Package ‘RcmdrMisc’

February 19, 2015

Version 1.0-2
Date 2014/09/04
Title R Commander Miscellaneous Functions
Depends R (>= 3.0.0), grDevices, utils, car, sandwich
Imports abind, Hmisc, MASS, e1071
ByteCompile yes
Description Various statistical, graphics, and data-management functions used by the Rcmdr package in the R Commander GUI for R.
License GPL (>= 2)
Author John Fox [aut, cre],
Robert Muenchen [ctb],
Dan Putler [ctb]
Maintainer John Fox <jfox@mcmaster.ca>
NeedsCompilation no
Repository CRAN
Date/Publication 2014-09-04 21:20:09

R topics documented:

assignCluster .. 2
bin.var ... 3
colPercents .. 4
Hist ... 5
indexplot .. 6
KMeans .. 7
lineplot ... 8
mergeRows ... 8
numSummary .. 9
partial.cor ... 11
plotDistr .. 12
Description

Correctly creates a cluster membership variable that can be attached to a dataframe when only a subset of the observations in that dataframe were used to create the clustering solution. NAs are assigned to the observations of the original dataframe not used in creating the clustering solution.

Usage

```
assignCluster(clusterData, origData, clusterVec)
```

Arguments

- `clusterData` The data matrix used in the clustering solution. The data matrix may have have only a subset of the observations contained in the original dataframe.
- `origData` The original dataframe from which the data used in the clustering solution were taken.
- `clusterVec` An integer variable containing the cluster membership assignments for the observations used in creating the clustering solution. This vector can be created using `cutree` for clustering solutions generated by `hclust` or the `cluster` component of a list object created by `kmeans` or `KMeans`.

Value

A factor (with integer labels) that indicate the cluster assignment for each observation, with an NA value given to observations not used in the clustering solution.

Author(s)

Dan Putler

See Also

`hclust`, `cutree`, `kmeans`, `KMeans`

Examples

```r
data(USArrests)
USArrkm3 <- KMeans(USArrests[USArrests$UrbanPop<66, ], centers=3)
assignCluster(USArrests[USArrests$UrbanPop<66, ], USArrests, USArrkm3$cluster)
```
bin.var

Description
Create a factor dissecting the range of a numeric variable into bins of equal width, (roughly) equal frequency, or at "natural" cut points. The *cut* function is used to create the factor.

Usage
```
bin.var(x, bins = 4, method = c("intervals", "proportions", "natural"),
       labels = FALSE)
```

Arguments
- **x**: numeric variable to be binned.
- **bins**: number of bins.
- **method**: one of "intervals" for equal-width bins; "proportions" for equal-count bins; "natural" for cut points between bins to be determined by a k-means clustering.
- **labels**: if FALSE, numeric labels will be used for the factor levels; if NULL, the cut points are used to define labels; otherwise a character vector of level names.

Value
A factor.

Author(s)
Dan Putler, slightly modified by John Fox <jfox@mcmaster.ca> with the original author's permission.

See Also
- `cut`, `kmeans`.

Examples
```
summary(bin.var(rnorm(100), method="prop", labels=letters[1:4]))
```
colPercents

Row, Column, and Total Percentage Tables

Description

Percentage a matrix or higher-dimensional array of frequency counts by rows, columns, or total frequency.

Usage

\[
\text{colPercents}(\text{tab}, \text{digits}=1) \\
\text{rowPercents}(\text{tab}, \text{digits}=1) \\
\text{totPercents}(\text{tab}, \text{digits}=1)
\]

Arguments

<table>
<thead>
<tr>
<th>tab</th>
<th>a matrix or higher-dimensional array of frequency counts.</th>
</tr>
</thead>
<tbody>
<tr>
<td>digits</td>
<td>number of places to the right of the decimal place for percentages.</td>
</tr>
</tbody>
</table>

Value

Returns an array of the same size and shape as \text{tab} percentaged by rows or columns, plus rows or columns of totals and counts, or by the table total.

