1 Introduction

Statistical matching techniques aim at integrating two or more data sources (usually data from sample surveys) referred to the same target population. In the basic statistical matching framework, there are two data sources $A$ and $B$ sharing a set of variables $X$ while the variable $Y$ is available only in $A$ and the variable $Z$ is observed just in $B$. The $X$ variables are common to both the data sources, while the variables $Y$ and $Z$ are not jointly observed. The objective of statistical matching (hereafter denoted as SM) consists in investigating the relationship between $Y$ and $Z$ at “micro” or “macro” level (D’Orazio et al., 2006b). In the micro case the SM aims at creating a “synthetic” data source in which all the variables, $X$, $Y$ and $Z$, are available (usually $A \cup B$ with all the missing values filled in or simply $A$ filled in with the values of $Z$). When the objective is macro, the data sources are integrated to derive an estimate of the parameter of interest, e.g. the correlation coefficient between $Y$ and $Z$ or the contingency table $Y \times Z$.

A parametric approach to SM requires the explicit adoption of a model for $(X, Y, Z)$; obviously, if the model is misspecified the results will not be reliable. The nonparametric approach is more flexible in handling complex situations (different types of variables). The two approaches can be mixed: first a parametric model is assumed and its parameters are estimated then a synthetic data set is derived through a nonparametric micro approach. In this manner the advantages of both parametric and nonparametric approach are maintained: the model is parsimonious while nonparametric techniques offer protection against model misspecification. Table 1 provides a summary of the objectives and approaches to SM (D’Orazio et al., 2008).

*This document is partly based on the work carried out in the framework of the ESSnet project on Data Integration, partly funded by Eurostat (December 2009–December 2011). For more information on the project visit http://www.essnet-portal.eu/di/data-integration
Table 1: Objectives and approaches to Statistical matching.

<table>
<thead>
<tr>
<th>Objectives of Statistical matching</th>
<th>Approaches to statistical Matching</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAcro</td>
<td>Parametric</td>
</tr>
<tr>
<td>MIcro</td>
<td>yes</td>
</tr>
</tbody>
</table>

In the traditional SM framework when only A and B are available, all the SM methods (parametric, nonparametric and mixed) that use the set of common variables X to match A and B, implicitly assume the conditional independence (CI) of Y and Z given X:

\[ f(x, y, z) = f(y|x) \times f(z|x) \times f(x) \]

This assumption is particularly strong and seldom holds in practice. In order to avoid it, the SM should incorporate some auxiliary information concerning the relationship between Y and Z (see Chap. 3 in D’Orazio et al. 2006b). The auxiliary information can be at micro level (a new data source in which Y and Z or X, Y and Z are jointly observed) or at macro level (e.g. an estimate of the correlation coefficient \( \rho_{XY} \) or an estimate of the contingency table \( Y \times Z \), etc.) or simply consist of some logic constraints about the relationship between Y and Z (structural zeros, etc.; for further details see D’Orazio et al., 2006a).

An alternative approach to SM consists in the evaluation of the uncertainty when estimating the parameter of interest. This uncertainty is due to the lack of joint information concerning Y and Z. For instance, let us assume that \((X, Y, Z)\) follows a trivariate normal distribution and the goal of SM consists in estimating the correlation matrix; in the basic SM framework the available data allow to estimate all the components of the correlation matrix with the exception of \( \rho_{YZ} \); in this case, due to the properties of the correlation matrix (has to be semidefinite positive), it is possible to conclude that:

\[
\rho_{XY}\rho_{XZ} - \sqrt{(1 - \rho_{XY}^2)(1 - \rho_{XZ}^2)} \leq \rho_{YZ} \leq \rho_{XY}\rho_{XZ} + \sqrt{(1 - \rho_{XY}^2)(1 - \rho_{XZ}^2)}
\]

The higher is the correlation between X and Y and between X and Z, the shorter will be the interval and, consequently, the lower will be the uncertainty. In practical applications, by substituting the unknown correlation coefficient with the corresponding estimates it is possible to derive a “range” of admissible values of the unknown \( \rho_{YZ} \). The investigation of the uncertainty in SM application will be discussed in the Section 6.

Section 2 will be discuss some practical aspects concerning the preliminary steps, with emphasis on the choice of the marching variables; moreover some example data will be introduced. In Section 3 some nonparametric approaches to SM at micro will be shown. Section 4 is devoted to the mixed approaches to SM. Section 5 will discuss SM approaches to deal with data arising from complex sample surveys from finite populations.
2 Practical steps in an application of statistical matching

Before applying SM methods in order to integrate two or more data sources some decisions and preprocessing steps are required (Scanu, 2008). In practice, given two data sources \( A \) and \( B \) related to the same target population, the following steps are necessary:

1. Choice of the target variables \( Y \) and \( Z \), i.e. of the variables observed distinctly in two sample surveys.
2. Identification of all the common variables \( X \) shared by \( A \) and \( B \). In this step some harmonization procedures may be required because of different definitions and/or classifications. Obviously, if two similar variables can not be harmonized they have to be discarded. The common variables should not present missing values and the observed values should be accurate (no measurement errors). Note that if \( A \) and \( B \) are representative samples of the same population then the common variables are expected to share the same marginal/joint distribution.
3. Potentially all the \( X \) variables can be used directly in the SM application, so called matching variables but actually, not all them are used. Section 2.2 will provide more details concerning this issue.
4. The choice of the matching variables is strictly related to the matching framework (see Table 1).
5. Once decided the framework, a SM technique is used to match the samples.
6. Finally the results of the matching should be evaluated.

2.1 Example data

The next Sections will provide simple examples of application of some SM techniques in the R environment (R Development Core Team, 2014) by using the functions in **StatMatch** (D’Orazio, 2014). These examples will use artificial data set that come with **StatMatch**; these artificial data sets are generating by considering the variables usually observed in the EU-SILC (European Union Statistics on Income and Living Conditions) survey (for major details see **StatMatch** help pages).

```r
> library(StatMatch) #loads pkg StatMatch
> data(samp.A) # sample A in SM examples
> str(samp.A)
'data.frame': 3009 obs. of 13 variables:
$ HH.P.id : chr "10149.01" "17154.02" "5628.01" "15319.01" ...
$ area5 : Factor w/ 5 levels "NE","NO","C",...: 1 1 2 4 4 3 4 5 4 3 ...
$ urb : Factor w/ 3 levels "1","2","3": 1 1 2 1 2 2 2 2 2 2 ...
$ hsize : int 1 2 1 2 5 2 4 3 4 4 ...
$ hsize5 : Factor w/ 5 levels "1","2","3","4",...: 1 2 1 2 5 2 4 3 4 4 ...
```

3
The two data frames samp.A and samp.B share the variables X.vars; the net income (z.var) is available in samp.A while the person’s economic status (y.var) is available only in samp.B.

> X.vars <- intersect(names(samp.A), names(samp.B))
> X.vars

[1] "HH.P.id" "area5" "urb" "hsize" "hsize5" "age" 
[7] "c.age" "sex" "marital" "edu7" "ww"

> setdiff(names(samp.A), names(samp.B)) # available just in A

[1] "n.income" "c.neti"

> setdiff(names(samp.B), names(samp.A)) # available just in B

[1] "labour5"

For major details on the variables contained in A and B see the corresponding help pages.
2.2 The choice of the matching variables

In SM A and B, may share many common variables. In practice, just the most relevant ones, called matching variables, are used in the matching. The selection of these variables should be performed through opportune statistical methods (descriptive, inferential, etc.) and by consulting subject matter experts.

From a statistical point of view, the choice of the matching variables \( X_M \) (\( X_M \subseteq X \)) should be carried out in a “multivariate sense” in order to identify the subset of the \( X_M \) variables connected at the same time with \( Y \) and \( Z \) (Cohen, 1991); unfortunately this would require the availability of an auxiliary data source in which all the variables \( (X,Y,Z) \) are observed. In the basic SM framework the data in A permit to explore the relationship between \( Y \) and \( X \), while the relationship between \( Z \) and \( X \) can be investigated in the file B. Then the results of the two separate analyses have to be combined in some manner; usually the subset of the matching variables is obtained as \( X_M = X_Y \cup X_Z \), being \( X_Y \) (\( X_Y \subseteq X \)) the subset of the common variables that better explains \( Y \), while \( X_Z \) is the subset of the common variables that better explain \( Z \) (\( X_Z \subseteq X \)). The risk in such a procedure is that of obtaining too many matching variables, and consequently increasing the complexity of the problem and potentially affect negatively the results of SM. In particular, in the micro approach this may introduce additional undesired variability and bias as far as the joint (marginal) distribution of \( X_M \) and \( Z \) is concerned. For this reason sometimes the set of the matching variables is obtained as a compromise among

\[
X_Y \cap X_Z \subseteq X_M \subseteq X_Y \cup X_Z
\]

