Package ‘ThreeArmedTrials’

February 19, 2015

Type Package

Title Design and Analysis of Clinical Non-inferiority or Superiority Trials with Active and Placebo Control

Version 0.1-0

Date 2015-01-04

Author Tobias Muetze

Maintainer Tobias Muetze <tobias.muetze@outlook.com>

Description Design and analyze three-armed non-inferiority or superiority trials which follow a gold-standard design, i.e. trials with an experimental treatment, an active and a placebo control. The following distribution of endpoints is covered: negative binomial distribution.

Depends R (>= 3.0.0)

Imports stats, MASS

License GPL (>= 2)

NeedsCompilation yes

Repository CRAN

Date/Publication 2015-01-04 23:44:03

R topics documented:

ThreeArmedTrials-package .. 2
power.taNegbin.test .. 2
taNegBin.OptAllocation .. 4
taNegbin.test .. 6

Index 8
ThreeArmedTrials-package

Design and Analysis of Three-armed Clinical Non-inferiority or Superiority Trials with Active and Placebo Control

Description

The package **ThreeArmedTrials** provides functions for designing and analyzing non-inferiority or superiority trials with an active and a placebo control. Non-inferiority and superiority are defined through the hypothesis \(\frac{\lambda_P - \lambda_E}{\lambda_P - \lambda_R} \leq \Delta \) with the alternative hypothesis \(\frac{\lambda_P - \lambda_E}{\lambda_P - \lambda_R} > \Delta \). The parameters \(\lambda_E, \lambda_R, \) and \(\lambda_P \) are associated with the distribution of the endpoints and smaller values of \(\lambda_E, \lambda_R, \) and \(\lambda_P \) are considered to be desirable. A detailed description of these parameters can be found in the help file of the individual functions. The margin \(\Delta \) is between 0 and 1 for testing non-inferiority and larger than 1 for testing superiority.

A detailed discussion of the hypothesis can be found in Hauschke and Pigeot (2005).

The statistical theory for negative binomial distributed endpoint has been developed by Muetze et al. (2015).

Author(s)

Tobias Muetze

< <tobias.muetze@outlook.com>

Maintainer:

Tobias Muetze

References

power.taNegbin.test

Power related calcuations for three-armed clinical trials with negative binomial distributed endpoints

Description

Compute power, sample size, or level of significance for Wald-type test for non-inferiority or superiority of the experimental treatment versus reference treatment with respect to placebo.
Usage

```
power.taNegbin.test(rateExp, rateRef, ratePla, shape, Delta, sig.level = NULL,
                   power = NULL, n = NULL, type = c("restricted", "unrestricted"),
                   allocation = c(1/3, 1/3, 1/3))
```

Arguments

- `rateExp`: A numeric value specifying the rate of the experimental treatment group in the alternative hypothesis.
- `rateRef`: A numeric value specifying the rate of the reference treatment group in the alternative hypothesis.
- `ratePla`: A numeric value specifying the rate of the placebo treatment group in the alternative hypothesis.
- `shape`: A numeric value specifying the shape parameter.
- `Delta`: A numeric value specifying the non-inferiority or superiority margin. Is between 0 and 1 in case of non-inferiority and larger than 1 in case of superiority.
- `sig.level`: A numeric value specifying the significance level (type I error probability).
- `power`: A numeric value specifying the target power (1 - type II error probability).
- `n`: The total sample size. Needs to be at least 7.
- `type`: A character string determining how the variance for the Wald-type test statistic is estimated, must be `restricted`, or `unrestricted`.
- `allocation`: A (non-empty) vector specifying the sample size allocation (nExp/n, nRef/n, nPla/n).

Details

If the individual group sample sizes, i.e. n*allocation are not natural number, the parameters `n` and `allocation` will be re-calculated.

Value

A list with class "power.htest" containing the following components:

- `n`: The total sample size.
- `power`: A numeric value specifying the target power.
- `Delta`: A numeric value specifying the non-inferiority or superiority margin.
- `sig.level`: A character string specifying the significance level.
- `type`: A character string indicating what type of Wald-type test will be performed.
- `allocation`: A vector with the sample size allocation (nExp/n, nRef/n, nPla/n).
- `sig.level`: The significance level (Type I error probability).
- `nExp`: A numeric value specifying the number of sample in the experimental treatment group.
- `nRef`: A numeric value specifying the number of sample in the reference treatment group.
- `nPla`: A numeric value specifying the number of sample in the placebo treatment group.
Examples

Example for type = 'unrestricted': Calculation of n, power, and sig level.
Expect n=1038, power=0.8, sig level=0.025, respectively
power.taNegbin.test(rateExp = 2, rateRef = 2, ratePla = 4, shape = 0.5, Delta = 0.8,
sig.level = 0.025, power = 0.8, type = 'unrestricted', allocation = c(1/3, 1/3, 1/3))

Example for type = 'restricted' calculation of n, power, and sig level.
Expect n=1092, power=0.8, sig level=0.025
power.taNegbin.test(rateExp = 2, rateRef = 2, ratePla = 4, shape = 0.5, Delta = 0.8,
sig.level = 0.025, power = 0.8, type = 'restricted', allocation = c(1/3, 1/3, 1/3))

Example for recalculation of 'allocation' and 'n'
power.taNegbin.test(rateExp = 2, rateRef = 2, ratePla = 4, shape = 0.5, Delta = 0.8,
n = 1001, power = 0.8, allocation = c(0.25, 0.5, 0.25))
Delta A numeric value specifying the non-inferiority/superiority margin

Type A character string determining how the variance for the Wald-type test statistic is estimated, must be restricted, or unrestricted

n The total sample size. This parameter is only mandatory for type='restricted'. For type='unrestricted', this parameter is optional.

sig.level A numeric value specifying the significance level (type I error probability). This parameter is only mandatory for type='restricted'. For type='unrestricted', this parameter is optional.

