Package ‘EnviroStat’

February 19, 2015

Type Package
Title Statistical analysis of environmental space-time processes
Version 0.4-0
Date 2014-03-07
Author Nhu Le, Jim Zidek, Rick White, and Davor Cubranic, with
Fortran code for Sampson-Guttorp estimation authored by Paul D.
Sampson, Peter Guttorp, Wendy Meiring, and Catherine Hurley, and
Maintainer Davor Cubranic <cubranic@stat.ubc.ca>
License AGPL (>= 3)
Imports MASS
NeedsCompilation yes
Repository CRAN
Date/Publication 2014-03-08 00:41:03

R topics documented:

EnviroStat-package 2
bgrid ... 3
comb.all 4

R topics documented:

EnviroStat-package 2
bgrid ... 3
comb.all 4
corfit .. 4
Disp.link .. 5
draw .. 6
Falternate3 7
Fdist .. 8
Flamb2 .. 8
Fmgrid .. 9
Ftransdraw 10
Fvariogfit3 11
ldet.eval 12
location.NY 12
EnviroStat-package

Statistical analysis of environmental space-time processes

Description

Details

The modeling approach offered by this package has a number of features:

- Conditional on knowing the process parameters the environmental process is assumed to have (after a suitable transformation if necessary) to be a Gaussian random field (GRF).
- At every spatial location, the process can yield a multiplicity of random responses such as air pollutant concentrations.
- The approach used in the package lies within a Bayesian hierarchical modeling framework. However for computational expediency empirical shortcuts are made at higher levels of the hierarchical setup. Thus for example most hyperparameters are fitted using a type II maximum likelihood approach, eliminating the need for the user to specify them. Thus the package can handle large fields of monitoring networks, say with 600 or more spatial sites.
- The approach does not assume a stationary GRF. Instead it takes a nonparametric approach where the spatial covariance matrix is left completely unspecified and instead endowed with a prior distribution with a hypercovariance matrix that can be modeled at level two of the hierarchy, making the method quite robust against non-stationarity in the random field.
- It presents an approach for designing monitoring networks based on the well-known warping method of Sampson and Guttorp (1992) as developed with Wendy Meiring.
- It allows for missing data, providing that these data are missing in blocs of time, which after a regional trend is fitted, then become exchangeable. For then the blocs of residuals can be permuted the get a decreasing or increasing staircase pattern in the data matrix something that is required in the approach.
- It has been empirically assessed in a number of major applications and found to yield well calibrated prediction intervals. For example, a 95% interval will cover their predictands about 95% of the time.
Author(s)

Nhu Le, Jim Zidek, Rick White, and Davor Cubranic.
Fortran code for Sampson-Guttorp estimation authored by Paul D. Sampson, Peter Guttorp, Wendy Meiring, and Catherine Hurley.
Maintainer: Davor Cubranic <cubranic@stat.ubc.ca

References

See Also

See the package vignette for a guided example of complete analysis using the package and the manual for details of individual functions.

bgrid

Create a bi-orthogonal grid

Description

Function to create a biorthogonal grid using the thin-plate solution; the grid object created can be used with the draw function to plot the grid.

Usage

bgrid(start, xmat, coef, xlimt, iter.limit = 10, perpc = 8)

Arguments

start coordinates of the starting point to create the grid - usually near the center of region
xmat $n \times 2$ matrix containing xy coordinates of locations
coef coefficients of the thin-plate solution, for instance as returned by sinterp
xlimt vector of 4 elements, representing x- and y-ranges for the grid to be created; if not provided, the ranges of xmat are used.
iter.limit limit of iterations
perpc parameter to control spacing of the grid

Value

A list with following named components:

grid coordinates of points in the grid
ngrid number of points in the grid
fldmag the “gradient” index (see Sampson and Guttorp, 1992, for details)
nn internally set for the maximum number of grid points allowed
References

See Also
draw, sinterp

comb.all

Enumerate all combinations

Description
Function to enumerate all combinations of size ‘k’ from the set 1,..., n.