The simplest procedure to identify \( X_Y \) consists in pairwise correlation/association measures among the \( Y \) and all the available predictors \( X \). When the response variable is continuous one can look at correlation with the predictors. In order to identify eventual nonlinear relationship it may be convenient to consider the ranks (Spearman’s rank correlation coefficient). An interesting suggestion from Harrell (2014) consists in looking at the adjusted \( R^2 \) related to the regression model rank(\( Y \)) vs. rank(\( X \)) (unadjusted \( R^2 \) corresponds to squared Spearman’s rank correlation coefficient). When \( X \) is categorical nominal variable it is considered the adjusted \( R^2 \) of the regression model rank(\( Y \)) vs. dummies(\( X \)). The function spearman2 in the package Hmisc (Harrell, 2014) computes automatically the adjusted \( R^2 \) for each couple or response-predictor.

```r
> require(Hmisc)
> spearman2(n.income~area5+urb+hsize+age+sex+marital+edu7,
+ p=2, data=samp.A)
```

Spearman rho^2 Response variable: n.income

<table>
<thead>
<tr>
<th></th>
<th>rho2</th>
<th>F</th>
<th>df1</th>
<th>df2</th>
<th>P</th>
<th>Adjusted rho2</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>area5</td>
<td>0.033</td>
<td>25.45</td>
<td>4</td>
<td>3004</td>
<td>0.0000</td>
<td>0.031</td>
<td>3009</td>
</tr>
</tbody>
</table>

5
By looking at the adjusted $R^2$, it comes out that just the gender (sex) and age (age) have a certain predictive power on n.income.

When response and predictors are all categorical, then Chi-square based association measures (Cramer’s V) or proportional reduction of the variance measures can be considered. The function `pw.assoc` in StatMatch provides some of them.

```r
> pw.assoc(labour5~area5+urb+hsize5+c.age+sex+marital+edu7, data=samp.B)
```

$v

<table>
<thead>
<tr>
<th>labour5.area5</th>
<th>labour5.urb</th>
<th>labour5.hsize5</th>
<th>labour5.c.age</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.10968031</td>
<td>0.03222037</td>
<td>0.11125871</td>
<td>0.39412166</td>
</tr>
<tr>
<td>labour5.sex</td>
<td>labour5.marital</td>
<td>labour5.edu7</td>
<td></td>
</tr>
<tr>
<td>0.32181407</td>
<td>0.23630089</td>
<td>0.23968345</td>
<td></td>
</tr>
</tbody>
</table>

$\lambda$

<table>
<thead>
<tr>
<th>labour5.area5</th>
<th>labour5.urb</th>
<th>labour5.hsize5</th>
<th>labour5.c.age</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.04360596</td>
<td>0.00000000</td>
<td>0.02598283</td>
<td>0.29530050</td>
</tr>
<tr>
<td>labour5.sex</td>
<td>labour5.marital</td>
<td>labour5.edu7</td>
<td></td>
</tr>
<tr>
<td>0.08788974</td>
<td>0.04586534</td>
<td>0.15386353</td>
<td></td>
</tr>
</tbody>
</table>

$\tau$

<table>
<thead>
<tr>
<th>labour5.area5</th>
<th>labour5.urb</th>
<th>labour5.hsize5</th>
<th>labour5.c.age</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0129525034</td>
<td>0.0004782976</td>
<td>0.0142621011</td>
<td>0.1988405973</td>
</tr>
<tr>
<td>labour5.sex</td>
<td>labour5.marital</td>
<td>labour5.edu7</td>
<td></td>
</tr>
<tr>
<td>0.0329951308</td>
<td>0.0299137496</td>
<td>0.0776071229</td>
<td></td>
</tr>
</tbody>
</table>

$U$

<table>
<thead>
<tr>
<th>labour5.area5</th>
<th>labour5.urb</th>
<th>labour5.hsize5</th>
<th>labour5.c.age</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0163106664</td>
<td>0.0007064674</td>
<td>0.0166305027</td>
<td>0.2485754478</td>
</tr>
<tr>
<td>labour5.sex</td>
<td>labour5.marital</td>
<td>labour5.edu7</td>
<td></td>
</tr>
<tr>
<td>0.0371158413</td>
<td>0.0420075216</td>
<td>0.0803914797</td>
<td></td>
</tr>
</tbody>
</table>

In practice it comes out the best predictor of person’s economic status (labour5) is the age conveniently categorized (c.age), among the remaining variables, just the education levels (edu7) has some a certain predictive power on labour5.

To summarize, in this example the set of the matching variables could be composed by age, sex and edu7 (i.e. $X_M = X_Y \cup X_Z$).
When too many variables are available before computing pairwise association/correlation measures, it would be necessary to discard the redundant predictors (functions `redund` and `varclus` in `Hmisc` can be of help).

Sometimes the important predictors can be identified by fitting models and then running procedures for selecting the best predictor. The selection of the subset $XY$ can also be demanded to nonparametric procedures such as *Classification And Regression Trees* (Breiman *et al.*, 1984). Instead of fitting a single tree, it would be better to fit a random forest (Breiman, 2001) by means of the function `randomForest` available in the package `randomForest` (Liaw and Wiener, 2002) which provides a measure of importance for the predictors (to be used with caution).

The approach to SM based on the study of uncertainty offers the possibility of choosing the matching variable by selecting just those common variables with the highest contribution to the reduction of the uncertainty. The function `Fbwidths.by.x` in `StatMatch` permits to explore the reduction of uncertainty when all the variables $(X, Y, Z)$ are categorical. In particular, assuming that $XD$ correspond to the complete crossing of the matching variables $XM$, it is possible to show that in the basic SM framework

$$P_{j,k}^{(low)} \leq P_{Y=j,Z=k} \leq P_{j,k}^{(up)},$$

being

$$P_{j,k}^{(low)} = \sum_i P_{X_D=i} \times \max \{0; P_{Y=j|X_D=i} + P_{Z=k|X_D=i} - 1\}$$

$$P_{j,k}^{(up)} = \sum_i P_{X_D=i} \times \min \{P_{Y=j|X_D=i}; P_{Z=k|X_D=i}\}$$

for $j = 1, \ldots, J$ and $k = 1, \ldots, K$, being $J$ and $K$ the categories of $Y$ and $Z$ respectively.

The function `Fbwidths.by.x` estimates $(P_{j,k}^{(low)}, P_{j,k}^{(up)})$ for each cell in the contingency table $Y \times Z$ in correspondence of all the possible combinations of the $X$ variables; then the reduction of uncertainty is measured naively by the average widths of the intervals:

$$\bar{d} = \frac{1}{J \times K} \sum_{j,k} \left( P_{j,k}^{(up)} - P_{j,k}^{(low)} \right)$$

```r
> # choice of the matching variables based on uncertainty
> xx <- xtabs(~c.age+sex+marital+edu7, data=samp.A)
> xy <- xtabs(~c.age+sex+marital+edu7+c.neti, data=samp.A)
> xz <- xtabs(~c.age+sex+marital+edu7+labour5, data=samp.B)
> out.fbw <- Fbwidths.by.x(tab.x=xx, tab.xy=xy, tab.xz=xz)
> # sort output according to average width
> sort.av <- out.fbw$sum.unc[order(out.fbw$sum.unc$av.width),]
> head(sort.av) # best 6 combinations of the Xs
```

<table>
<thead>
<tr>
<th>x.vars</th>
<th>x.cells</th>
<th>x.freq0</th>
<th>av.width</th>
</tr>
</thead>
<tbody>
<tr>
<td>c.age+sex+marital+edu7</td>
<td>4</td>
<td>210</td>
<td>51 0.06598348</td>
</tr>
</tbody>
</table>
The results in terms of average width of the cells bounds lead to conclude that all the variables being considered should be used in the SM application while the second choice, with a slight worsening of the average width of intervals, confirm the finding of the previous analyses.

3 Nonparametric micro techniques

Nonparametric approach is very popular in SM when the objective is the creation of a synthetic data set. Most of the nonparametric micro approaches consists in filling in the data set chosen as the recipient with the values of the variable which is available only in the other data set, the donor one. In this approach it is important to decide which data set plays the role of the recipient. Usually this is the data set to be used ad the basis for further statistical analysis, and consequently the choice seems be that of using the larger one because it would provide more accurate results. Unfortunately, such a way of working may provide inaccurate SM results, especially when the sizes of the two data sources are very different. The reason is quite simple, the larger is the recipient with respect to the donor, the more times a unit in the latter could be selected as a donor. In this manner, there is a high risk that the distribution of the imputed variable does not reflect the original one (estimated form the donor data set). In the following it will be assumed that $A$ is the recipient while $B$ is the donor, being $n_A \leq n_B$ ($n_A$ and $n_B$ are the sizes of $A$ and $B$ respectively). Hence the objective of SM will be that of filling in $A$ with values of $Y$ (variable available only in $B$).

