Package ‘FADA’

February 19, 2015

Type Package

Title Variable selection for supervised classification in high dimension

Version 1.2

Date 2014-10-08

Author Emeline Perthame (Agrocampus Ouest, Rennes, France), Chloe Friguet (Université de Bretagne Sud, Vannes, France) and David Causeur (Agrocampus Ouest, Rennes, France)

Maintainer David Causeur <david.causeur@agrocampus-ouest.fr>

Description The functions provided in the FADA (Factor Adjusted Discriminant Analysis) package aim at performing supervised classification of high-dimensional and correlated profiles. The procedure combines a decorrelation step based on a factor modeling of the dependence among covariates and a classification method. The available methods are Lasso regularized logistic model (see Friedman et al. (2010)), sparse linear discriminant analysis (see Clemmensen et al. (2011)), shrinkage linear and diagonal discriminant analysis (see M. Ahdesmaki et al. (2010)). More methods of classification can be used on the decorrelated data provided by the package FADA.

License GPL (>= 2)

Depends MASS, elasticnet

Imports sparseLDA,sda,glmnet,mnormt,crossval

NeedsCompilation no

Repository CRAN

Date/Publication 2014-10-14 09:26:41

R topics documented:

FADA-package ... 2
data.test .. 3
data.train .. 4
decorrelate.test .. 5
decorrelate.train 6
FADA ... 8
Description

The functions provided in the FADA (Factor Adjusted Discriminant Analysis) package aim at performing supervised classification of high-dimensional and correlated profiles. The procedure combines a decorrelation step based on a factor modeling of the dependence among covariates and a classification method. The available methods are Lasso regularized logistic model (see Friedman et al. (2010)), sparse linear discriminant analysis (see Clemmensen et al. (2011)), shrinkage linear and diagonal discriminant analysis (see M. Ahdesmaki et al. (2010)). More methods of classification can be used on the decorrelated data provided by the package FADA.

Details

- Package: FADA
- Type: Package
- Version: 1.2
- Date: 2014-10-08
- License: GPL (>= 2)

The functions available in this package are used in this order:

- Step 1: Decorrelation of the training dataset using a factor model of the covariance by the decorrelate.train function. The number of factors of the model can be estimated or forced.
- Step 2: If needed, decorrelation of the testing dataset by using the decorrelate.test function and the estimated factor model parameters provided by decorrelate.train.
- Step 3: Estimation of a supervised classification model using the decorrelated training dataset by the FADA function. One can choose among several classification methods (more details in the manual of FADA function).
- Step 4: If needed, computation of the error rate by the FADA function, either using a supplementary test dataset or by K-fold cross-validation.

Author(s)

Emeline Perthame (Agrocampus Ouest, Rennes, France), Chloe Friguet (Université de Bretagne Sud, Vannes, France) and David Causeur (Agrocampus Ouest, Rennes, France)

References

Examples

```r
### Not run
### example of an entire analysis with FADA package if a testing data set is available
### loading data
# data(data.train)
# data(data.test)

# dim(data.train$x) # 30 250
# dim(data.test$x) # 1000 250

### decorrelation of the training data set
# res = decorrelate.train(data.train) # Optimal number of factors is 3
### decorrelation of the testing data set afterward
# res2 = decorrelate.test(res,data.test)

### classification step with sda, using local false discovery rate for variable selection
### linear discriminant analysis
# FADA.LDA = FADA(res2,method="sda",sda.method="lfdr")

### diagonal discriminant analysis
# FADA.DDA = FADA(res2, method="sda",sda.method="lfdr",diagonal=TRUE)

### example of an entire analysis with FADA package if no testing data set is available
### loading data

### decorrelation step
# res = decorrelate.train(data.train) # Optimal number of factors is 3

### classification step with sda, using local false discovery rate for variable selection
### linear discriminant analysis, error rate is computed by 10-fold CV (20 replications of the CV)
# FADA.LDA = FADA(res,method="sda",sda.method="lfdr")
```

Test dataset simulated with the same distribution as the training dataset data.train.
data.train

Description

The test dataset has the same list structure as the training dataset data.train. Only the numbers of rows of the x component and length of the y component are different since the test sample size is 1000.

Usage

data(data.test)

Format

List with 2 components: x, the 1000x250 matrix of simulated explanatory variables and y, the 1000x1 grouping variable (coded 1 and 2).

Examples

data(data.test)
dim(data.test$x) # 1000 250
data.test$y # 2 levels

data.train

Training data

Description

Simulated training dataset. The x component is a matrix of explanatory variables, with 30 rows and 250 columns. Each row is simulated according to a multinormal distribution which mean depends on a group membership given by the y component. The variance matrix is the same within each group.