Usage

```
comb.all(n, k)
```

Arguments

- `n`: number of elements in the set
- `k`: number of elements to choose for each combination

Value
An (n-choose-k) by k matrix with one combination per row.

Examples

```
comb.all(5, 3)
```

corrfit

Estimate location correlations

Description
Function to estimate correlations between all the locations(new+stations) using the results of the SG step

Usage

```
corrfit(crds, Tspline, sg.fit, model = 1)
```
Disp.link

Arguments

- crds: coordinates of all locations beginning with new locations
- Tspline: the thin-spline fit from the SG-steps
- sg.fit: the mapping resulted from the SG method
- model: variogram model; 1: exponential 2: gaussian

Value

correlation matrix among the locations

Disp.link

Function to plot and link points in a dispersion-distance plot and a geographic map.

Description

User may identify points on the dispersion scatter in order to identify line segments on the coordinate plot, **and/or** identify individual sites on the coordinate plot in order to highlight the corresponding set of points on the dispersion scatter.

Usage

Disp.link(disp.mx, coords, dmap, ddisp, names, device = getOption('device'))

Arguments

- disp.mx: nxn matrix of dispersions (i.e. Var(Z(x)-Z(y))
- coords: nx2 matrix of coordinates
- dmap: device number for existing window to be used for map (optional)
- ddisp: device number for existing window to be used for dispersion plot (optional)
- names: not yet used, but might be used for labelling
- device: a character string giving the name of a function, or the function object itself, which when called creates a new graphics device

Value

Indices of station pairs selected in the dispersion plot, and indices of individual stations selected on the coordinate plot.

Note

Uses `setplot` to set up coordinates for geographic map and `Fdist` to compute distances from coords.
draw

Plot the biorthogonal grid

Description

Function to plot the biorthogonal grid created by the `bgrid` function

Usage

```r
draw(data, fs = FALSE, lwidth = c(1, 1), lcolor = c(1, 1),
     cutpts, limits = FALSE, optlist, pts = FALSE)
```

Arguments

- `data` grid object, typically as returned by the `bgrid` function
- `fs` indicator of whether non-solid lines can be used
- `lwidth` range of line widths to be used.
- `lcolor` range for colours
- `cutpts` cutpoints; to be created from data if not provided
- `limits` indicator if lower and upper limits are added to the cutpts.
- `optlist` list containing values of options including `lwidth`, `lcolor`, `cutpts`, `limits`; values are obtained from data if not provided.
- `pts` indicator whether points are also plotted.

Value

Besides drawing the grid, the function also returns `optlist`.

Note

See Sampson+Guttorp (1992) for detail on interpretation of the plotted grid, (E.g., solid lines indicate contraction and dashed lines indicate expansion.)

References

See Also

`bgrid`
Simultaneous coordinate and variogram estimation

Description

Perform simultaneous estimation of coords and exponential or gaussian variogram by alternating weighted least squares.

Usage

```
Faltermate3(dp, coords, model = 1, a0 = 0.1, t0 = 0.5,
  max.iter = 50, max.fcal = 100, alter.lim = 50,
  tol = 1e-05, prt = 0, dims = 2, lambda = 0,
  ncoords, dev.mon = NULL, verbose = FALSE)
```

Arguments

- **disp**: $n \times n$ dispersion matrix, equal to $2 - 2(spatial\text{correlation}\text{matrix})$
- **coords**: $n \times 2$ coordinate matrix
- **model**: type of variogram: 1 for exponential or 2 for gaussian
- **a0, t0**: initial variogram parameter estimates
- **max.iter, max.fcal**: control parameter for calls to non-linear optimization routines (same values used in MDS step and in variogram step)
- **alter.lim**: maximum number of iterations of pairs of alternating calls to `Fmdsfit3` (coordinate estimation) and `Fvariogfit3` (variogram fitting)
- **tol**: convergence criterion for coordinate estimates
- **prt**: not used
- **dims**: dimension of multi-dimensional scaling
- **lambda**: smoothing parameter
- **ncoords**: $n \times 2$ optional initial coordinates to use if not G-plane
- **dev.mon**: Function to open the graphics device used for plots monitoring the convergence of objective. If NULL, monitoring plots will not be created.
- **verbose**: if TRUE, display the results of each iteration to the console

Details

This version permits dimension > 2 for scaling. In the plotting we’ll use a plot symbol proportional to the third coordinate.

