used, that stimates three parameters: m (constant for all elements in the bicluster), a (contant for all rows in the bicluster) and b (constant for all columns). Thus, default is: y ~ m + a + b.
- **background**: If 'TRUE' the method will consider that a background layer (constant for all rows and columns) is present in the data matrix.
- **background.layer**: If background='TRUE' a own background layer (Matrix with dimension of x) can be specified.
- **background.df**: Degrees of Freedom of backround layer if background.layer is specified.
- **shuffle**: Before a layer is added, it's statistical significance is compared against a number of layers obtained by random defined by this parameter. Default is 3, higher numbers could affect time performance.
- **iter.startup**: Number of iterations to find starting values
- **iter.layer**: Number of iterations to find each layer
- **back.fit**: After a layer is added, additional iterations can be done to refine the fitting of the layer (default set to 0)
- **row.release**: Scalar in [0,1](with interval recommended [0.5-0.7]) used as threshold to prune rows in the layers depending on row homogeneity
- **col.release**: As above, with columns
- **max.layers**: Maximum number of layer to include in the model
- **verbose**: If 'TRUE' prints extra information on progress.
Value

A list containing parameter settings

Author(s)

Sebastian Kaiser <sebastian.kaiser@stat.uni-muenchen.de>

See Also

ensemble, BCPlaid

Examples

plaid.grid()

plotclus

Barplot of Bicluster

Description

Draws a graph to compare the values inside the different biclusters with the values outside the bicluster

Usage

plotclus(res, x, bicluster=TRUE, legende=FALSE, noC=5, wyld=3, Titel="Plotclus", ...)

Arguments

- **x**: The data matrix
- **res**: BiclustResult object if bicluster=TRUE else a normal kcca object.
- **bicluster**: If TRUE, res is treated as a BiclustResult object
- **legende**: Draws a legend.
- **noC**: Number of Clusters drawn
- **wyld**: Gives the distance between plot and axis.
- **Titel**: Gives the title of the plot.
- **...**: Additional plot options

Author(s)

Sebastian Kaiser <sebastian.kaiser@stat.uni-muenchen.de>

See Also

bubbleplot for simultaneous representation of biclusters. parallelCoordinates for single representation of biclusters as lines of gene or condition profiles. drawHeatmap for Heatmap representation of biclusters.
predictBimax

Examples

```r
s2 = matrix(rnorm(400), 20, 20)
s2[12:16, 12:16] = rnorm(25, 3, 0.3)
set.seed(1)
bics <- biclust(s2, BCPlaid(), back.fit = 2, shuffle = 3, fit.model = ~m + a + b,
iter.startup = 5, iter.layer = 30, verbose = TRUE)
plotclust(bics, s2)
```

predictBimax
Predict from a BCrepBimax Result

Description

Predicts cluster membership for new data rows given a BCrepBimax Result

Usage

```r
predictBimax(BCrepBimax, x)
```

Arguments

- `BCrepBimax`: Result of biclust function with method BCrepBimax
- `x`: The data matrix which clustermembership should be predicted

Value

Returns a vector with clustermembership of data `x` of class.

Author(s)

Sebastian Kaiser <sebastian.kaiser@stat.uni-muenchen.de>

See Also

- `BCrepBimax`
SynTReN E. coli

Description

Synthetic microarray data matrix generated by Syntren for 20 experiments using 200 genes from Transcription Regulatory Network of Shen-Orr et al. (2002).

Usage

data(SyntrenEcoli)

Format

Data structure with information about the expression levels of 200 genes over 20 conditions. Conditions are named as C1... C20

Source

SynTReN software can be downloaded at http://homes.esat.kuleuven.be/~kmarchal/SynTReN/index.html

References

writeBiclusterResults

Description

Write bicluster results to a file

Usage

writeBiclusterResults(fileName, bicResult, bicName, geneNames, arrayNames, append=FALSE, delimiter=" ")
writeclust

Write a Bicluster as a Cluster Result

Description

Draws a graph to compare the values inside the different biclusters with the values outside the bicluster.