Usage

data(data.train)

Format

A list with 2 components. x is a 30x250 matrix of simulated explanatory variables. y is a 30x1 grouping variable (coded 1 and 2).

Examples

data(data.train)
dim(data.train$x) # 30 250
data.train$y # 2 levels
hist(cor(data.train$x[data.train$y==1,])) # high dependence
hist(cor(data.train$x[data.train$y==2,]))
decorrelate.test

Factor Adjusted Discriminant Analysis 2: Decorrelation of a testing data set after running the decorrelate.train function on a training data set

Description

This function decorrelates the test dataset by adjusting data for the effects of latent factors of dependence, after running the decorrelate.train function on a training data set.

Usage

decorrelate.test(faobject, data.test)

Arguments

faobject An object returned by function decorrelate.train.
data.test A list containing the testing dataset, with the following component: x is a n x p matrix of explanatory variables, where n stands for the testing sample size and p for the number of explanatory variables.

Value

Returns a list with the following elements:

meanclass Group means estimated after iterative decorrelation
fa.training Decorrelated training data
fa.testing Decorrelated testing data
Psi Estimation of the factor model parameters: specific variance
B Estimation of the factor model parameters: loadings
factors.training Scores of the trainings individuals on the factors
factors.testing Scores of the testing individuals on the factors
groups Recall of group variable of training data
proba.training Internal value (estimation of individual probabilities for the training dataset)
proba.testing Internal value (estimation of individual probabilities for the testing dataset)
mod.decorrelate.test Internal value (classification model)

Author(s)

Emeline Perthame, Chloe Friguet and David Causeur
References

See Also

FADA-package FADA glmnet-package

Examples

```r
data(data.train)
data(data.test)
fa = decorrelate.train(data.train)
fa2 = decorrelate.test(fa, data.test)
names(fa2)
```

decorrelate.train
Factor Adjusted Discriminant Analysis 1: Decorrelation of the training data

Description

This function decorrelates the training dataset by adjusting data for the effects of latent factors of dependence.

Usage

```r
decorrelate.train(data.train, nbf = NULL, maxnbfactors = 12, nfolds = 10,
grouped = FALSE, plot.diagnostic = FALSE, min.err = 0.001,
verbose = TRUE, EM=TRUE, maxiter=15)
```

Arguments

- `data.train`: A list containing the training dataset with the following components: `x` is the `n` x `p` matrix of explanatory variables, where `n` stands for the training sample size and `p` for the number of explanatory variables; `y` is a numeric vector giving the group of each individual numbered from 1 to `K`.
- `nbf`: Number of factors. If `nbf = NULL`, the number of factors is estimated. `nbf` can also be set to a positive integer value. If `nbf = 0`, the data are not factor-adjusted.
- `maxnbfactors`: The maximum number of factors. Default is `maxnbfactors=12`.
nfolds
Number of folds for estimation of lambda parameter in Lasso, which is used to estimate individual probabilities of group membership. Default is nfolds=10. The smallest value is nfolds = 3. To perform Leave-One-Out cross-validation, nfolds can be set to the size of training data, which is not advised for large data sets.

grouped
If grouped=TRUE, a group Lasso penalty is applied in the multinomial case so that a selected variable is in the model for all groups or not. Default is grouped=FALSE

plot.diagnostics
If diagnostic.plot=TRUE, the values of the variance inflation criterion are plotted for each number of factors. Default is diagnostic.plot=FALSE. This option might be helpful to manually determine the optimal number of factors.

min.err
Threshold of convergence of the algorithm criterion. Default is min.err=0.001.

verbose
Print out number of factors and values of the objective criterion along the iterations. Default is TRUE.

EM
The method used to estimate the parameters of the factor model. If EM=TRUE, parameters are estimated by an EM algorithm. Setting EM=TRUE is recommended when the number of covariates exceeds the number of observations. If EM=FALSE, the parameters are estimated by maximum-likelihood using factanal. Default is EM=TRUE

maxiter
Maximum number of iterations for estimation of the factor model.

Value
Returns a list with the following elements:

- **meanclass** Group means estimated after iterative decorrelation
- **fa.train** Decorrelated training data
- **Psi** Estimation of the factor model parameters: specific variance
- **B** Estimation of the factor model parameters: loadings
- **factors.train** Scores of the trainings individuals on the factors
- **groups** Recall of group variable of training data
- **proba.train** Internal value (estimation of individual probabilities for the training dataset)
- **mod.decorrelate.test** Internal value (classification model)
- **data.train** Internal value (recall of the training data set)

Author(s)
Emeline Perthame, Chloe Friguet and David Causeur
References

See Also

FADA-package FADA glmnet-package factanal

Examples

data(data.train)
data(data.test)
res = decorrelate.train(data.train) # when the optimal number of factors is unknown

Not run
res@ = decorrelate.train(data.train,nbf=3) # when the number of factors is forced

FADA

Factor Adjusted Discriminant Analysis 3-4: Supervised classification on decorrelated data

Description

This function performs supervised classification on factor-adjusted data.

