Package ‘RECA’

February 19, 2015

Type Package

Title Relevant Component Analysis for Supervised Distance Metric Learning

Version 1.1

Date 2014-12-16

Author Nan Xiao <road2stat@gmail.com>

Maintainer Nan Xiao <road2stat@gmail.com>

Description Relevant Component Analysis (RCA) tries to find a linear transformation of the feature space such that the effect of irrelevant variability is reduced in the transformed space.

License GPL (>= 2)

URL https://github.com/road2stat/RECA

BugReports https://github.com/road2stat/RECA/issues

Suggests MASS

NeedsCompilation no

Repository CRAN

Date/Publication 2014-12-16 00:50:18

R topics documented:

RECA-package .. 2
rca ... 2

Index 6
The RECA package performs Relevant Component Analysis (RCA).

Package: RECA
Type: Package
Version: 1.1
License: GPL (>= 2)

Bug reports and feature requests could be sent to https://github.com/roadRstat/RECA/issues.

Nan Xiao <<road2stat@gmail.com>>

rca performs a relevant component analysis (RCA) for the given data. It takes a data set and a set of positive constraints as arguments and returns a linear transformation of the data space into better representation, alternatively, a Mahalanobis metric over the data space.

rca(x, chunks, useD = NULL)

x
n * d matrix or data frame of original data.

chunks
a vector of size N describing the chunklets: -1 in the i-th place says that point i does not belong to any chunklet; integer j in place i says that point i belongs to chunklet j; The chunklets indexes should be 1:number-of-chunklets.
optional. When not given, RCA is done in the original dimension and \(B \) is full rank. When \(\text{useD} \) is given, RCA is preceded by constraints based LDA which reduces the dimension to \(\text{useD} \). \(B \) in this case is of rank \(\text{useD} \).

Details

The new representation is known to be optimal in an information theoretic sense under a constraint of keeping equivalent data points close to each other.

The three returned argument are just different forms of the same output. If one is interested in a Mahalanobis metric over the original data space, the first argument is all she/he needs. If a transformation into another space (where one can use the Euclidean metric) is preferred, the second returned argument is sufficient. Using \(A \) and \(B \) is equivalent in the following sense:

\[
\text{if } y_1 = A \ast x_1, y_2 = A \ast y_2 \text{ then}
\]

\[
(x_2 - x_1)^T \ast B \ast (x_2 - x_1) = (y_2 - y_1)^T \ast (y_2 - y_1)
\]

Value

A list of the RCA results:

- \(\text{B} \): The RCA suggested Mahalanobis matrix. Distances between data points \(x_1, x_2 \) should be computed by \((x_2 - x_1)^T \ast B \ast (x_2 - x_1)\)
- \(\text{RCA} \): The RCA suggested transformation of the data. The data should be transformed by \(\text{RCA} \ast \text{data} \)
- \(\text{newX} \): The data after the RCA transformation. \(\text{newX} = \text{data} \ast \text{RCA} \)

Note

Note that any different sets of instances (chunklets), e.g. \{1, 3, 7\} and \{4, 6\}, might belong to the same class and might belong to different classes.

Author(s)

Nan Xiao <http://r2s.name>

References

Examples

```r
set.seed(42)
require(MASS)  # generate synthetic Gaussian data
k = 100L       # sample size of each class
n = 3L         # specify how many classes
N = k * n      # total sample size
x1 = mvrnorm(k, mu = c(-8, 6), matrix(c(15, 1, 2, 10), ncol = 2))
```
x2 = mvrnorm(k, mu = c(0, 0), matrix(c(15, 0, 2, 10), ncol = 2))
x3 = mvrnorm(k, mu = c(8, -6), matrix(c(15, 1, 2, 10), ncol = 2))
x = as.data.frame(rbind(x1, x2, x3)) # predictor
y = gl(n, k) # response

The fully labeled data set with 3 classes
plot(x[, 1L], x[, 2L], bg = c("#E41A1C", "#377EB8", "#4DAF4A"[y],
 pch = rep(c(22, 21, 25), each = k))
Sys.sleep(2)

Same data unlabeled; clearly the class structure is less evident
plot(x[, 1L], x[, 2L])
Sys.sleep(2)

Manually generating synthetic chunklets
chunk1 = sample(1L:100L, 3L)
chunk2 = sample(1L:100L, 3L)
chunk3 = sample(1L:100L, 3L)
chunk4 = sample(1L:100L, 3L)
chunk5 = sample(1L:100L, 3L)
chunk6 = sample(1L:100L, 3L)
chunk7 = sample(101L:200L, 3L)
chunk8 = sample(101L:200L, 3L)
chunk9 = sample(101L:200L, 3L)
chunk10 = sample(101L:200L, 3L)
chunk11 = sample(101L:200L, 3L)
chunk12 = sample(101L:200L, 3L)
chunk13 = sample(101L:200L, 3L)
chunk14 = sample(101L:200L, 3L)
chunk15 = sample(201L:300L, 3L)
chunk16 = sample(201L:300L, 3L)
chunk17 = sample(201L:300L, 3L)
chunk18 = sample(201L:300L, 3L)
chunk19 = sample(201L:300L, 3L)
chunk20 = sample(201L:300L, 3L)
chks = x[c(chunk1, chunk2, chunk3, chunk4, chunk5,
 chunk6, chunk7, chunk8, chunk9, chunk10,
 chunk11, chunk12, chunk13, chunk14, chunk15,
 chunk16, chunk17, chunk18, chunk19, chunk20),]
chunks = list(chunk1, chunk2, chunk3, chunk4, chunk5,
 chunk6, chunk7, chunk8, chunk9, chunk10,
 chunk11, chunk12, chunk13, chunk14, chunk15,
 chunk16, chunk17, chunk18, chunk19, chunk20)

Make 'chunklet' vector to feed the chunks argument
chunkvec = rep(-1L, nrow(x))
for (i in 1L:length(chunks)) {
 for (j in 1L:length(chunks[[i]])) {
 chunkvec[chunks[[i]][j]] = i
 }
}

The chunklets provided to the RCA algorithm
plot(chks[, 1L], chks[, 2L], col = rep(1L:20L, each = 3L),
 pch = rep(0L:19L, each = 3L))
Sys.sleep(2)

The RCA suggested transformation of the data
rca(x, chunksvec)$RCA

The RCA suggested Mahalanobis matrix
rca(x, chunksvec)$B

Whitening transformation applied to the chunklets
chkTransformed = as.matrix(chks) %*% rca(x, chunksvec)$RCA
plot(chkTransformed[, 1L], chkTransformed[, 2L],
 col = rep(1L:20L, each = 3L),
 pch = rep(0L:19L, each = 3L))
Sys.sleep(2)

The origin data after applying the RCA transformation
xnew = rca(x, chunksvec)$newX
plot(xnew[, 1L], xnew[, 2L],
 bg = c("#E41A1C", "#377EB8", "#4DAF4A")%gl(n, k),
 pch = c(rep(22, k), rep(21, k), rep(25, k)))
Index

rca, 2
RECA-package, 2