Value

A list containing the following named components:

- **variogfit**: Fitted variogram parameters with new locations
- **ncoords**: $n \times 2$ matrix with coordinates of new locations
Warning

make sure that coords are scaled reasonably small before attempting to compute; otherwise matrix inversion is likely not to work in calculation of bending energy matrix.

Note

This version also passes a smoothing parameter to the optimization. This parameter probably is not scaled exactly the same as it is in sinterp and this has not been investigated yet.

Fdist

Description

Function to compute interpoint distances for an \(n \times p \) coordinate matrix.

Usage

Fdist(crds)

Arguments

- **crds**: \(n \times p \) matrix of \(n \) locations, each with \(p \) coordinates

Value

\(n \times n \) matrix of interdistances; \((i, j)\) element is the distance between locations \(i \) and \(j \)

Flamb2

Description

Projects the geo-coordinates into rectangular ones using the Lambert projection.

Usage

Flamb2(geoconfig, latrf1 = NA, latrf2 = NA, latref = NA, lngref = NA)

Arguments

- **geoconfig**: \(n \times 2 \) matrix, containing geo-coordinates in format \((\text{lat}, -\text{long}, \text{in degrees})\) of \(n \) locations.
- **latref**, **lngref**: latitude and longitude of the reference point (mid-point if not provided)
- **latrf1**, **latrf2**: range of latitudes used in the projection (default: \(\text{latref} \pm 0.3 \text{range(latitudes)} \))
Value

A list containing the following named components:

- **xy**
 \(n \times 2 \) matrix of Lambert projection coordinates
- **latref**, **lngref**
- **latrf1**, **latrf2**

Description

Function to generate points on a grid. Points are assembled in an \(n \times 2 \) matrix with NA’s separating series of vertical and horizontal lines in the grid.

Usage

```
fmgrid(xlim, ylim, xn = 8, xspace, xres, yn = 8, yspace, yres)
```

Arguments

- **xlim**
 range in x-axis
- **ylim**
 range in y-axis
- **xn**, **yn**
 the number of vertical and horizontal lines, respectively. This parameter is overridden by xspace and yspace if specified.
- **xspace**, **yspace**
 the distance between successive vertical and horizontal lines, respectively
- **xres**, **yres**
 the distance between points generated along horizontal and vertical lines, respectively; if xres and yres are not specified, then points are generated only at the nodes of intersection of the vertical and horizontal lines. Note that these nodes appear in duplicate as sequences of points are generated first for the vertical lines and then for the horizontal lines.

Value

A list containing the following named components:

- **grid**
 coordinates of grid points
- **r1.ind**
 Indicator of points generated from vertical or horizontal line
Ftransdraw

Interactively choose smoothing parameter value

Description

An interactive function showing the fitted variogram and the mapping transformation from the geographical space into D-space, allowing the user to interactively choose a suitable value for the smoothing parameter ("lambda").

Usage

\[
\text{Ftransdraw}(\text{disp}, \text{Gcrds}, \text{MDScrds}, \text{gridstr}, \text{sta.names}, \lambda = 0, \ \ \\
\text{lsq} = \text{FALSE}, \text{eye}, \text{model} = 1, a0 = 0.1, t0 = 0.5)
\]

Arguments

- **disp** \(n \times n \) dispersion matrix, equal to \(2 - 2 \text{(spatialcorrelationmatrix)} \)
- **Gcrds** \(n \times 2 \) coordinate matrix (in G-space)
- **MDScrds** Coordinates of new locations – as calculated by \text{Falternate3}
- **gridstr** grid coordinates, obtained from \text{Fmgrid} using Gcrds as input
- **sta.names** names of locations; if not provided, locations will be numbered 1 to \(n \)
- **lambda** initial value of the smoothing parameter
- **lsq** logical flag used in Sampson-Guttorp method
- **eye** eye perspective; if not provided, locations will be selected using the provided data
- **model** type of variogram: 1 for exponential or 2 for gaussian
- **a0, t0** initial variogram parameter estimates