Usage

```r
FADA(faobject, K=10, B=20, nbf.cv = NULL, method = c("glmnet", "sda", "sparseLDA"), sda.method = c("1fdr", "HC"), stop.par = 10, lambda, lambda.var, lambda.freqs, diagonal = FALSE, alpha = 0.1, nfolds = 10)
```

Arguments

- **faobject**: An object returned by function FA.
- **K**: Number of folds to estimate classification error rate, only when no testing data is provided. Default is K=10.
- **B**: Number of replications of the cross-validation. Default is B=20.
- **nbf.cv**: Number of factors for cross validation to compute error rate, only when no testing data is provided. By default, nbf = NULL and the number of factors is estimated for each fold of the cross validation. nbf can also be set to a positive integer value. If nbf = 0, the data are not factor-adjusted.
method
The method used to perform supervised classification model. 3 options are available. If `method = "glmnet"`, a Lasso penalized logistic regression is performed using `glmnet` R package. If `method = "sda"`, a LDA or DDA (see diagonal argument) is performed using Shrinkage Discriminant Analysis using `sda` R package. If `method = "sparseLDA"`, a Lasso penalized LDA is performed using `SparseLDA` R package.

sda.method
The method used for variable selection, only if `method="sda"`. If `sda.method="lfdr"`, variables are selected through CAT scores and False Non Discovery Rate control. If `sda.method="HC"`, the variable selection method is Higher Criticism Thresholding.

stop.par
This parameter controls the number of variables to include in the model, only if `method="sparseLDA"`.

lambda
The shrinkage intensity of correlation matrix, if `method="sda"`.

lambda.var
The shrinkage intensity of variances, if `method="sda"`.

lambda.freqs
The shrinkage intensity of frequencies, if `method="sda"`.

diagonal
If `diagonal = TRUE`, an assumption of independence is made and a shrunken diagonal discriminant analysis is performed using `sda` R package. If `diagonal = FALSE`, FADA performs shrunken linear discriminant analysis and takes into account correlations.

alpha
The proportion of the HC objective to be observed, only if `method="sda"` and `sda.method="HC"`. Default is 0.1.

nfolds
Number of folds for estimation of lambda parameter in Lasso, which is used to estimate individual probabilities. Default is `nfolds=10`. The smallest value is `nfolds = 3`. To perform Leave-One-Out cross-validation, `nfolds` can be set to the size of training data, which is not advised for large data sets. This option is used only when no testing data is available.

Value
Returns a list with the following elements:

<table>
<thead>
<tr>
<th>Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>method</td>
<td>Recall of the classification method</td>
</tr>
<tr>
<td>selected</td>
<td>A vector containing index of the selected variables</td>
</tr>
<tr>
<td>proba.train</td>
<td>A matrix containing predicted group frequencies of training data.</td>
</tr>
<tr>
<td>proba.test</td>
<td>A matrix containing predicted group frequencies of testing data, if a testing data set has been provided</td>
</tr>
<tr>
<td>predict.test</td>
<td>A matrix containing predicted classes of testing data, if a testing data set has been provided</td>
</tr>
<tr>
<td>cv.error</td>
<td>A numeric value containing the average classification error, computed by cross validation, if no testing data set has been provided</td>
</tr>
<tr>
<td>cv.error.se</td>
<td>A numeric value containing the standard error of the classification error, computed by cross validation, if no testing data set has been provided</td>
</tr>
<tr>
<td>mod</td>
<td>The classification model performed. The class of this element is the class of a model returned by the chosen method. See the help file of the chosen method for more details.</td>
</tr>
</tbody>
</table>
Author(s)

Emeline Perthame, Chloe Friguet and David Causeur

References

See Also

FADA, decorrelate.train, decorrelate.test, sda, sda-package, glmnet-package

Examples

data(data.train)
data(data.test)

When testing data set is provided
res = decorrelate.train(data.train)
res2 = decorrelate.test(res, data.test)
classif = FADA(res2, method="sda", sda.method="lfdcr")

Not run
When no testing data set is provided
Classification error rate is computed by a K-fold cross validation.
res = decorrelate.train(data.train)
classif = FADA(res, method="sda", sda.method="lfdcr")
Index

data.test, 3
data.train, 4
decorrelate.test, 5, 10
decorrelate.train, 6, 10

factanal, 8
FADA, 6, 8, 8, 10
FADA-package, 2

sda, 10