In StatMatch the following nonparametric micro techniques are available: random hot deck, nearest neighbor hot deck and rank hot deck (see Section 2.4 in D’Orazio et al., 2006b; Singh et al., 1993).

3.1 Nearest neighbor distance hot deck

The nearest neighbor distance hot deck techniques are implemented in the function `NND.hotdeck`. This function searches in `data.don` the nearest neighbor of each unit in `data.rec` according to a distance computed on the matching variables $X_M$ specified with the argument `match.vars`. By default the Manhattan (city block) distance is considered (`dist.fun="Manhattan"`). In order to reduce the effort to compute distances it is preferable to define some donation classes (argument `don.class`): for a record in given donation class it will be selected a donor in the same class (the distances are computed only between units belonging to the same class). Usually, the donation classes are defined according to one or more categorical common variables (geographic area, etc.). In the following, a simple example of usage of `NND.hotdeck` is reported;
donation classes are formed using large geographical areas and gender, while distances are computed on age

```r
> group.v <- c("area5","sex")
> X.mtc <- "age"
> out.nnd <- NND.hotdeck(data.rec=samp.A, data.don=samp.B,
+     match.vars=X.mtc, don.class=group.v)
```

Warning: The Manhattan distance is being used
All the categorical matching variables in rec and don
data.frames, if present are recoded into dummies

The function `NND.hotdeck` does not create the synthetic data set; for each unit in A the corresponding closest donor in B is identified according to the imputation classes (when defined) and the chosen distance function; the recipient-donor units’ identifiers are saved in the data.frame `mtc.ids` stored in the output list returned by `NND.hotdeck`. The output list provides also the distance between each couple recipient-donor (saved in the `dist.rd` component of the output list) and the number of available donors at the minimum distance for each recipient (component `noad`). Note that when there are more donors at the minimum distance, then one of them is picked up at random.

```r
> summary(out.nnd$dist.rd) # summary distances rec-don

          Min. 1st Qu.  Median     Mean 3rd Qu.     Max. 
0.0000000 0.000000 0.000000 0.003988 0.000000 6.000000

> summary(out.nnd$noad) # summary available donors at min. dist.

          Min. 1st Qu.  Median       Mean 3rd Qu.     Max. 
1.00 8.00 11.00 10.82 14.00 28.00
```

In order to derive the synthetic data set it is necessary to run the function `create.fused` which requires the output of `NND.hotdeck` function (component `mtc.ids` of the output’s list) and the specification of the Z variables to donate from B to A via the argument `z.vars`:

```r
> head(out.nnd$mtc.ids)

     rec.id  don.id
[1,] "35973" "21128"
[2,] "21483" "10694"
[3,] "39095" "33871"
[4,] "36844" "25992"
[5,] "560"   "5426"
[6,] "34062" "7114"
```
As far as distances are concerned (argument \texttt{dist.fun}), all the distance functions in the package \texttt{proxy} (Meyer and Buttcha, 2014) are available. Anyway, for some particular distances it was decided to write specific \texttt{R} functions. In particular, when dealing with continuous matching variables it is possible to use the maximum distance ($L^\infty$ norm) implemented in \texttt{maximum.dist}; this function works on the true observed values (continuous variables) or on transformed ranked values (argument \texttt{rank=TRUE}) as suggested in Kovar \textit{et al.} (1988): the transformation (ranks divided by the number of units) removes the effect of different scales and the new values are uniformly distributed in the interval [0, 1]. The Mahalanobis distance can be computed by using \texttt{mahalanobis.dist} which allows an external estimate of the covariance matrix (argument \texttt{vc}). When dealing with mixed type matching variables, the \textit{Gower’s dissimilarity} (Gower, 1981) can be computed (function \texttt{gower.dist}): it is an average of the distances computed on the single variables according to different rules, depending on the type of the variable. All the distances are scaled to range from 0 to 1, hence the overall distance can take a value in [0, 1]. When dealing with mixed types matching variables it is still possible to use the distance functions for continuous variables but \texttt{NND.hotdeck} transforms factors into dummies (by means of the function \texttt{fact2dummy}).

By default \texttt{NND.hotdeck} does not pose constraints on the “usage” of donors: a record in the donor data set can be selected many times as a donor. The multiple usage of a donor can be avoided by resorting to a constrained hot deck (argument \texttt{constrained=TRUE} in \texttt{NND.hotdeck}); in such a case, a donor can be used just once and all the donors are selected in order to minimize the overall matching distance. In practice, the donors are identified by solving a traveling salesperson problem; two alternatives are available: the Hungarian algorithm (argument \texttt{constr.alg="Hungarian"}
implemented in the function `solve_LSAP` in the package `clue` (Hornik, 2005 and 2014) and the algorithm provided by the package `lpSolve` (Berkelaar et al., 2014) (argument `constr.alg="lPsolve"`). Setting `constr.alg="Hungarian"` (default) is more efficient and faster.

```r
> group.v <- c("sex","area5")
> X.mtc <- "age"
> out.nnd.c <- NND.hotdeck(data.rec=samp.A, data.don=samp.B,
+ match.vars=X.mtc, don.class=group.v,
+ dist.fun="Manhattan", constrained=TRUE,
+ constr.alg="Hungarian")
```

Warning: The Manhattan distance is being used
All the categorical matching variables in rec and don
data.frames, if present are recoded into dummies

```r
> fA.nnd.c <- create.fused(data.rec=samp.A, data.don=samp.B,
+ mtc.ids=out.nnd.c$mtc.ids,
+ z.vars="labour5")
```

The constrained matching returns an overall matching distance greater than the one in the unconstrained case, but it tends to better preserve the marginal distribution of the variable imputed in the synthetic data set.

```r
> #comparing distances
> sum(out.nnd$dist.rd) # unconstrained
[1] 12
> sum(out.nnd.c$dist.rd) # constrained
[1] 90
```

To compare the marginal joint distributions of a set of categorical variables it is possible to resort to the function `comp.prop` in `StatMatch` which provides some similarity measure among distributions of categorical variables and performs also the Chi-square test (for details see `comp.prop` the help pages).

```r
> # estimating marginal distribution of labour5
> tt0 <- xtabs(~labour5, data=samp.B) # reference distr.
> tt <- xtabs(~labour5, data=fA.nnd) # synt unconstr.
> ttc <- xtabs(~labour5, data=fA.nnd.c) # synt. constr.
> #
> # comparing marginal distributions
> cp1 <- comp.prop(p1=tt, p2=tt0, n1=nrow(fA.nnd), n2=NULL, ref=TRUE)
> cp2 <- comp.prop(p1=ttc, p2=tt0, n1=nrow(fA.nnd), n2=NULL, ref=TRUE)
> cp1$meas
```

11
By looking at comp.prop output it comes out that, as expected, the marginal distribution of c.netI in the synthetic file obtained after constrained NND is closer to the reference distribution (estimated on the donor dataset) than the one estimated from the synthetic file after the unconstrained NND.

3.2 Random hot deck

The function RANDwNND.hotdeck carries out the random selection of each donor from a suitable subset of all the available donors. This subset can be formed in different ways, e.g. by considering all the donors sharing the same characteristics of the recipient (defined according to some $X_M$ variables, such as geographic region, etc.). The traditional random hot deck (Singh et al., 1993) within imputation classes is performed by simply specifying the donation classes via the argument don.class (the classes are formed by crossing the categories of the categorical variables being considered). For each record in the recipient data set in a given donation class, a donor is picked up completely at random within the same donation class.

```r
> group.v <- c("area5","sex")
> rnd.1 <- RANDwNND.hotdeck(data.rec=samp.A, data.don=samp.B, 
+ match.vars=NULL, don.class=group.v)
> fA.rnd <- create.fused(data.rec=samp.A, data.don=samp.B, 
+ mtc.ids=rnd.1$mtc.ids, 
+ z.vars="labour5")
```

As for NND.hotdeck, the function RANDwNND.hotdeck does not create the synthetic data set; the recipient-donor units’ identifiers are saved in the component mtc.ids of the list returned in output. The number of donors available in each donation class are saved in the component noad.

RANDwNND.hotdeck implements various alternative methods to restrict the subset of the potential donors. These methods are based essentially on a distance measure computed on the matching variables provided via the argument match.vars. In practice, when cut.don="k.dist" only the donors whose distance from the recipient is less or equal to threshold k are considered (see Andridge and Little, 2010). By setting cut.don="exact" the k ($0 < k \leq n_D$) closest donors are retained ($n_D$ is the number of available donors for a given recipient). With cut.don="span" a proportion $k$ ($0 < k \leq 1$) of the closest available donors it is considered while; setting cut.don="rot" and k=NULL the subset reduces to the $\sqrt{n_D}$ closest donors; finally, when cut.don="min" only the donors at the minimum distance from the recipient are retained.
> # random choices of a donor among the closest k=20 wrt age
group.v <- c("area5","sex")
X.mtc <- "age"
rnd.2 <- RANDwNND.hotdeck(data.rec=samp.A, data.don=samp.B,
+ match.vars=X.mtc, don.class=group.v,
+ dist.fun="Manhattan",
+ cut.don="exact", k=20)

Warning: The Manhattan distance is being used
All the categorical matching variables in rec and don data.frames,
if present, are recoded into dummies

> fA.knnd <- create.fused(data.rec=samp.A, data.don=samp.B,
+ mtc.ids=rnd.2$mtc.ids,
+ z.vars="labour5")

When distances are computed on some matching variables, then the output of RANDwNND.hotdeck provides some information concerning the distances of the possible available donors for each recipient observation.