Author(s)

John Fox <jfox@mcmaster.ca>

Examples

```r
if (require(car)){
  data(Mroz) # from car package
  cat("\n\n  column percents:\n")
  print(colPercents(xtabs(~ lfp + wc, data=Mroz)))
  cat("\n\n  row percents:\n")
  print(rowPercents(xtabs(~ hc + lfp, data=Mroz)))
  cat("\n\n  total percents:\n")
  print(totPercents(xtabs(~ hc + wc, data=Mroz)))
  cat("\n\n  three-way table, column percents:\n")
  print(colPercents(xtabs(~ lfp + wc + hc, data=Mroz)))
}
```
Hist

Plot a Histogram

Description
This function is a wrapper for the `hist` function in the base package, permitting percentage scaling of the vertical axis in addition to frequency and density scaling.

Usage

```r
Hist(x, groups, scale=c("frequency", "percent", "density"), xlab=deparse(substitute(x)), ylab=scale, main="", breaks = "Sturges", ...)
```

Arguments

- `x` a vector of values for which a histogram is to be plotted.
- `groups` a factor to create histograms by group with common horizontal and vertical scales.
- `scale` the scaling of the vertical axis: "frequency" (the default), "percent", or "density".
- `xlab` x-axis label, defaults to name of variable.
- `ylab` y-axis label, defaults to value of `scale`.
- `main` main title for graph, defaults to empty.
- `breaks` see the breaks argument for `hist`.
- `...` arguments to be passed to `hist`.

Value
This function returns NULL, and is called for its side effect — plotting a histogram.

Author(s)
John Fox <jfox@mcmaster.ca>

See Also
`hist`

Examples

```r
data(Prestige, package="car")
Hist(Prestige$income, scale="percent")
with(Prestige, Hist(income, groups=type))
```
Index Plots

Description

Index plot with point identification.

Usage

\texttt{indexplot(x, labels = seq_along(x), id.method = "y", type = "h", id.n = 0, ylab, ...)}

Arguments

- \texttt{x}: numeric variable.
- \texttt{labels}: point labels.
- \texttt{id.method}: method for identifying points; see \texttt{showLabels}.
- \texttt{type}: to be passed to \texttt{plot}.
- \texttt{id.n}: number of points to identify; see \texttt{showLabels}.
- \texttt{ylab}: label for vertical axis; if missing, will be constructed from \texttt{x}.
- \texttt{...}: to be passed to \texttt{plot}.

Value

Returns labelled indices of identified points or (invisibly) \texttt{NULL} if no points are identified.

Author(s)

John Fox <jfox@mcmaster.ca>

See Also

\texttt{showLabels, plot.default}

Examples

\begin{verbatim}
if (require("car")){
 data(Prestige)
 with(Prestige, indexplot(income, id.n=2, labels=rownames(Prestige)))
}
\end{verbatim}
KMeans

KMeans Clustering Using Multiple Random Seeds

Description

Finds a number of k-means clustering solutions using R’s kmeans function, and selects as the final solution the one that has the minimum total within-cluster sum of squared distances.

Usage

KMeans(x, centers, iter.max=10, num.seeds=10)

Arguments

x A numeric matrix of data, or an object that can be coerced to such a matrix (such as a numeric vector or a dataframe with all numeric columns).

centers The number of clusters in the solution.

iter.max The maximum number of iterations allowed.

num.seeds The number of different starting random seeds to use. Each random seed results in a different k-means solution.

Value

A list with components:

cluster A vector of integers indicating the cluster to which each point is allocated.

centers A matrix of cluster centres (centroids).

withinss The within-cluster sum of squares for each cluster.

tot.withinss The within-cluster sum of squares summed across clusters.

betweenss The between-cluster sum of squared distances.

size The number of points in each cluster.

Author(s)

Dan Putler

See Also

kmeans

Examples

data(USArrests)
KMeans(USArrests, centers=3, iter.max=5, num.seeds=5)
lineplot

Plot a one or more lines.

Description

This function plots lines for one or more variables against another variable — typically time series against time.

Usage

`lineplot(x, ..., legend)`

Arguments

- `x` variable giving horizontal coordinates.
- `...` one or more variables giving vertical coordinates.
- `legend` plot legend? Default is `TRUE` if there is more than one variable to plot and `FALSE` if there is just one.

Value

Produces a plot; returns `NULL` invisibly.

Author(s)

John Fox <jfox@mcmaster.ca>

Examples

```r
if (require("car")){
  data(Bfox)
  Bfox$time <- as.numeric(rownames(Bfox))
  with(Bfox, lineplot(time, menwage, womwage))
}
```

mergeRows

Function to Merge Rows of Two Data Frames.

