Package ‘Kernelheaping’

February 19, 2015

Type Package
Title Kernel Density Estimation for Heaped Data
Version 0.2
Date 2015-01-19
Depends R (>= 2.15.0), plyr, evmix, MASS
Author Marcus Gross
Maintainer Marcus Gross <marcus.gross@fu-berlin.de>
Description In self-reported data the user often encounters heaped data, i.e. data which are rounded to a different degree of coarseness. While this is mostly a minor problem in parametric density estimation the bias can be very large for non-parametric methods such as kernel density estimation. This package implements a partly Bayesian algorithm treating the true unknown values as additional parameters and estimates the rounding parameters to give a corrected kernel density estimate. It supports various standard bandwidth selection methods. Additionally varying rounding probabilities (with the true value) and asymmetric rounding is estimable as well.
License GPL-2
NeedsCompilation no
Repository CRAN
Date/Publication 2015-01-27 12:10:10

R topics documented:

createSim.Kernelheaping 2
dheaping .. 2
Kernelheaping ... 4
plot.Kernelheaping 4
Rprx2 .. 5
sim.Kernelheaping 6
students ... 6
summary.Kernelheaping 7
tracePlots ... 7
createSim.Kernelheaping

Create heaped data for Simulation

Description

Create heaped data for Simulation

Usage

createSim.Kernelheaping(n, distribution, rounds, rprobs, offset = 0,
 downbias = 0.5, Beta = 0, ...)

Arguments

- n: sample size
- distribution: name of the distribution where random sampling is available, e.g. "norm"
- rounds: rounding values
- rprobs: rounding probabilities (for Beta=0)
- offset: certain value added to all observed random samples
- downbias: bias parameter
- Beta: acceleration parameter
- ...: additional attributes handed over to "rdistribution" (i.e. rnorm, rgamma, ...)

Value

List of heaped values, true values and input parameters

dheaping

Kernel density estimation for heaped data

Description

Kernel density estimation for heaped data

Usage

dheaping(xheaped, rounds, burnin = 5, samples = 10, setBias = FALSE,
 bw = "nrd0", boundary = FALSE, unequal = FALSE, adjust = 1)
Arguments

- xheaped: heaped values from which to estimate density of x
- rounds: rounding values
- burnin: burn-in sample size
- samples: sampling iteration size
- setBias: if TRUE a rounding Bias parameter is estimated. For values above 0.5, the respondents are more prone to round down, while for values < 0.5 they are more likely to round up
- bw: bandwidth selector method, defaults to "nrd0" see density for more options
- boundary: TRUE for positive only data (no positive density for negative values)
- unequal: if TRUE a probit model is fitted for the rounding probabilities with log(true value) as regressor
- adjust: as in density, the user can multiply the bandwidth by a certain factor such that bw=adjust*bw

Value

The function returns a list object with the following objects (besides all input objects):

- meanPostDensity: Vector of Mean Posterior Density
- gridx: Vector Grid on which density is evaluated
- resultDensity: Matrix with Estimated Density for each iteration
- resultRR: Matrix with rounding probability threshold values for each iteration (on probit scale)
- resultBias: Vector with estimated Bias parameter for each iteration
- resultBeta: Vector with estimated Beta parameter for each iteration
- resultX: Matrix of true latent values X estimates

Examples

Simulate Data
Sim1 <- createSim.Kernelheaping(n=500, distribution="norm", rounds=c(1,10,100),
 rprobs=c(0.3,0.4,0.3), sd=100)
Not run: est <- dheaping(Sim1$xheaped, rounds=Sim1$rounds)
plot(est, trueX=Sim1$x)
End(Not run)

Biased rounding
Sim2 <- createSim.Kernelheaping(n=500, distribution="gamma", rounds=c(1,2,5,10),
 rprobs=c(0.1,0.15,0.4,0.35), downbias=0.2, shape=4, scale=8, offset=45)
Not run: est <- dheaping(Sim2$xheaped, rounds=Sim2$rounds, setBias=T, bw="SJ")
plot(est, trueX=Sim2$x)
summary(est)
Kernelheaping