> head(rnd.2$sum.dist)

min  max    sd  cut dist.rd
[1,] 0 61 17.204128 1 0
[2,] 0 38  9.898723 1 0
[3,] 0 50 11.642050 1 0
[4,] 0 38 10.037090 1 1
[5,] 0 53 14.865282 1 0
[6,] 0 49 13.404280 1 1

In particular, "min", "max" and "sd" columns report respectively the minimum, the maximum and the standard deviation of the distances (all the available donors are considered), while "cut" refers to the distance of the kth closest donor; "dist.rd" is distance existing among the recipient and the randomly chosen donor.

When selecting a donor among those available in the subset identified by the arguments cut.don and k, it is possible to use a weighted selection by specifying a weighting variable via weight.don argument. This issue will be tackled in Section 5.

### 3.3 Rank hot deck

The rank hot deck distance method has been introduced by Singh et al. (1993). It searches for the donor at a minimum distance from the given recipient record but, in this case, the distance is computed on the percentage points of the empirical cumulative distribution function of the unique (continuous) common variable $X_M$ being considered. The empirical cumulative distribution function is estimated by:
\[ \hat{F}(x) = \frac{1}{n} \sum_{i=1}^{n} I(x_i \leq x) \]

being \( I() = 1 \) if \( x_i \leq x \) and 0 otherwise. This transformation provides values uniformly distributed in the interval \([0,1]\); moreover, it can be useful when the values of \( X_M \) cannot be directly compared because of measurement errors which however do not affect the “position” of a unit in the whole distribution (D’Orazio et al., 2006b). This method is implemented in the function `rankNND.hotdeck`. The following simple example shows how to call it.

```r
> rnk.1 <- rankNND.hotdeck(data.rec=samp.A, data.don=samp.B, 
+   var.rec="age", var.don="age")
> #create the synthetic data set
> fA.rnk <- create.fused(data.rec=samp.A, data.don=samp.B, 
+   mtc.ids=rnk.1$mtc.ids, 
+   z.vars="labour5", 
+   dup.x=TRUE, match.vars="age")
> head(fA.rnk)

HH.P.id area5 urb hsize hsize5 age c.age sex marital
21384 10149.01 NE 1 1 1 85 (64,104] 2 3
35973 17154.02 NE 1 2 2 78 (64,104] 1 2
11774 5628.01 NO 1 2 1 48 (44,54] 1 3
32127 15319.01 S 1 2 2 78 (64,104] 1 2
6301 2973.05 S 2 5 >=5 17 [16,34] 1 1
12990 6206.02 C 2 2 2 28 [16,34] 2 2
```

The function `rankNND.hotdeck` allows for constrained and unconstrained matching in the same manner as in `NND.hotdeck`. It is also possible to define some donation classes (argument `don.class`), in this case the empirical cumulative distribution is estimated separately class by class.

```r
> rnk.2 <- rankNND.hotdeck(data.rec=samp.A, data.don=samp.B, var.rec="age", 
+   var.don="age", don.class="sex", 
+   constrained=TRUE, constr.alg="Hungarian")
> fA.grnk <- create.fused(data.rec=samp.A, data.don=samp.B, 
+   mtc.ids=rnk.2$mtc.ids, 
```

The function `rankNND.hotdeck` allows for constrained and unconstrained matching in the same manner as in `NND.hotdeck`. It is also possible to define some donation classes (argument `don.class`), in this case the empirical cumulative distribution is estimated separately class by class.
In estimating the empirical cumulative distribution it is possible to consider the units' weights (arguments `weight.rec` and `weight.don`). This topic will be tackled in Section 5.

### 3.4 Using functions in StatMatch to impute missing values in a survey

All the functions in StatMatch that implement the hot deck imputation techniques can be used to impute missing values in a single data set. In this case it is necessary to:

1. separate the observations in two data sets: the file $A$ plays the role of recipient and will contain the units with missing values on the target variable, while the file $B$ is the donor and will contain all the available donors (units with non missing values for the target variable).

2. Fill in the missing values in the recipient, e.g. by using a nonparametric imputation

3. Join recipient and donor file

In the following a simple example with the iris data.frame is reported. Distance hot deck is used to fill missing values in the recipient.

```r
# step 0) introduce missing values in iris
> set.seed(1324)
> miss <- rbinom(150, 1, 0.30) #generates randomly missing
> data(iris, package="datasets")
> iris.miss <- iris
> iris.miss$Petal.Length[miss==1] <- NA
> summary(iris.miss$Petal.L)
```
Mixed methods

A SM mixed method consists of two steps: (1) a model is fitted and all its parameters are estimated, then (2) a nonparametric approach is used to create the synthetic data set. The model is more parsimonious while the nonparametric approach offers “protection” against model misspecification. The proposed mixed approaches for SM are based essentially on predictive mean matching imputation methods (see D’Orazio et al. 2006b, 2009a, 2009b, 2009c).
The function `mixed.mtc` in `StatMatch` implements two similar mixed methods that deal with variables \((X_M, Y, Z)\) following the multivariate normal distribution. The main difference is in step (1) when estimating the parameters of the two regressions \(Y \text{ vs. } X_M\) and \(Z \text{ vs. } X_M\). By default the parameters are estimated through maximum likelihood (argument `method="ML"` in `mixed.mtc`); in alternative a method proposed by Moriarity and Scheuren (2001, 2003) (argument `method="MS"`) is available. At the end of the step (1), the data set \(A\) is filled in with the “intermediate” values \(\tilde{z}_a = \hat{z}_a + e_a\) \((a = 1, \ldots, n_A)\) obtained by adding a random residual term \(e_a\) to the predicted values \(\hat{z}_a\). The same happens in \(B\) which is filled in with the values \(\tilde{y}_b = \hat{y}_b + e_b\) \((b = 1, \ldots, n_B)\).

In the step (2) each record in \(A\) is filled in with the value of \(Z\) observed on the donor found in \(B\) according to a constrained distance hot deck; the Mahalanobis distance is computed by considering the intermediate and live values: couples \((y_a, \tilde{z}_a)\) in \(A\) and \((\tilde{y}_b, z_b)\) in \(B\).

Such a two steps procedure presents various advantages: it offers protection against model misspecification and at the same time reduces the risk of bias in the marginal distribution of the imputed variable because the distances are computed on intermediate and truly observed values of the target value instead of the matching variables \(X_M\). In fact when computing the distances by considering many matching variables, the variables with low predictive power on the target variable may influence negatively the distances.

D’Orazio et al. (2005) compared the two alternative methods based in an extensive simulation study: in general ML tends to perform better, moreover it permits to avoid some incoherencies in the estimation of the parameters that can happen with the Moriarity and Scheuren approach.

In the following example the `iris` data set is used just to show how `mixed.mtc` works.

```r
> # uses iris data set
> iris.A <- iris[101:150, 1:3]
> iris.B <- iris[1:100, c(1:2,4)]
> X.mtc <- c("Sepal.Length","Sepal.Width") # matching variables
> # parameters estimated using ML
> mix.1 <- mixed.mtc(data.rec=iris.A, data.don=iris.B, match.vars=X.mtc,
> + y.rec="Petal.Length", z.don="Petal.Width",
> + method="ML", rho.yz=0,
> + micro=TRUE, constr.alg="Hungarian")
> mix.1$mu #estimated means

<table>
<thead>
<tr>
<th>Sepal.Length</th>
<th>Sepal.Width</th>
<th>Petal.Length</th>
<th>Petal.Width</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.843333</td>
<td>3.057333</td>
<td>4.996706</td>
<td>1.037109</td>
</tr>
</tbody>
</table>

> mix.1$cor #estimated cor. matrix

<table>
<thead>
<tr>
<th></th>
<th>Sepal.Length</th>
<th>Sepal.Width</th>
<th>Petal.Length</th>
<th>Petal.Width</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sepal.Length</td>
<td>1.0000000</td>
<td>-0.117569</td>
<td>0.913179</td>
<td>0.8490516</td>
</tr>
<tr>
<td>Sepal.Width</td>
<td>-0.117569</td>
<td>1.0000000</td>
<td>-0.0992586</td>
<td>-0.4415012</td>
</tr>
</tbody>
</table>
```

17
Petal.Length  0.9131794 -0.0992586  1.0000000  0.7725288
Petal.Width  0.8490516 -0.4415012  0.7725288  1.0000000

> head(mix.1$filled.rec) # A filled in with Z

Sepal.Length Sepal.Width Petal.Length Petal.Width
101    6.3     3.3     6.0     0.2
102    5.8     2.7     5.1     1.3
103    7.1     3.0     5.9     1.7
104    6.3     2.9     5.6     1.4
105    6.5     3.0     5.8     1.5
106    7.6     3.0     6.6     1.8

> cor(mix.1$filled.rec)

Sepal.Length Sepal.Width Petal.Length Petal.Width
Sepal.Length  1.0000000  0.45722782  0.8642247  0.47606997
Sepal.Width  -0.1175698  1.00000000 -0.0992586 -0.4415012
Petal.Length  0.9131794 -0.0992586  1.0000000  0.9113867
Petal.Width   0.8490516 -0.4415012  0.9113867  1.0000000

When using `mixed.mtc` the synthetic data set is provided in output as the component `filled.rec` of the list returned by calling it with the argument `micro=TRUE`. When `micro=FALSE` the function `mixed.mtc` returns just the estimates of the parameters (parametric macro approach).

