Package ‘PsumtSim’

February 19, 2015

Version 0.4
Date 2012-08-26
Title Simulations of grouped responses relative to baseline.
Author Peter N. Steinmetz <peternsteinmetz@steinmetz.org>
Maintainer Peter N. Steinmetz <peternsteinmetz@steinmetz.org>
Description Functions to simulate Poisson or Normally distributed responses relative to a baseline and compute achieved significance level and powers for tests on the simulated responses.
License GPL (>= 3)
Depends EffectsRelBaseline, boot
NeedsCompilation no
Repository CRAN
Date/Publication 2013-10-01 07:42:26

R topics documented:

PsumtSim-package .. 2
calcNumRejects ... 3
catEffectBootAdaptor ... 4
compExclusionFraction .. 5
compPowerCatSelectivity .. 6
compPowerGeneralRespDetection 8
compPowerRespDetection .. 10
compRejectionFraction ... 12
simCatResp ... 14
simNormCatResp .. 15
testCatEffectBoot ... 16

Index 18
Description

Functions to simulate Poisson distributed responses relative to a baseline and compute achieved significance level and powers for tests on the simulated responses. These functions were used to perform the calculations in the paper by Steinmetz & Thorp (2013).

Details

Package: PsumtSim
Version: 0.4
Date: 2012-08-26
License: GPL version 3 or newer
Built: R 2.13.0; 2012-02-03 22:41:44 UTC; unix

Index:
calcNumRejects Calculate number of cases rejected in grouped Poisson responses.
catEffectBootAdaptor Adaptor to use a statistic calculating function with boot functions.
compExclusionFraction Computes fraction of simulated cells, with Poisson responses to background and varying rates to different categories, which will have an effect of category but be excluded by pre-testing.
compPowerCatSelectivity Compute number of simulated neurons with a significant effect of category using a bootstrapped F-ratio test.
compPowerGeneralRespDetection Perform repeated simulations of grouped responses, where all groups differ from baseline and determine number significant.
compPowerRespDetection Perform repeated simulations of grouped responses, where some groups differ from baseline and determine number significant.
compRejectionFraction Compute rejection fraction for sequential tests.
simCatResp Simulate grouped Poisson responses.
simNormCatResp Simulate grouped responses which are Normally distributed.
testCatEffectBoot Test for an effect of category using bootstrapping.

This package provides a set of functions for simulating grouped responses and testing them for significant deviations from baseline. This is primarily of use for computing power of different testing methods.

The highest level functions are \texttt{compPowerGeneralRespDetection} and \texttt{compPowerRespDetection} which will perform repeated simulation and testing, determining the number of simulations which
produce significant results.

The example for the `compPowerRespDetection` shows code to generate the data in figure 4 of Steinmetz & Thorp 2013 and the example for `compPowerCatSelectivity` shows code to generate figure 5.

Author(s)

Peter N. Steinmetz <PeterNSteinmetz@steinmetz.org>, Christopher Thorp <thorp@spacia.org>

Maintainer: Peter N. Steinmetz <PeterNSteinmetz@steinmetz.org>

References

See Also

`effectsRelBaseline`, `boot`

calcNumRejects

Calculate number of cases rejected for repeated simulation of Poisson background and responses grouped into categories.

Description

Calculate number of cases rejected for repeated simulation of Poisson background and responses grouped into categories.

Usage

`calcNumRejects(bkg, resps, numRespsPerCat, numSims, calcPValFnc, sigLevel = 0.05, ...)`

Arguments

`bkg`
Mean firing rate during a background interval, unrelated to stimulus presentation.

`resps`
Mean firing rates during a response period, one for each category.

`numRespsPerCat`
Number of repetitions (presentation of stimuli) in each category.

`numSims`
Number of simulation to run.

`calcPValFnc`
Function to be called with simulation output from `simCatResp` to calculate the achieved significance level, or p-value.

`sigLevel`
Significance level to use when determining if test is significant. Default is 0.05.