Kernel Density Estimation for Heaped Data

Description

In self-reported data the user often encounters heaped data, i.e. data which are rounded to a different degree of coarseness. While this is mostly a minor problem in parametric density estimation the bias can be very large for non-parametric methods such as kernel density estimation. This package implements a partly Bayesian algorithm treating the true, unknown values as additional parameters and estimates the rounding parameters to give a corrected kernel density estimate. It supports various standard bandwidth selection methods. Additionally varying rounding probabilities (with the true value) and asymmetric rounding is estimable as well.

Details

The most important function is `dheaping`. See the help and the attached examples on how to use the package.

plot.Kernelheaping

Plot Kernel density estimate of heaped data naively and corrected by partly bayesian model

Description

Plot Kernel density estimate of heaped data naively and corrected by partly bayesian model
Usage

```r
## S3 method for class 'Kernelheaping'
plot(x, trueX = NULL, ...)
```

Arguments

- `x`: Kernelheaping object produced by `dheaping` function
- `trueX`: optional, if true values X are known (in simulations, for example) the 'Oracle' density estimate is added as well
- `...`: additional arguments given to standard plot function

Value

plot with Kernel density estimates (Naive, Corrected and True if provided)

Rprx2

Conditional Posterior for X given W, beta, a, p

Description

Conditional Posterior for X given W, beta, a, p

Usage

```
Rprx2(rounds, Bias, RR, beta, gridx)
```

Arguments

- `rounds`: rounding values
- `Bias`: Bias parameter (on probit scale)
- `RR`: Threshold values for rounding parameters
- `beta`: acceleration parameter
- `gridx`: grid on which density is evaluated

Value

List with Probabilities
sim.Nkernelheaping
Simulation of heaping correction method

Description

Simulation of heaping correction method

Usage

`sim.Nkernelheaping(simRuns, n, distribution, rounds, rprobs, ...)`

Arguments

- `simRuns`: number of simulations runs
- `n`: sample size
- `distribution`: name of the distribution where random sampling is available, e.g. "norm"
- `rounds`: rounding values
- `rprobs`: rounding probabilities (for Beta=0)
- `...`: additional attributes handed over to `createSim.Kernelheaping` or `dheaping`

Value

List of estimation results

Examples

```r
## Not run: Sims1 <- sim.Nkernelheaping(simRuns=2, n=500, distribution="norm",
rounds=c(1,10,100), rprobs=c(0.3,0.4,0.3), sd=100)
## End(Not run)
```

students
Student0405

Description

Data collected during 2004 and 2005 from students in statistics classes at a large state university in the northeastern United States.

Author(s)

Jessica M. Utts, Robert F. Heckard

Source

http://mathfaculty.fullerton.edu/mori/Math120/Data/readme
summary.Kernelheaping Prints some descriptive statistics (means and quantiles) for the estimated rounding, bias and acceleration (beta) parameters

Description
Prints some descriptive statistics (means and quantiles) for the estimated rounding, bias and acceleration (beta) parameters

Usage
S3 method for class 'Kernelheaping'
summary(object, ...)

Arguments

object Kernelheaping object produced by dheaping function
...

Value
Prints summary statistics

tracePlots Plots some trace plots for the rounding, bias and acceleration (beta) parameters

Description
Plots some trace plots for the rounding, bias and acceleration (beta) parameters

Usage
tracePlots(x, ...)

Arguments

x Kernelheaping object produced by dheaping function
...

Value
Prints summary statistics
Index

createSim.Kernelheaping, 2

dheaping, 2, 4

Kernelheaping, 4
Kernelheaping-package (Kernelheaping), 4

plot.Kernelheaping, 4

Rprx2, 5

sim.Kernelheaping, 6
students, 6
summary.Kernelheaping, 7

tracePlots, 7