Value

A list with class "power.htest" containing the following components:

n The total sample size. Not mandatory.

Delta A numeric value specifying the non-inferiority/superiority margin

Type A character string indicating what type of Wald-type test will be performed

allocation A vector with the sample size allocation (nExp/n, nRef/n, nPla/n)

rateExp A numeric value specifying the rate of the experimental treatment group in the alternative hypothesis

rateRef A numeric value specifying the rate of the reference treatment group in the alternative hypothesis

ratePla A numeric value specifying the rate of the placebo treatment group in the alternative hypothesis

shape A numeric value specifying the shape parameter

nExp A numeric value specifying the number of sample in the experimental treatment group

nRef A numeric value specifying the number of sample in the reference treatment group

nPla A numeric value specifying the number of sample in the placebo treatment group

Examples

Example for type = 'unrestricted'
tanegbinOptAllocation(rateExp = 2, rateRef = 2, ratePla = 4, shape = 0.5, Delta = 0.8, type = 'unrestricted', n = 1048, sig.level = 0.025)
tanegbinOptAllocation(rateExp = 2, rateRef = 2, ratePla = 4, shape = 0.5, Delta = 0.8, type = 'unrestricted')

Example for type = 'restricted'.
Not run:
tanegbinOptAllocation(rateExp = 2, rateRef = 2, ratePla = 4, shape = 0.5, Delta = 0.8, type = 'restricted', n = 500, sig.level = 0.025)

End(Not run)
taNegbin.test

Statistical test for three-armed clinical trials with negative binomial distributed endpoints.

Description

Wald-type test for superiority/non-inferiority of the experimental treatment versus reference treatment with respect to placebo.

Usage

\[
\text{taNegbin.test(xExp, xRef, xPla, Delta, method = c("RML", "ML",
"SampleVariance"))}
\]

Arguments

- **xExp**: A (non-empty) numeric vector of data values coming from the experimental treatment group.
- **xRef**: A (non-empty) numeric vector of data values coming from the reference treatment group.
- **xPla**: A (non-empty) numeric vector of data values coming from the placebo group.
- **Delta**: A numeric value specifying the non-inferiority or superiority margin. Is between 0 and 1 in case of non-inferiority and larger than 1 in case of superiority.
- **method**: A character string determining how the variance for the Wald-type test statistic is estimated, must be RML, ML, or SampleVariance.

Details

The hypothesis \((\lambda_P - \lambda_E)/(\lambda_P - \lambda_R) \leq \Delta\) is tested against the alternative \((\lambda_P - \lambda_E)/(\lambda_P - \lambda_R) > \Delta\). \(\lambda_E, \lambda_R, \lambda_P\) are the rates of the experimental treatment (rateExp), the reference treatment (rateRef), and the placebo group (ratePla), respectively. The margin Delta, i.e. \(\Delta\) in the formulas above, is between 0 and 1 for testing non-inferiority and larger than 1 for testing superiority. The parametrisation of the underlying negative binomial distributions is chosen such that a negative binomial distribution of rate \(\lambda\) and shape parameter \(\phi\) has variance \(\lambda(1 + \phi\lambda)\). The shape parameter \(\phi\) is assumed to be the same among the groups.

Value

A list with class "htest" containing the following components:

- **statistic**: The value of the Wald-type test statistic.
- **p.value**: The p-value for the Wald-type test.
- **method**: A character string indicating what type of Wald-type-test was performed.
- **estimate**: The estimated rates for each of the group as well as the maximum-likelihood estimator for the shape parameter.
- **sample.size**: The total number of data points used for the Wald-type test.
References

Muetze T et al. 2015. Statistical inference for three-arm trials with negative binomially distributed endpoints. (Submitted.)

See Also

power.taNegbin.test

Examples

Negative binomially distributed endpoints
Test for non-inferiority test. lambda_P=8, lambda_R = 4, lambda_E = 5, and phi = 1
Delta = (lambda_P-lambda_E)/(lambda_P-lambda_R)
xExp <- rbinom(60, mu=5, size=1)
xRef <- rbinom(40, mu=4, size=1)
xPla <- rbinom(40, mu=8, size=1)
Delta <- (8-5)/(8-4)
taNegbin.test(xExp, xRef, xPla, Delta, method = 'RML')
taNegbin.test(xExp, xRef, xPla, Delta, method = 'ML')
taNegbin.test(xExp, xRef, xPla, Delta, method = 'SampleVariance')

Test for superiority test. lambda_P=8, lambda_R = 5, lambda_E = 4, and phi = 1
Delta = (lambda_P-lambda_E)/(lambda_P-lambda_R)
xExp <- rbinom(60, mu=5, size=1)
xRef <- rbinom(40, mu=4, size=1)
xPla <- rbinom(40, mu=8, size=1)
Delta <- (8-5)/(8-4)
taNegbin.test(xExp, xRef, xPla, Delta, method = 'RML')
taNegbin.test(xExp, xRef, xPla, Delta, method = 'ML')
taNegbin.test(xExp, xRef, xPla, Delta, method = 'SampleVariance')
Index

*Topic **NegativeBinomial**
 power.taNegbin.test, 2
 taNegBin.OptAllocation, 4
 taNegbin.test, 6
*Topic **optimalSampleSizeAllocation**
 taNegBin.OptAllocation, 4
*Topic **power**
 power.taNegbin.test, 2
*Topic **test**
 taNegbin.test, 6

power.taNegbin.test, 2, 7

taNegBin.OptAllocation, 4
taNegbin.test, 6
ThreeArmedTrials-package, 2