`...`
Other arguments to pass to `calcPValFnc`
Value

Number of simulations which were detected as significant, out of numSims

Author(s)

Peter N. Steinmetz <PeterNSteinmetz@steinmetz.org>

See Also

compPowerRespDetection, compPowerGeneralRespDetection, simCatResp

Examples

Calculate number of cases which will be detected as having an effect of
category when there are 4 categories with 2 having different responses and
when use a standard F test to detect the category effect.
pvalFnc<-function(df){anova(glm(resp~category, data=df), test='F')$Pr(>F)[2]}
calcNumRejects(1, c(1, 1.5, 2, 1), 6, 100, pvalFnc)

catEffectBootAdaptor Adaptor for testing category effects in simulations using the boot package and function.

Description

Adaptor for testing category effects in simulations using the boot package and function.

Usage

catEffectBootAdaptor(df, index, testFnc = sumSqCat, useResp = TRUE, ...)

Arguments

df data frame structured as that returned by simCatResp, with category, bkg, resp columns.
index index for rearrangement of data as provided by boot function
testFnc function to calculate test statistic based its first argument, using the category labels in the second argument, and passed the other arguments (...) given to this adaptor function.
useResp true if the statistic should be calculated for the rearranged resp column of the dataframe, otherwise false to use the bkg column.
... other arguments to pass to the testFnc

Value

value of the test statistic
compExclusionFraction

Author(s)

Peter N. Steinmetz <PeterNSteinmetz@steinmetz.org>

See Also

boot

Examples

Simulate 4 categories of responses and then compute the number of times
there would be a significant effect of a change in the categories relative
to background using the CBT. This would form a rough estimate of the power
of the CBT to detect such changes.
library(boot)
library(EffectsRelBaseline)
simCatResp(1,c(1,1.5,2,1),6)->sim3
boot(sim3,catEffectBootAdaptor,100,backMean=mean(c(1,1.5,2,1)))->boot3
sum(boot3$t>0)boot3$t)

compExclusionFraction Compute fraction of cells with category selective response which are
excluded by pre-testing.

Description

Computes fraction of simulated cells, with Poisson responses to background and varying rates to
different categories, which will have an effect of category but be excluded by pre-testing.

Usage

compExclusionFraction(bkg, resps, numTrialsPerCat, pretestP, anovaP, showProgress = FALSE,
umCells = 1000)

Arguments

bkg Mean firing rate during a background interval, unrelated to stimulus presenta-
 tion.
resps Mean firing rates during a response period, one for each category.
numTrialsPerCat Number of repetitions (presentation of stimuli) in each category.
pretestP Significance level applied in pre-tests for effect of each category.
anovaP Significance level applied in ANOVA for effect of category.
showProgress TRUE if should list cell number as calculating. Default is FALSE.
numCells Number of cells to simulate. Default is 1000.
Value

exclusionFrac Fraction of cells which were not rejected by the first t-test; thus fraction of those ignored for the second test.

catSelectiveFrac Fraction of all cells determined to have an effect of category on responses.

catSelExclFrac Fraction of cells with a significant response to category which are excluded because they were not rejected by the first t-test.

Note

The t-test which is performed for pre-selection is two-sided.

Author(s)

Peter N. Steinmetz <PeterNSteinmetz@steinmetz.org>

References

Examples

This set of rates and alphas will exclude approximately 62% of neurons with # an effect of category on firing rates.
compExclusionFraction(10,c(10,9.5,10,5),5,
pretestP=0.01,anovaP=0.05,showProgress=TRUE)

compPowerCatSelectivity

Compute number of simulated neurons with a significant effect of category using a bootstrapped F-ratio test.

Description

Compute number of simulated neurons with a significant effect of category using a bootstrapped F-ratio test.

Usage

compPowerCatSelectivity(respRates, normDistribution = FALSE, showProgress = FALSE, numTrialsPerCat = 15, numBootIters = 1000, numRuns = 1000, alpha = 0.05)
compPowerCatSelectivity

Arguments

- **respRates** Vector of rates of responses in each category to be simulated.
- **normDistribution** TRUE if normally distributed response and background counts should be used, otherwise Poisson distributed counts are used. Default is FALSE.
- **showProgress** TRUE if run count should be printed. Default is FALSE.
- **numTrialsPerCat** Number of trials of responses and backgrounds for each category. Default is 15.
- **numBootIters** Number of boot iterations, passed as `R` argument to `boot` function. Default is 1000.
- **numRuns** Number of simulations to perform followed by bootstrap testing. Default is 1000.
- **alpha** Significance level, alpha, to use in counting if simulated results are significant. Default is 0.05.