The function `mixed.mtc` by default performs mixed SM under the CI assumption ($\rho_{YZ|X_M} = 0$ argument rho.yz=0). When some additional auxiliary information about the correlation between $Y$ and $Z$ is available (estimates from previous surveys or form external sources) then it can be exploited in SM by specifying a value ($\neq 0$) for the argument rho.yz; it represents a guess for $\rho_{YZ|X_M}$ when using the ML estimation, or a guess for $\rho_{YZ}$ when estimating the parameters via the Moriarity and Scheuren approach.

> # parameters estimated using ML and rho_YZ|X=0.85
> mix.2 <- mixed.mtc(data.rec=iris.A, data.don=iris.B, match.vars=X.mtc,
+                    y.rec="Petal.Length", z.don="Petal.Width",
+                    method="ML", rho.yz=0.85,
+                    micro=TRUE, constr.alg="Hungarian")
> mix.2$cor

Sepal.Length Sepal.Width Petal.Length Petal.Width
Sepal.Length  1.0000000 -0.1175698  0.9131794  0.8490516
Sepal.Width   -0.1175698  1.0000000 -0.0992586 -0.4415012
Petal.Length  0.9131794 -0.0992586  1.0000000  0.9113867
Petal.Width   0.8490516 -0.4415012  0.9113867  1.0000000

> head(mix.2$filled.rec)
Special attention is required when specifying a guess for $\rho_{YZ}$ under the Moriarity and Scheuren estimation approach (method="MS"); in particular it may happen that the specified value for $\rho_{YZ}$ is not compatible with the given SM framework (the correlation matrix must be positive semidefinite). If this is the case, then mixed.mtc substitutes the input value of rho.yz by its closest admissible value, as shown in the following example.

```r
> mix.3 <- mixed.mtc(data.rec=iris.A, data.don=iris.B, match.vars=X.mtc,
+ y.rec="Petal.Length", z.don="Petal.Width",
+ method="MS", rho.yz=0.75,
+ micro=TRUE, constr.alg="Hungarian")
```

input value for rho.yz is 0.75
low(rho.yz)= -0.1662
up(rho.yz)= 0.5565
Warning: value for rho.yz is not admissible: a new value is chosen for it
The new value for rho.yz is 0.5465

```r
> mix.3$rho.yz

<table>
<thead>
<tr>
<th>start</th>
<th>low.lim</th>
<th>up.lim</th>
<th>used</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.7500</td>
<td>-0.1662</td>
<td>0.5565</td>
<td>0.5465</td>
</tr>
</tbody>
</table>
```

5 Statistical matching of data from complex sample surveys

The SM techniques presented in the previous Sections implicitly or explicitly assume that the observed values in $A$ and $B$ are i.i.d. Unfortunately, when dealing with samples selected from a finite population by means of complex sampling designs (with stratification, clustering, etc.) it is difficult to maintain the i.i.d. assumption: it would mean that the sampling design can be ignored. If this is not the case, inferences have to account for sampling design and the weights assigned to the units (usually design weights corrected for unit nonresponse, frame errors, etc.) (see Särndal et al., 1992, Section 13.6).

5.1 Naive micro approaches

A naive approach to SM of data from complex sample surveys consists in applying nonparametric micro methods (NND, random or rank hot deck) without considering the design nor the units weights. Once obtained the synthetic dataset (recipient filled in with
the missing variables) the successive statistical analyses are carried out by considering the sampling design underlying the recipient data set and the corresponding survey weights. In the following a simple example of nearest neighbor hot deck is reported.

```r
> # summary info on the weights
> sum(samp.A$ww) # estimated pop size from A
[1] 5094952

> sum(samp.B$ww) # estimated pop size from B
[1] 5157582

> summary(samp.A$ww)

          Min.   1st Qu.    Median      Mean   3rd Qu.      Max. 
122.2  774.9  1417.0  1693.0  2283.0  8192.0

> summary(samp.B$ww)

          Min.   1st Qu.    Median      Mean   3rd Qu.      Max. 
 55.49  361.70  660.50  771.40 1042.00  3759.00

> # NND constrained hot deck
> group.v <- c("sex","area5")
> out.nnd <- NND.hotdeck(data.rec=samp.A, data.don=samp.B,
+   match.vars="age", don.class=group.v,
+   dist.fun="Manhattan",
+   constrained=TRUE, constr.alg="Hungarian")

Warning: The Manhattan distance is being used
All the categorical matching variables in rec and don data.frames, if present are recoded into dummies

> fA.nnd.m <- create.fused(data.rec=samp.A, data.don=samp.B,
+   mtc.ids=out.nnd$mtc.ids,
+   z.vars="labour5")

> # estimating distribution of labour5 using weights
> t1 <- xtabs(ww~labour5, data=fA.nnd.m) # imputed in A
> t2 <- xtabs(ww~labour5, data=samp.B) # ref. estimate in B
> c1 <- comp.prop(p1=t1, p2=t2, n1=nrow(fA.nnd.m), ref=TRUE)
> c1$meas

          tvd   overlap   Bhatt   Hell
0.01964716 0.98035284 0.99975978 0.01549889
```

20
As far as imputation of missing values is concerned, a way of taking into account the sampling design can consist in forming the donation classes by using the design variables (stratification and/or clustering variables) jointly with the most relevant common variables (Andridge and Little, 2010). Unfortunately in SM this can increase the complexity or may be unfeasible because the design variables may not be available or may be partly available. Moreover, the two sample surveys may have quite different designs and the design variables used in one survey maybe not available in the other one and vice versa.

When imputing missing values in a survey, another possibility, consists in using sampling weights (design weights) to form the donation classes (Andridge and Little, 2010). But again, in SM applications the problem can be slightly more complex even because the sets of weights can be quite different from one survey to the other (usually the available weights are the design weights corrected to compensate for unit nonresponse, to satisfy some given constraints etc.). The same Authors (Andridge and Little, 2010) indicate that when imputing the missing values, the selection of the donors can be carried out with probability proportional to weights associated to the donors (weighted random hot deck). This feature is implemented in \texttt{RANDwNND.hotdeck} which permits to select the donors with probability proportional to weights specified via the \texttt{weight.don} argument.

\begin{verbatim}
> group.v <- c("sex","area5")
> rnd.2 <- RANDwNND.hotdeck(data.rec=samp.A, data.don=samp.B,
+   match.vars=NULL, don.class=group.v,
+   weight.don="ww")
> fA.wrnd <- create.fused(data.rec=samp.A, data.don=samp.B,
+   mtc.ids=rnd.2$mtc.ids,
+   z.vars="labour5")
> # comparing marginal distribution of labour5 using weights
> tt.0w <- xtabs(ww~labour5, data=samp.B)
> tt-fw <- xtabs(ww~labour5, data=fA.wrnd)
> c1 <- comp.prop(p1=tt-fw, p2=tt.0w, n1=nrow(fA.wrnd), ref=TRUE)
> c1$meas
    tvd overlap Bhatt Hell
0.02129280 0.97870720 0.99972761 0.01650429
\end{verbatim}

The function \texttt{rankNND.hotdeck} can use the units’ weights ($w_i$) in estimating the percentage points of the empirical cumulative distribution function:

\[
\hat{F}(x) = \frac{\sum_{i=1}^{n} w_i \mathbb{I}(x_i \leq x)}{\sum_{i=1}^{n} w_i}
\]

In the following it is reported an very simple example with constrained rank hot deck.

\begin{verbatim}
> rnk.w <- rankNND.hotdeck(data.rec=samp.A, data.don=samp.B,
+   don.class="area5", var.rec="age",
+   var.don="age", weight.rec="ww",
\end{verbatim}
# create the synthetic data set
> fA.wrnk <- create.fused(data.rec=samp.A, data.don=samp.B,
+ mtc.ids=rnk.w$mtc.ids,
+ z.vars="labour5",
+ dup.x=TRUE, match.vars="age")
> # comparing marginal distribution of labour5 using weights
> tt.0w <- xtabs(ww~labour5, data=samp.B)
> tt.fw <- xtabs(ww~labour5, data=fA.wrnk)
> c1 <- comp.prop(p1=tt.fw, p2=tt.0w, n1=nrow(fA.wrnk), ref=TRUE)
> c1$meas

\begin{verbatim}
   tvd  overlap  Bhatt  Hell
0.01872254 0.98127746 0.99973907 0.01615326
\end{verbatim}

D’Orazio et al. (2012) compared several naive procedures. In general, when rank and random hot deck procedures use the weights, as shown before, they tend to perform quite well in terms of preservation in the synthetic data set of the marginal distribution of the imputed variable \(Z\) and of the joint distribution \(X \times Z\). The nearest neighbour donor, performs well only when constrained matching is used and a design variable (used in stratification) is considered in forming donation classes.