Description

This function merges two data frames by combining their rows.
numSummary

Usage
mergeRows(X, Y, common.only = FALSE, ...)

S3 method for class 'data.frame'
mergeRows(X, Y, common.only = FALSE, ...)

Arguments
- **X**: First data frame.
- **Y**: Second data frame.
- **common.only**: If TRUE, only variables (columns) common to the two data frame are included in the merged data set; the default is FALSE.
- **...**: Not used.

Value
A data frame containing the rows from both input data frames.

Author(s)
John Fox

See Also
For column merges and more complex merges, see *merge*.

Examples
if (require(car)){
data(Duncan)
D1 <- Duncan[1:20,]
D2 <- Duncan[21:45,]
D <- mergeRows(D1, D2)
print(D)
dim(D)
}

numSummary

Summary Statistics for Numeric Variables

Description
numSummary creates neatly formatted tables of means, standard deviations, coefficients of variation, skewness, kurtosis, and quantiles of numeric variables.
Usage

```r
numSummary(data, 
  statistics=c("mean", "sd", "se(mean)", "IQR", 
    "quantiles", "cv", "skewness", "kurtosis"), 
  type=c("2", "1", "3"), 
  quantiles=c(0, .25, .5, .75, 1), groups)
```

S3 method for class 'numSummary'
print(x, ...)

Arguments

data a numeric vector, matrix, or data frame.

statistics any of "mean", "sd", "se(mean)", "quantiles", "cv" (coefficient of variation — sd/mean), "skewness", or "kurtosis", defaulting to c("mean", "sd", "quantiles", "IQR").

typle definition to use in computing skewness and kurtosis; see the `skewness` and `kurtosis` functions in the `e1071` package. The default is "2".

quantiles quantiles to report; default is c(0, 0.25, 0.5, 0.75, 1).

 groups optional variable, typically a factor, to be used to partition the data.

x object of class "numSummary" to print.

... arguments to pass down from the print method.

Value

`numSummary` returns an object of class "numSummary" containing the table of statistics to be reported along with information on missing data, if there are any.

Author(s)

John Fox <jfox@mcmaster.ca>

See Also

`mean`, `sd`, `quantile`, `skewness`, `kurtosis`.

Examples

```r
if (require("car")){
  data(Prestige)
  Prestige[1, "income"] <- NA
  print(numSummary(Prestige[,c("income", "education")],
    statistics=c("mean", "sd", "quantiles", "cv", "skewness", "kurtosis")))
  print(numSummary(Prestige[,c("income", "education")], groups=Prestige$ytype))
  remove(Prestige)
}
```
Partial Correlations

Description

Computes a matrix of partial correlations between each pair of variables controlling for the others.

Usage

`partial.cor(x, tests=FALSE, use=c("complete.obs", "pairwise.complete.obs"))`

Arguments

- `x` data matrix.
- `tests` show two-sided p-value and p-value adjusted for multiple testing by Holm’s method for each partial correlation?
- `use` observations to use to compute partial correlations, default is "complete.obs".

Value

Returns the matrix of partial correlations, optionally with adjusted and unadjusted p-values.

Author(s)

John Fox <jfox@mcmaster.ca>

See Also

- `cor`

Examples

```r
data(DavisThin, package="car")
partial.cor(DavisThin)
partial.cor(DavisThin, tests=TRUE)
```
plotDistr

Plot a probability density, mass, or distribution function.

Description

This function plots a probability density, mass, or distribution function, adapting the form of the plot as appropriate.

Usage

plotDistr(x, p, discrete=FALSE, cdf=FALSE, ...)

Arguments

- **x**: horizontal coordinates
- **p**: vertical coordinates
- **discrete**: is the random variable discrete?
- **cdf**: is this a cumulative distribution (as opposed to mass) function?
- **...**: arguments to be passed to plot.

Value

Produces a plot; returns NULL invisibly.