Usage

writeclust(Biclusterresult, row=TRUE, noC=10)

Arguments

 Biclusterresult
 BiclusterResult object

 row
 If TRUE, cluster of rows were written.

 noC
 Number of Clusters written

Author(s)

 Sebastian Kaiser <sebastian.kaiser@stat.uni-muenchen.de>

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>filename</td>
<td>Path to the file were biclusters are written.</td>
</tr>
<tr>
<td>bicResult</td>
<td>Biclusters results as a Biclust class.</td>
</tr>
<tr>
<td>bicName</td>
<td>Brief description for the biclustering algorithm used.</td>
</tr>
<tr>
<td>geneNames</td>
<td>Array of strings with gene (row) names in the analyzed data matrix</td>
</tr>
<tr>
<td>arrayNames</td>
<td>Array of strings with condition (column) names in the analyzed data matrix</td>
</tr>
<tr>
<td>append</td>
<td>If true, adds the bicluster results to previous information in the text file, if it exists. Default false.</td>
</tr>
<tr>
<td>delimiter</td>
<td>delimiter string between gene and condition names. Default " ".</td>
</tr>
</tbody>
</table>

Author(s)

 Rodrigo Santamaria <rodri@usal.es>

Examples

data(BicatYeast)
res <- biclust(BicatYeast, method=BBCC(), delta=1.5, alpha=1, number=10)
writeBiclusterResults("results.txt", res,"CC with delta 1.5", dimnames(BicatYeast)[1][[1]],
 dimnames(BicatYeast)[2][[1]])
Examples

```r
s2 <- matrix(rnorm(400), 20, 20)
s2[12:16, 12:16] <- rnorm(25, 3, 0.3)
set.seed(1)
bics <- biclust(s2, BCPPlaid(), back.fit = 2, shuffle = 3, fit.model = ~m + a + b,
                iter.startup = 5, iter.layer = 30, verbose = TRUE)
writeclust(bics)
```
Index

*Topic array
 binarize, 17
 coherence, 21
 writeBiclusterResults, 38
*Topic bicluster
 diagnoseColRow, 24
*Topic bootstrap
 diagnoseColRow, 24
*Topic classes
 Biclust-class, 12
 BiclustMethod-class, 16
*Topic classif
 BCBimax, 2
 BCCC, 4
 BCPlaid, 5
 BCQuest, 6
 BCXmotifs, 9
 isoverlapp, 32
 predictBimax, 37
*Topic cluster
 BCBimax, 2
 BCCC, 4
 BCPlaid, 5
 BCQuest, 6
 BCSppectral, 7
 BCXmotifs, 9
 biclust, 11
 biclustbarchart, 13
 bicluster, 14
 biclustmember, 15
 bimax.grid, 17
 bubbleplot, 18
 ChikaruTururi, 20
 coherence, 21
 discretize, 27
 drawHeatmap, 28
 ensemble, 29
 heatmapBC, 31
 isoverlapp, 32
 jaccardind, 32
 parallelCoordinates, 33
 plaid.grid, 35
 plotclust, 36
 predictBimax, 37
 writeclust, 39
*Topic datasets
 BicatYeast, 10
 EisenYeast, 29
 SyntenEcoli, 38
*Topic hplot
 biclustbarchart, 13
 biclustmember, 15
 bubbleplot, 18
 drawHeatmap, 28
 heatmapBC, 31
 parallelCoordinates, 33
 plotclust, 36
 writeclust, 39
*Topic manip
 binarize, 17
 writeBiclusterResults, 38
*Topic models
 BCPlaid, 5
*Topic multivariate
 BCSppectral, 7
 additiveVariance (coherence), 21
 BCBimax, 2, 11, 16, 17
 BCBimax-class (BCBimax), 2
 BCCC, 4, 11, 16
 BCCC-class (BCCC), 4
 BCPlaid, 5, 11, 16, 36
 BCPlaid-class (BCPlaid), 5
 BCQuest, 6, 11, 16
 BCQuest-class (BCQuest), 6
 BCQuestmet (BCQuest), 6
 BCQuestmet-class (BCQuest), 6
 BCQuestord (BCQuest), 6
Saccharomices Cerevisiae data matrix (EisenYeast), 29
Saccharomices Cerevisiae reduced data matrix (BicatYeast), 10
show, Biclust-method (Biclust-class), 12
signVariance (coherence), 21
spectral (BCSpectral), 7
spectral biclustering (BCSpectral), 7
star graph (bubbleplot), 18
summary, Biclust-method (Biclust-class), 12
SyntrenEcoli, 38

turner biclustering (BCPlaid), 5
writeBicClusterResults, 14, 38
writeBiclusters
 (writeBicClusterResults), 38
writeclust, 14, 39

Xmotif (BCXmotifs), 9

yeast microarray data matrix (EisenYeast), 29
yeast microarray reduced data matrix (BicatYeast), 10