### 5.2 Statistical matching method that account explicitly for the sampling weights

In literature there are few SM methods that explicitly take into account the sampling design and the corresponding sampling weights: Renssen’s approach based on weights’ calibrations (Renssen, 1998); Rubin’s file concatenation (Rubin, 1986) and the approach based on the empirical likelihood proposed by Wu (2004). A comparison among these approaches can be found in D’Orazio (2010).

The package \texttt{StatMatch} provides functions to apply the procedures suggested by Renssen (1998). Renssen’s approach consists in a series of calibration steps of the survey weights in \(A\) and \(B\) in order to achieve consistency between estimates (mainly totals) computed separately from the two data sources. Calibration is a technique very common in sample surveys for deriving new weights, as close as possible to the starting ones, which fulfill a series of constraints concerning totals for a set of auxiliary variables (for further details on calibration see Särndal, 2005). The Renssen’s approach works well when dealing with categorical variables or in a mixed case in which the number of continuous variables is very limited. In the following it will be assumed that all the variables \((X_D, Y, Z)\) are categorical, being \(X_D\) a complete or an incomplete crossing of the matching variables \(X_M\). The procedure and the functions developed in \texttt{StatMatch} permits to have one or more continuous variables (better just one) in the subset of the
matching variables $X_M$, while $Y$ and $Z$ must be categorical. Obviously, when this is not the case, in order to apply the following procedure it is necessary to categorize the variables.

The first step in the Renssen’s procedure consists in calibrating weights in $A$ and in $B$ such that the new weights when applied to the set of the $X_D$ variables allow to reproduce some known (or estimated) population totals. In StatMatch the harmonization step can be performed by using harmonize.x. This function performs weights calibration (or post-stratification) by means of functions available in the R package survey (Lumley, 2004 and 2012). When the population totals are already known then they have to be passed to harmonize.x via the argument x.tot; on the contrary, when they are unknown (x.tot=NULL) they are estimated by a weighted average of the totals estimated on the two surveys before the harmonization step:

$$\tilde{t}_{X_D} = \lambda \hat{t}^{(A)}_{X_D} + (1 - \lambda) \hat{t}^{(B)}_{X_D}$$

being $\lambda = n_A/(n_A + n_B)$ ($n_A$ and $n_B$ are the sample sizes of $A$ and $B$ respectively) (Korn and Graubard, 1999, pp. 281–284).

The following example shows how to harmonize the joint distribution of the gender and classes of age with the data from the previous example, assuming that the joint distribution of age and gender is not known.

```r
> tt.A <- xtabs(ww~sex+c.age, data=samp.A)
> tt.B <- xtabs(ww~sex+c.age, data=samp.B)
> (prop.table(tt.A)-prop.table(tt.B))*100

   c.age          sex
1  [16,34]    [16,34] (34,44] (44,54] (54,64] (64,104]
  1 -0.01897392 -0.64897955 1.33820068 -1.17082477 -0.04332117
  2 0.53926387 -0.13999008 -0.22698122 0.72274725 -0.35114110

> comp.prop(p1=tt.A, p2=tt.B, n1=nrow(samp.A),
+           n2=nrow(samp.B), ref=FALSE)

$meas
   tvd overlap   Bhatt    Hell
0.02600212 0.97399788 0.99931620 0.02614962

$chi.sq
   Pearson      df     q0.05 delta.h0
11.3311924  9.0000000 16.9189776  0.6697327

$p.exp
   c.age          sex
   [16,34]    [16,34] (34,44] (44,54] (54,64] (64,104]
  1 0.11982616 0.10203271 0.09082844 0.06953352 0.10327752
  2 0.11640939 0.09715433 0.08531810 0.07641245 0.13920738
```

23
> library(survey, warn.conflicts=FALSE) # loads survey
> # creates svydesign objects
> svy.samp.A <- svydesign(~1, weights=~ww, data=samp.A)
> svy.samp.B <- svydesign(~1, weights=~ww, data=samp.B)
> #
> # harmonizes wrt to joint distr. of gender vs. c.age
>          form.x=~c.age:sex-1)
> #
> summary(out.hz$weights.A) # new calibrated weights for A
>     Min. 1st Qu.  Median Mean 3rd Qu. Max.
> 124.5  787.6  1435.0 1708.0  2318.0  8230.0
> summary(out.hz$weights.B) # new calibrated weights for B
>     Min. 1st Qu.  Median Mean 3rd Qu. Max.
>   54.22  360.70  659.60  768.50 1040.00 3870.00
> tt.A <- xtabs(out.hz$weights.A~sex+c.age, data=samp.A)
> tt.B <- xtabs(out.hz$weights.B~sex+c.age, data=samp.B)
> c1 <- comp.prop(p1=tt.A, p2=tt.B, n1=nrow(samp.A),
>          n2=nrow(samp.B), ref=FALSE)
> c1$meas
>       tvd overlap  Bhatt  Hell
> 8.326673e-17 1.000000e+00 1.000000e+00 0.000000e+00
>
> The second step in the Renssen’s procedure consists in estimating the two-way contingency table $Y \times Z$. In absence of auxiliary information it is estimated under the CI assumption by means of:

$$\hat{P}^{(CIA)}_{(Y=j, Z=k)} = \hat{P}^{(A)}_{Y=j|X_D=i} \times \hat{P}^{(B)}_{Z=k|X_D=i} \times \hat{P}_{X_D=i}$$

for $i = 1, \ldots, I; \ j = 1, \ldots, J; \ K = 1, \ldots, K$;

In practice, $\hat{P}^{(A)}_{Y=j|X_D=i}$ is computed from $A; \ \hat{P}^{(B)}_{Z=k|X_D=i}$ is computed from data in $B$ while $P_{X_D=i}$ can be estimated indifferently from $A$ or $B$ (the data set are harmonized with respect to the $X_D$ distribution).

In StatMatch an estimate of the table $Y \times Z$ under the CIA is provided by the function `comb.samples`.

> # estimating c.netI vs. labour5 under the CI assumption
>          svy.C=NULL, y.lab="c.neti", z.lab="labour5",
>          form.x="c.age:sex-1")
> #
> addmargins(t(out$yz.CIA)) # table estimated under the CIA

24
When some auxiliary information is available, e.g. a third data source C, containing all the variables \((X_M, Y, Z)\) or just \((Y, Z)\), the Renssen’s approach permits to exploit it in estimating \(Y \times Z\). Two alternative methods are available: (a) incomplete two-way stratification; and (b) synthetic two-way stratification. In practice, both the methods estimate \(Y \times Z\) from \(C\) after some further calibration steps (for further details see Renssen, 1998). The function \texttt{comb.samples} implements both the methods. In practice, the synthetic two-way stratification (argument \texttt{estimation="synthetic"}) can be applied only when \(C\) contains all the variables of interest \((X_M, Y, Z)\); on the contrary, when the data source \(C\) observes just \(Y\) and \(Z\), only the incomplete two-way stratification method can be applied (argument \texttt{estimation="incomplete"}). In the following a simple example is reported based on the artificial EU-SILC data introduced in Section 2.1; here a relatively small sample \(C (n_C = 980)\) with all the variables of interest \((X_M, Y, Z)\) is considered.

```r
> data(samp.C, package="StatMatch")
> str(samp.C)
'data.frame': 980 obs. of 14 variables:
$ HH.P.id : chr "14873.01" "396.02" "8590.01" "9829.02" ... 
$ area5 : Factor w/ 5 levels "NE","NO","C",...: 3 4 1 3 3 3 2 1 3 ... 
$ urb : Factor w/ 3 levels "1","2","3": 3 1 3 2 2 1 2 2 ... 
$ hsize : int 3 2 4 4 3 3 2 2 1 4 ... 
$ hsize5 : Factor w/ 5 levels "1","2","3","4",...: 3 2 4 4 3 3 2 2 1 4 ... 
$ age : num 57 30 50 52 34 74 44 68 69 20 ... 
$ c.age : Factor w/ 5 levels "[16,34]","(34,44)",...: 4 1 3 3 1 5 2 5 5 1 ... 
$ sex : Factor w/ 2 levels "1","2": 2 2 1 2 1 2 2 1 1 ... 
$ marital : Factor w/ 3 levels "1","2","3": 2 2 1 2 1 2 2 1 1 ... 
$ edu7 : Factor w/ 7 levels "0","1","2","3",...: 5 5 4 3 5 1 6 4 4 3 ... 
$ labour5 : Factor w/ 5 levels "1","2","3","4",...: 1 5 2 1 2 5 5 4 5 ... 
$ n.income: num 21992 5500 12000 19655 14117 ... 
```
The incomplete two-way stratification method estimates the table \( Y \times Z \) from \( C \) by preserving the marginal distribution of \( Y \) and of \( Z \) estimated respectively from \( A \) and from \( B \) after the initial harmonization step; on the contrary, the joint distribution of the matching variables (which is the basis of the harmonization step) is not preserved.