Author(s)

John Fox <jfox@mcmaster.ca>

Examples

```r
x <- seq(-4, 4, length=100)
plotDistr(x, dnorm(x), xlab="Z", ylab="p(z)", main="Standard Normal Density")

x <- 0:10
plotDistr(x, pbinom(x, 10, 0.5), xlab="successes",
          discrete=TRUE, cdf=TRUE,
          main="Binomial Distribution Function, p=0.5, n=10")
```
plotMeans

Plot Means for One or Two-Way Layout

Description

Plots cell means for a numeric variable in each category of a factor or in each combination of categories of two factors, optionally along with error bars based on cell standard errors or standard deviations.

Usage

plotMeans(response, factor1, factor2,
error.bars = c("se", "sd", "conf.int", "none"), level=0.95,
xlab = deparse(substitute(factor1)),
ylab = paste("mean of", deparse(substitute(response))),
legend.lab = deparse(substitute(factor2)), main = "Plot of Means",
pch = 1:n.levs.2, lty = 1:n.levs.2, col = palette(), ...)

Arguments

response Numeric variable for which means are to be computed.
factor1 Factor defining horizontal axis of the plot.
factor2 If present, factor defining profiles of means
error.bars If "se", the default, error bars around means give plus or minus one standard error of the mean; if "sd", error bars give plus or minus one standard deviation; if "conf.int", error bars give a confidence interval around each mean; if "none", error bars are suppressed.
level level of confidence for confidence intervals; default is .95
xlab Label for horizontal axis.
ylab Label for vertical axis.
legend.lab Label for legend.
main Label for the graph.
pch Plotting characters for profiles of means.
lty Line types for profiles of means.
col Colours for profiles of means
...
arguments to be passed to plot.

Value

The function invisibly returns NULL.

Author(s)

John Fox <jfox@mcmaster.ca>
rcorr.adjust

Description

This function uses the `rcorr` function in the `Hmisc` package to compute matrices of Pearson or Spearman correlations along with the pairwise p-values among the correlations. The p-values are corrected for multiple inference using Holm’s method (see `p.adjust`). Observations are filtered for missing data, and only complete observations are used.

Usage

```r
rcorr.adjust(x, type = c("pearson", "spearman"), use=c("complete.obs", "pairwise.complete.obs"))
```

Arguments

- `x`: a numeric matrix or data frame, or an object of class "rcorr.adjust" to be printed.
- `type`: "pearson" or "spearman", depending upon the type of correlations desired; the default is "pearson".
- `use`: how to handle missing data: "complete.obs", the default, use only complete cases; "pairwise.complete.obs", use all cases with valid data for each pair.
- `...`: not used.

Value

Returns an object of class "rcorr.adjust", which is normally just printed.

Author(s)

John Fox, adapting code from Robert A. Muenchen.
reliability

See Also

rcorr.p.adjust.

Examples

```r
if (require(car)){
  data(Mroz)
  rcorr.adjust(Mroz[,c("k5", "k618", "age", "lwg", "inc")])
  rcorr.adjust(Mroz[,c("k5", "k618", "age", "lwg", "inc")], type="spearman")
}
```

reliability Reliability of a Composite Scale

Description

Calculates Cronbach’s alpha and standardized alpha (lower bounds on reliability) for a composite (summated-rating) scale. Standardized alpha is for the sum of the standardized items. In addition, the function calculates alpha and standardized alpha for the scale with each item deleted in turn, and computes the correlation between each item and the sum of the other items.

Usage

```r
reliability(S)
```

S3 method for class 'reliability'
```r
print(x, digits=4, ...)
```

Arguments

- `S` the covariance matrix of the items; normally, there should be at least 3 items and certainly no fewer than 2.
- `x` reliability object to be printed.
- `digits` number of decimal places.
- `...` not used: for compatibility with the print generic.

Value

an object of class reliability, which normally would be printed.

Author(s)

John Fox <jfox@mcmaster.ca>

References

See Also
cov

Examples

```r
if (require(car)){
  data(DavisThin)
  reliability(cov(DavisThin))
}
```

stepwise
Stepwise Model Selection

Description

This function is a front end to the `stepAIC` function in the MASS package.