Value

Number of trials, out of `numRuns` which were detected as significant in the bootstrap testing.

Author(s)

Peter N. Steinmetz <PeterNSteinmetz@steinmetz.org>

References

Examples

```r
## Not run:
#
# Compute power of the F-ratio test for category selectivity over
# a range of plausible simulation parameters, placing results
# in a dataframe. This computes values a subset of which were used to
# generate figure 5 of Steinmetz & Thorp, 2013.
#
if (exists('res', inherits=FALSE)) rm('res')

numRuns<-1000

for (numCats in c(5,10,20,30)) {
  for (anovaP in c(0.01,0.05)) {
    for (meanRate in seq(0.5,10,by=0.5)) {
      for (fracChange in c(0.1,0.25,0.5,1)) {
        minRate<-meanRate*(1-fracChange)
        maxRate<-meanRate*(1+fracChange)
```
```
respLevels<-seq(minRate,maxRate,length.out=numCats)

print(paste(numCats,anovaP,meanRate,fracChange))

numSig<-compPowerCatSelectivity(respLevels,
    alpha=anovaP, numRuns=numRuns,
    showProgress=TRUE)

df1<-data.frame(numCats=numCats,
    fracChange=fracChange, anovaP=anovaP, meanRate=meanRate,
    frac=numSig/numRuns)

if (!exists('res',inherits=FALSE)) res<-df1
else res<-rbind(res,df1)
}
}

## End(Not run)

#  
# Example of smaller simulation corresponding to circle at 0.5 fractional 
# change in figure 5A of Steinmetz & Thorp, 2013. 
#  
# numRuns<-5 
# numCats<-30 
# anovaP<-0.05 
# meanRate<-0.5 
# fracChange<-0.5 
# minRate<-meanRate*(1-fracChange) 
# maxRate<-meanRate*(1+fracChange) 
# respLevels<-seq(minRate,maxRate,length.out=numCats)

print(paste(numCats,anovaP,meanRate,fracChange))

numSig<-compPowerCatSelectivity(respLevels,
    alpha=anovaP, numRuns=numRuns,
    showProgress=TRUE)

df1<-data.frame(numCats=numCats,
    fracChange=fracChange, anovaP=anovaP, meanRate=meanRate,
    frac=numSig/numRuns)
```
Description

Compute power to detect responses differing from background in a simulation of responses to a number of categories of stimuli, all of which differ from the background level of firing.

Usage

```r
compPowerGeneralRespDetection(bkgLevel, generalRespLevel, respLevel, numCats,
numCatsWithResp, normDistribution = FALSE, showProgress = FALSE, numTrialsPerCat = 15,
numBootIters = 1000, numRuns = 1000, alpha = 0.05)
```

Arguments

- `bkgLevel`: Background firing rate, prior to stimulus onset.
- `generalRespLevel`: Response firing rate applied to categories not having the `respLevel` of firing.
- `respLevel`: Response firing rate during categories which have a response other than background.
- `numCats`: Total number of categories of stimulus.
- `numCatsWithResp`: Number of categories to be given `respLevel` responses.
- `normDistribution`: TRUE if normally distributed response and background counts should be used, otherwise Poisson distributed counts are used. Default is FALSE.
- `showProgress`: TRUE if run count should be printed. Default is FALSE.
- `numTrialsPerCat`: Number of trials of responses and backgrounds for each category. Default is 15.
- `numBootIters`: Number of boot iterations, passed as `R` argument to `boot` function. Default is 1000.
- `numRuns`: Number of simulations to perform followed by bootstrap testing. Default is 1000.
- `alpha`: Significance level, alpha, to use in counting if simulated results are significant. Default is 0.05.

Value

Number of trials, out of `numRuns` which were detected as significant in the bootstrap testing.

Author(s)

Peter N. Steinmetz <PeterNSteinmetz@steinmetz.org>

See Also

`compPowerRespDetection`
Examples

Simulate responses in 3 of 6 categories and compute how often these responses
are detected. Will return a random number generally between 10 and 15, so
the estimate of power would be between 20% and 30%.
require(EffectsRelBaseline)
require(boot)
compPowerGeneralRespDetection(1L1LRLVLSLnumBootIters=50,numRuns=25)

compPowerRespDetection

Compute power to detect differences from background where some categories differ from background.