\[
\begin{array}{cccccc}
(-\infty,0] & (0,10] & (10,15] & (15,20] & (20,25] & (25,35] [35,\infty] \text{ Sum} \\
1 & 7243.513 & 185219.341 & 381495.050 & 515181.965 & 283962.924 & \\
2 & 15874.055 & 72106.516 & 82623.354 & 58809.307 & 65135.801 & \\
3 & 155118.209 & 97829.755 & 12867.523 & 5343.608 & 6191.702 & \\
4 & 17683.292 & 339365.095 & 258388.148 & 206553.507 & 140799.992 & \\
5 & 787378.002 & 454339.908 & 180489.087 & 56064.617 & 4986.563 & \\
\text{Sum} & 983297.071 & 1148860.615 & 915863.161 & 841953.003 & 501076.980 & \\
\end{array}
\]

\[
\begin{array}{cccccc}
(-\infty,0] & (0,10] & (10,15] & (15,20] & (20,25] & (25,35] [35,\infty] \text{ Sum} \\
1 & 338163.812 & 96052.788 & 1807319.392 & & & \\
2 & 77292.219 & 104380.850 & 476222.101 & & & \\
3 & 17626.324 & 0.000 & 294977.120 & & & \\
4 & 59935.831 & 51817.497 & 1074543.361 & & & \\
5 & 0.000 & 1823.668 & 1485081.846 & & & \\
\text{Sum} & 493018.185 & 254074.803 & 5138143.820 & & & \\
\end{array}
\]
> #
> # marginal distributions of labour5
> m.cnetI.cB <- xtabs(out.hz$weights.B~labour5, data=samp.B)
> m.cnetI.cC <- xtabs(new.ww~labour5, data=samp.C)
> m.cnetI.cB-m.cnetI.cC

labour5

1 2 3 4 5
4.656613e-10 5.820766e-11 0.000000e+00 0.000000e+00 0.000000e+00

> # joint distribution of the matching variables
> tt.A <- xtabs(out.hz$weights.A~sex+c.age, data=samp.A)
> tt.B <- xtabs(out.hz$weights.B~sex+c.age, data=samp.B)
> tt.C <- xtabs(new.ww~sex+c.age, data=samp.C)
> c1 <- comp.prop(p1=tt.A, p2=tt.B, n1=nrow(samp.A), + n2=nrow(samp.B), ref=FALSE)
> c2 <- comp.prop(p1=tt.C, p2=tt.A, n1=nrow(samp.C), + n2=nrow(samp.A), ref=FALSE)
> c1$meas

      tvd overlap Bhatt  Hell
8.326673e-17 0.000000e+00 0.000000e+00 0.000000e+00

> c2$meas

      tvd overlap  Bhatt   Hell
0.07017944 0.92982056 0.99689740 0.05570102

As said before, the synthetic two-way stratification (argument estimation="synthetic")
requires that the auxiliary data source C contains the matching variables X_M and the
target variables Y and Z.

> # synthetic two-way estimation
+>
+
> #
> addmargins(t(out.synt$yz.est))

          (-Inf,0]  (0,10]   (10,15]  (15,20]  (20,25]
1  6413.645  185135.215  380521.561  512500.700  303097.057
2 10885.563  57412.300  87158.242  75001.590  68339.486
3 153869.170  98916.807  14426.512  8600.865  5661.756
4 16443.459  333130.110  275594.544  198336.224  116257.994

27
As in the case of incomplete two-way stratification, also the synthetic two-way stratification derives the table \( Y \times Z \) from \( C \) by preserving the marginal distribution of \( Y \) and of \( Z \) estimated respectively from \( A \) and from \( B \) after the initial harmonization step; on the contrary, the joint distribution of the matching variables (which is the basis of the harmonization step) is still not preserved.

It is worth noting that `comb.samples` can also be used for micro imputation. In particular, when the argument `micro` is set to `TRUE` the function returns also the two data frames \( Z.A \) and \( Y.B \). The first ones has the same rows as \( svy.A \) and the number of columns equals the number of categories of the \( Z \) variable (specified via `z.lab`). Each row provides the estimated probabilities for a unit of assuming a value in the various categories. The same happens for \( Y.B \) which presents the estimated probabilities of assuming a category of \( y.lab \) for each unit in \( B \). The probabilities are obtained as a by-product of the whole procedure which is based on the usage of the linear probability models (for major details see Renssen, 1998). The procedure corresponds to a regression imputation that when dealing with all categorical variables \( (X_D, Y, Z) \), provides a synthetic data set \( (A \) filled in with \( Z) \) which preserves the marginal distribution of the \( Z \) variable and the joint distribution \( X \times Z \). Unfortunately, linear probability models have some well known drawbacks and may provide estimated probabilities less than 0 or greater than 1. For this reason, such predictions should be used carefully.

```r
> # predicting prob of labour5 in A under the CI assumption
+                     svy.C=NULL, y.lab="c.neti", z.lab="labour5",
+                     form.x=~c.age:sex-1, micro=TRUE)
> head(out$Z.A)
  labour51 labour52 labour53 labour54
21384  0.005895738  0.009457258  0.0005925546  5.060136e-01
35973  0.014861567  0.049402931  0.0014012439  8.649132e-01
11774  0.606176690  0.257693834  0.0610535722  2.369977e-02
32127  0.014861567  0.049402931  0.0014012439  8.649132e-01
6301   0.439783594  0.094976579  0.1220299990  0.000000e+00
12990  0.334682265  0.030621139  0.1043395013  1.727712e-20
labour55
```
> `sum(out$Z.A<0)` # negative est. prob.

[1] 0

> `sum(out$Z.A>1)` # est. prob. >1

[1] 0

> # compare marginal distributions of Z
> `t.zA <- colSums(out$Z.A * out.hz$weights.A)`
> `t.zB <- xtabs(out.hz$weights.B ~ samp.B$labour5)`
> `c1 <- comp.prop(p1=t.zA, p2=t.zB, n1=nrow(samp.A), ref=TRUE)`
> `c1$meas`

\[
\begin{array}{cccc}
\text{tvd} & \text{overlap} & \text{Bhatt} & \text{Hell} \\
2.185752e-16 & 1.000000e+00 & 1.000000e+00 & 1.053671e-08
\end{array}
\]

D’orazio et al. (2012) suggest using a randomization mechanism to derive the predicted category starting from the estimated probabilities.

> # predicting categories of labour5 in A
> # randomized prediction with prob proportional to estimated prob.
> `ppsl <- function(x) sample(x=1:length(x), size=1, prob=x)`
> `pred.zA <- apply(out$Z.A, 1, ppsl)`
> `samp.A$labour5 <- factor(pred.zA, levels=1:nlevels(samp.B$labour5),
+ labels=as.character(levels(samp.B$labour5)), ordered=T)`
> # comparing marginal distributions of Z
> `t.zA <- xtabs(out.hz$weights.A ~ samp.A$labour5)`
> `c1 <- comp.prop(p1=t.zA, p2=t.zB, n1=nrow(samp.A), ref=TRUE)`
> `c1$meas`

\[
\begin{array}{cccc}
\text{tvd} & \text{overlap} & \text{Bhatt} & \text{Hell} \\
0.01281817 & 0.98718183 & 0.99985951 & 0.01185287
\end{array}
\]

> # comparing joint distributions of X vs. Z
> `t.zzA <- xtabs(out.hz$weights.A~c.age+sex+labour5, data=samp.A)`
> `t.zzB <- xtabs(out.hz$weights.B~c.age+sex+labour5, data=samp.B)`
> `out.comp <- comp.prop(p1=t.zzA, p2=t.zzB, n1=nrow(samp.A), ref=TRUE)`
> `out.comp$meas`
6 Exploring uncertainty due to the statistical matching framework

When the objective of SM consists in estimating a parameter (macro approach) it is possible to tackle SM in an alternative way consisting in the “exploration” of the uncertainty on the model chosen for \((X_M, Y, Z)\), due to the lack of knowledge typical of the basic SM framework (no auxiliary information is available). This approach does not end with a unique estimate of the unknown parameter characterizing the joint p.d.f. \((X_D, Y, Z)\); on the contrary it identifies an interval of plausible values for it. When dealing with categorical variables, the estimation of the intervals of plausible values for the probabilities in the table \(Y \times Z\) are provided by the Fréchet bounds:

\[
\max\{0; P_{Y=j} + P_{Z=k} - 1\} \leq P_{Y=j, Z=k} \leq \min\{P_{Y=j}; P_{Z=k}\}
\]

for \(j = 1, \ldots, J\) and \(k = 1, \ldots, K\), being \(J\) and \(K\) the categories of \(Y\) and \(Z\) respectively.