Usage

```r
stepwise(mod, 
  direction = c("backward/forward", "forward/backward", "backward", "forward"),
  criterion = c("BIC", "AIC"), ...)
```

Arguments

- `mod`
 a model object of a class that can be handled by `stepAIC`.
- `direction`
 if "backward/forward" (the default), selection starts with the full model and eliminates predictors one at a time, at each step considering whether the criterion will be improved by adding back in a variable removed at a previous step; if "forward/backwards", selection starts with a model including only a constant, and adds predictors one at a time, at each step considering whether the criterion will be improved by removing a previously added variable; "backwards" and "forward" are similar without the reconsideration at each step.
- `criterion`
 for selection. Either "BIC" (the default) or "AIC". Note that `stepAIC` labels the criterion in the output as "AIC" regardless of which criterion is employed.
- `...`
 arguments to be passed to `stepAIC`.

Value

The model selected by `stepAIC`.

Author(s)

John Fox <jfox@mcmaster.ca>
summarySandwich

References

See Also

stepAIC

Examples

adapted from ?stepAIC in MASS
if (require(MASS)){
data(birthwt)
bwt <- with(birthwt, {
 race <- factor(race, labels = c("white", "black", "other"))
 ptd <- factor(ptl > 0)
 ftv <- factor(ftv)
 levels(ftv)[c(1,2)] <- "2x"
data.frame(low = factor(low), age, lwt, race, smoke = (smoke > 0),
 ptd, ht = (ht > 0), ui = (ui > 0), ftv)
})
birthwt.glm <- glm(low ~ ., family = binomial, data = bwt)
print(stepwise(birthwt.glm, trace = FALSE))
print(stepwise(birthwt.glm, direction="forward/backward"))
}

summarySandwich

Linear Model Summary with Sandwich Standard Errors

Description

summarySandwich creates a summary of a "lm" object similar to the standard one, with sandwich estimates of the coefficient standard errors in the place of the usual OLS standard errors, also modifying as a consequence the reported t-tests and p-values for the coefficients. Standard errors may be computed from a heteroscedasticity-consistent ("HC") covariance matrix for the coefficients (of several varieties), or from a heteroscedasticity-and-autocorrelation-consistent ("HAC") covariance matrix.

Usage

summarySandwich(model, ...)

S3 method for class 'lm'
summarySandwich(model,
 type=c("hc3", "hc0", "hc1", "hc2", "hc4", "hac"), ...)
Arguments

- `model`: a linear-model object.
- `type`: type of sandwich standard errors to be computed; see `hccm` in the `car` package, and `vcovHAC` in the `sandwich` package, for details.
- `...`: arguments to be passed to `hccm` or `vcovHAC`.

Value

An object of class "summary.lm", with sandwich standard errors substituted for the usual OLS standard errors; the omnibus F-test is similarly adjusted.

Author(s)

John Fox <jfox@mcmaster.ca>

See Also

`hccm`, `vcovHAC`.

Examples

```r
mod <- lm(prestige ~ income + education + type, data=Prestige)
summary(mod)
summarySandwich(mod)
```
Index

*Topic **hplot**
 Hist, 5
 indexplot, 6
 lineplot, 8
 plotDistr, 12
 plotMeans, 13

*Topic **htest**
 rcorr.adjust, 14

*Topic **manip**
 bin.var, 3
 mergeRows, 8

*Topic **misc**
 assignCluster, 2
 colPercent, 4
 KMeans, 7
 numSummary, 9
 partial.cor, 11
 reliability, 15
 summarySandwich, 17

*Topic **models**
 stepwise, 16

assignCluster, 2
bin.var, 3
colPercent, 4
cor, 11
cov, 16
cut, 3
cutree, 2
hccm, 18
hclust, 2
Hist, 5
hist, 5
indexplot, 6
interaction.plot, 14
KMeans, 2, 7

kmeans, 2, 3, 7
kurtosis, 10
lineplot, 8
mean, 10
merge, 9
mergeRows, 8
numSummary, 9
p.adjust, 14, 15
partial.cor, 11
plot, 6
plot.default, 6
plotDistr, 12
plotMeans, 13
print.numSummary(numSummary), 9
print.rcorr.adjust(rcorr.adjust), 14
print.reliability(reliability), 15
quantile, 10
rcorr, 14, 15
rcorr.adjust, 14
reliability, 15
rowPercent(colPercent), 4
sd, 10
showLabels, 6
skewness, 10
stepAIC, 16, 17
stepwise, 16
summarySandwich, 17
totPercent(colPercent), 4
vcovHAC, 18