Description

Compute power to detect responses differing from background in a simulation of responses to a
number of categories of stimuli, some of which differ from a background level of firing.

Usage

compPowerRespDetection(bkgLevel, respLevel, numCats, numCatsWithResp, normDistribution =
FALSE, showProgress = FALSE, numTrialsPerCat = 15, numBootIters = 1000, numRuns = 1000,
alpha = 0.05)

Arguments

bkgLevel Background firing rate, prior to stimulus onset.
respLevel Response firing rate during categories which have a response other than back-
ground.
numCats Total number of categories of stimulus.
numCatsWithResp Number of categories to be given respLevel responses.
normDistribution TRUE if normally distributed response and background counts should be used,
otherwise Poisson distributed counts are used. Default is FALSE.
showProgress TRUE if run count should be printed. Default is FALSE.
numTrialsPerCat Number of trials of responses and backgrounds for each category. Default is 15.
numBootIters Number of boot iterations, passed as ’R’ argument to boot function. Default is 1000.
numRuns Number of simulations to perform followed by bootstrap testing. Default is 1000.
alpha Significance level, alpha, to use in counting if simulated results are significant. Default is 0.05.
Value

Number of trials, out of `numRuns` which were detected as significant in the bootstrap testing.

Author(s)

Peter N. Steinmetz `<PeterNSteinmetz@steinmetz.org>`

References

See Also

`compPowerGeneralRespDetection`

Examples

```r
# Compute power of changes from background test (CBT) over # a range of plausible simulation parameters, placing results # in a dataframe. # This code generates results, a subset of which is shown in figure 4 # of Steinmetz & Thorp 2013.
#
## Not run:
require('PsumtSim')
require('EffectsRelBaseline')
require('boot')

if (exists('res', inherits=FALSE)) rm('res')

possibleCatsWithEffect<-c(1,2,5,10)
numRuns<-1000

numCats in c(5,10,20,30)) {
  catsWithEffect<-possibleCatsWithEffect[possibleCatsWithEffect<=numCats]

  for (anovaP in c(0.01,0.05)) {
    for (bkgRate in seq(0.5,10, by=0.5)) {
      for (numCatsWithEffect in catsWithEffect) {
        for (fracChange in c(0.25, 0.5, 1)) {
          print(paste(numCats,anovaP,bkgRate,numCatsWithEffect,fracChange))

          respLevel<-bkgRate*(1+fracChange)

          numSig<-compPowerRespDetection(bkgRate,respLevel,numCats,
              numCatsWithEffect,
              alpha=anovaP, numRuns=numRuns,
              showProgress=TRUE)
```
Publications/Files/Methodology/Computation/ComputationRejectionFrac.R

compRejectionFraction

Description

Computes rejection fraction for sequential tests. First a t-test for a difference from baseline for any category, followed by an
compRejectionFraction

ANOVA of an effect of category on the cells found to be significant in the first test.

Usage

\[
\text{compRejectionFraction(bkgLevel, respLevel, numCats, pretestP, anovaP, showProgress = FALSE, numTrialsPerCat = 10, numCells = 1000)}
\]

Arguments

- `bkgLevel`: Average firing rate for background counts.
- `respLevel`: Average firing rate for response counts.
- `numCats`: Number of categories to test for a response in.
- `pretestP`: p-value to use in first t-test for a difference from baseline.
- `anovaP`: p-value to use in second ANOVA testing for an effect of category on the responses.
- `showProgress`: TRUE if should list cell number as calculating. Default is FALSE.
- `numTrialsPerCat`: Number of trials, with background and response counts, in each category. Default is 10.
- `numCells`: Number of cells to simulate. Default is 1000.

Details

If the first and second tests were operating independently, the rejectionFrac would remain constant and equal to the anovaP value for all exclusion fractions.

Value

- `exclusionFrac`: Fraction of cells which were not rejected by the first t-test; thus fraction of those ignored for the second test.
- `rejectionFrac`: Fraction of cells rejected by the first test which were rejected by the second test.