Let consider the matching variables \(X_M\), for sake of simplicity let assume that \(X_D\) is the variable obtained by the crossproduct of the chosen \(X_M\) variables; by conditioning on \(X_D\), it is possible to derive the following result (D’Orazio et al., 2006a):

\[
P_{j,k}^{(\text{low})} \leq P_{Y=j, Z=k} \leq P_{j,k}^{(\text{up})}
\]

with

\[
P_{j,k}^{(\text{low})} = \sum_i P_{X_D=i} \times \max\{0; P_{Y=j|X_D=i} + P_{Z=k|X_D=i} - 1\}
\]

\[
P_{j,k}^{(\text{up})} = \sum_i P_{X_D=i} \times \min\{P_{Y=j|X_D=i}; P_{Z=k|X_D=i}\}
\]

for \(j = 1, \ldots, J\) and \(k = 1, \ldots, K\). It is interesting to observe that the CIA estimate of \(P_{Y=j, Z=k}\) is always included in the interval identified by such bounds:

\[
P_{j,k}^{(\text{low})} \leq P_{Y=j, Z=k}^{(\text{CIA})} \leq P_{j,k}^{(\text{up})}
\]

In the SM basic framework, the probabilities \(P_{Y=j|X_D=i}\) are estimated from \(A\), the \(P_{Z=k|X_D=i}\) are estimated from \(B\), while the marginal distribution \(P_{X_D=i}\) can be estimated indifferently on \(A\) or on \(B\), assuming that both the samples, being representative samples of the same population, provide not significantly different estimates of \(P(X_M = i)\). If
this is not the case, before computing the bounds it would be preferable to harmonize the distribution of \(X_D\) in \(A\) and in \(B\) by using the function \texttt{harmonize.x}.

In \texttt{StatMatch} the Fréchet bounds for \(P_Y=j, Z=k\) \((j=1,\ldots, J\text{ and } k=1,\ldots, K)\), conditioned or not on \(X_D\), are provided by \texttt{Frechet.bounds.cat}.

```r
> # comparing joint distribution of the \(X_M\) variables in \(A\) and in \(B\)
> t.xA <- xtabs(ww~c.age+sex, data=samp.A)
> t.xB <- xtabs(ww~c.age+sex, data=samp.B)
> comp.prop(p1=t.xA, p2=t.xB, n1=nrow(samp.A), n2=nrow(samp.B), ref=FALSE)
```

```
$meas
   tvd overlap Bhatt  Hell
0.02600212 0.97399788 0.99931620 0.02614962

$chi.sq
      Pearson   df q0.05 delta.h0
11.3311924 9.0000000 16.9189776 0.6697327

$p.exp
  sex
c.age   1  2
[16,34] 0.11982616 0.11640939
(34,44] 0.10203271 0.09715433
(44,54] 0.09083271 0.08531810
(54,64] 0.06953352 0.07641245
(64,104] 0.10327752 0.13920738
```

```r
> # computing tables needed by \texttt{Frechet.bounds.cat}
> t.xy <- xtabs(ww~c.age+sex+c.neti, data=samp.A)
> t.xz <- xtabs(ww~c.age+sex+labour5, data=samp.B)
> out.fb <- Frechet.bounds.cat(tab.x=t.xA, tab.xy=t.xy, tab.xz=t.xz, +
       print.f="data.frame")
```

```
$bounds
   c.neti labour5 low.u  low.cx   CIA up.cx
1 (-Inf,0]   1   0 0.00000000 0.072955769 0.15583196
2  (0,10]    1   0 0.000000000 0.058667109 0.13291141
3  (10,15]   1   0 0.000000000 0.053322867 0.11844631
4  (15,20]   1   0 0.000000000 0.064228962 0.12824327
5  (20,25]   1   0 0.000000000 0.041285116 0.0870527
6  (25,35]   1   0 0.000000000 0.042007648 0.08373295
7   (35, Inf] 1   0 0.000000000 0.020391749 0.04384385
8 (-Inf,0]  2   0 0.000000000 0.013051237 0.04832337
```

31
9  (0,10]  2  0  0.000000000  0.014303784  0.06614969
10  (10,15]  2  0  0.000000000  0.014181961  0.07400038
11  (15,20]  2  0  0.000000000  0.019174832  0.09187918
12  (20,25]  2  0  0.000000000  0.012237075  0.07898611
13  (25,35]  2  0  0.000000000  0.013442244  0.08323003
14  (35, Inf]  2  0  0.000000000  0.006855021  0.04639340
15  (-Inf,0]  3  0  0.000000000  0.015199630  0.05208961
16  (0,10]  3  0  0.000000000  0.010322642  0.05764921
17  (10,15]  3  0  0.000000000  0.009021442  0.05764921
18  (15,20]  3  0  0.000000000  0.009317709  0.05293186
19  (20,25]  3  0  0.000000000  0.005606192  0.04279912
20  (25,35]  3  0  0.000000000  0.005683647  0.04157094
21  (35, Inf]  3  0  0.000000000  0.002497950  0.02785055
22  (-Inf,0]  4  0  0.000000000  0.014036390  0.03750664
23  (0,10]  4  0  0.011470404  0.061883870  0.11696439
24  (10,15]  4  0  0.013592029  0.048337106  0.08659406
25  (15,20]  4  0  0.011761008  0.036233678  0.06187780
26  (20,25]  4  0  0.000000000  0.016727802  0.03625866
27  (25,35]  4  0  0.000000000  0.017674490  0.03391989
28  (35, Inf]  4  0  0.000000000  0.010738718  0.02494229
29  (-Inf,0]  5  0  0.005369394  0.078535703  0.19377873
30  (0,10]  5  0  0.000000000  0.078348934  0.19120282
31  (10,15]  5  0  0.000000000  0.052672002  0.13862751
32  (15,20]  5  0  0.000000000  0.034301754  0.09507185
33  (20,25]  5  0  0.000000000  0.021651115  0.06957876
34  (25,35]  5  0  0.000000000  0.016857678  0.05624648
35  (35, Inf]  5  0  0.000000000  0.008242173  0.03521776

up.u
1  0.19377873
2  0.22352634
3  0.17753538
4  0.16325693
5  0.09751130
6  0.09566571
7  0.04872561
8  0.09243362
9  0.09243362
10  0.09243362
11  0.09243362
12  0.09243362
13  0.09243362
14  0.04872561
15  0.05730261
16  0.05730261
The final component of the output list provided by `Frechet.bounds.cat` summarizes the uncertainty by means of the average width of the unconditioned bounds and the average width of the bounds obtained by conditioning on $X_D$. Please note that it would be preferable to derive the uncertainty bounds after the harmonization of the joint distribution of the $X_D$ variables in the source data sets.

When dealing with continuous variables, if it is assumed that their joint distribution is multivariate normal, the uncertainty bounds for the correlation coefficient $\rho_{YZ}$ can be obtained by using the function `mixed.mtc` with argument `method="MS"`. The following example assumes multivariate normal distribution holding for joint distribution for age, gender (the matching variables), the log-transformed personal net income (log of "netIncome" which plays the role of $Y$) and the aggregated personal economic status (binary variable "work" which plays the role of $Z$).

```r
> # continuous variables
> samp.A$log.netI <- log(ifelse(samp.A$n.income>0, samp.A$n.income, 0) + 1)
> lab <- as.integer(samp.B$labour5)
> samp.B$work <- factor(ifelse(lab<3, 1, 2)) # binary variable working status
> X.mtc <- c("age", "sex")
> mix.3 <- mixed.mtc(data.rec=samp.A, data.don=samp.B, match.vars=X.mtc,
+ y.rec="log.netI", z.don="work",
+ method="MS")
```

$uncertainty

<table>
<thead>
<tr>
<th>av.u</th>
<th>av.cx</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1138008</td>
<td>0.0773067</td>
</tr>
</tbody>
</table>
The input value for rho.yz is admissible

When a single $X$ variable it is considered the bounds can be obtained explicitly by using formula in Section 1.

References