Note

Both the t-test and the ANOVA assume a normal distribution of the counts.

Author(s)

Peter N. Steinmetz <Peter.Steinmetz@steinmetz.org>

References

Steinmetz & Thorp, 2012.

Examples

\[
\text{compRejectionFraction(1,1,10,0.01,0.05,showProgress=TRUE)}
\]
Simulates Poisson distributed responses to stimuli.

Description

Simulates a set of Poisson responses to stimuli grouped into categories and corresponding background counts unrelated to stimulation.

Usage

simCatResp(bkgRate, respRates, numRespsPerCat)

Arguments

bkgRate Mean firing rate during a background interval, unrelated to stimulus presentation.
respRates Mean firing rates during a response period, one for each category.
numRespsPerCat Number of repetitions (presentation of stimuli) in each category.

Value

Dataframe with columns for category label, background, and response counts for each trial.

Author(s)

Peter N. Steinmetz <PeterNSteinmetz@steinmetz.org>

See Also

simNormCatResp

Examples

simCatResp(10.0, c(10,20,30), 5) -> siml
anova(glm(resp~category, data=siml), test='F')
simNormCatResp

Simulates normally distributed responses to stimuli.

Description

Simulates a set of normally distributed responses to stimuli grouped into categories and corresponding background counts unrelated to stimulation.

Usage

```r
simNormCatResp(bkgRate, respRates, numRespsPerCat)
```

Arguments

- `bkgRate`: Mean firing rate during a background interval, unrelated to stimulus presentation.
- `respRates`: Mean firing rates during a response period, one for each category.
- `numRespsPerCat`: Number of repetitions (presentation of stimuli) in each category.

Value

Dataframe with columns for category label, background, and response counts for each trial.

Author(s)

Peter N. Steinmetz <PeterNSteinmetz@steinmetz.org>

See Also

- `simCatResp`

Examples

```r
simNormCatResp(10.0, c(10,20,30), 5) -> sim2
anova(glm(resp~category, data=sim2), test='F')
```
testCatEffectBoot
Test for an effect of category using bootstrapping.

Description
Test for an effect of category using bootstrapping.

Usage
```r
testCatEffectBoot(sim, R, testFnc, ...)
```

Arguments
- `sim` : Data frame containing data to be permuted, must have 'resp' and 'category' columns.
- `R` : Number of bootstrap iterations to execute.
- `testFnc` : Function to evaluate one bootstrap iteration, using 'resp' and 'category' columns in the dataframe.
- `...` : Any other arguments for `catEffectBootAdaptor` or `testFnc`.

Details
The function `testFnc` is invoked using the `catEffectBootAdaptor` function to select the response or background counts (set with the `useResp` argument) and permute the rows.

Value
Achieved significance level, ASL.

Author(s)
Peter N. Steinmetz <PeterNSteinmetz@steinmetz.org>

References

See Also
`catEffectBootAdaptor`
Examples

run simulation of responses for 4 categories and then test for category
effect on response using the CBT from Steinmetz & Thorp, 2013
simCatResp(1,c(1,1.5,2,1),6)->sim4
testCatEffectBoot(sim4,100,sumSqCat,backMean=1)
Index

*Topic **Utilities**
catEffectBootAdaptor, 4

*Topic **datagen**
calcNumRejects, 3
compExclusionFraction, 5
compPowerCatSelectivity, 6
compPowerGeneralRespDetection, 8
compPowerRespDetection, 10
compRejectionFraction, 12
simCatResp, 14
simNormCatResp, 15

*Topic **nonparametric**
testCatEffectBoot, 16

*Topic **package**
PsumtSim-package, 2

boot, 3, 5, 7, 9, 10
calcNumRejects, 3
catEffectBootAdaptor, 4, 16
compExclusionFraction, 5
compPowerCatSelectivity, 3, 6
compPowerGeneralRespDetection, 2, 4, 8, 11
compPowerRespDetection, 2–4, 9, 10
compRejectionFraction, 12
EffectsRelBaseline, 3

PsumtSim (PsumtSim-package), 2
PsumtSim-package, 2

simCatResp, 3, 4, 14, 15
simNormCatResp, 14, 15
testCatEffectBoot, 16