Value

A list containing the following named components:

- **Dcrds** \(n \times 2 \) coordinate matrix of new locations in D-space
- **Ddist** \(n \times n \) matrix of interdistances in D-space

Note

The graphic device has to be setup before engaging this function, for example using the ‘setplot’ function:

\[
\text{par(mfrow=c(1,2))} \\
\text{temp } \leftarrow \text{setplot(coords.lamb, ax=TRUE)}
\]

In window, after entering the function call in R console, click on the graphical device to register the curse before proceeding and this interactive function will provide instructions for using a different smoothing parameter value; ie. enter a new lambda value in R console, then click on the graphical device to see results.
Description

Fit an exponential or gaussian variogram with interdistances and corresponding dispersion values.

Usage

Fvario3fit3(disp.lt, h.lt, model = 1, aθ = 0.1, tθ = 0.5,
max.iter = 25, max.fcal = 100, bep = 0, verbose = FALSE)

Arguments

disp.lt vector of spatial dispersion values between locations (one value for each pair)
h.lt vector of corresponding interdistances
model type of variogram: 1 for exponential or 2 for gaussian
aθ, tθ initial variogram parameter estimates
max.iter, max.fcal control parameters for calls to non-linear optimization routines
bep bending energy penalty, described in Sampson-Guttorp method (JASA 1992)
verbose if TRUE, display fitting details to the console

Details

Exponential variogram is defined as \(a_1 + (2 - a_1)(1 - \exp(-t_0h)) \). Gaussian variogram is defined as \(a_1 + (2 - a_1)(1 - \exp(-t_0h^2)) \).

Value

A list containing the following named components:

objf sum of residual sum of squares, plus bending energy penalty
a, tθ fitted parameters
fit fitted values of variogram

ldet.eval
Log determinant of sub-covariances

Description

Function to calculate the log determinant of all sub-covariance matrices of size \((k \times k)\) from a covariance matrix.

Usage

```r
ldet.eval(covmat, k, all = FALSE)
```

Arguments

- `covmat`: a covariance matrix (ie. non-negative definite, square and symmetric)
- `k`: dimension of sub-covariance matrices considered
- `all`: if TRUE, returns all combinations with corresponding \(\log|\det|\)

Value

- `coord.sel`: The \(k\) coordinates having the largest \(\log|\det|\)
- `log.det`: The \(\log|\det|\) of the submatrix corresponding the `coord.sel`
- `all.comb`: all combinations and their \(\log|\det|\) if `all` = TRUE; NULL otherwise.

Note

Setting \(\text{all} = \text{TRUE}\) may need additionally a large amount of memory and so may not work for a large number of combinations!!

location.NY
Locations of New York ozone measuring stations.

Description

The `location.NY` data frame consists of geographical coordinates of nine stations in New York State numbered for our purposes from 1 to 9.

Usage

```r
data(location.NY)
```
Format

A data frame with 9 observations on the following 2 variables.

lat Station latitude
long Station longitude

See Also

This dataset accompanies the ozone measurements in ozone.NY.

Examples

```r
data(location.NY)
plot(location.NY[,1], location.NY[,2])
```

Description

The ozone.NY data frame consists of hourly O_3 concentration levels (ppb) from nine stations in New York State numbered for our purposes from 1 to 9. These data were originally downloaded from the EPA’s AIRS air quality site (Environmental Protection Agency 2013). Furthermore, preliminary analysis suggested a sqrt transformation of the original concentrations to symmetrize the data distribution.

Usage

```r
data(ozone.NY)
```

Format

Each row of the data set represents a daily record starting at April 1, 1995, and ending at September 30, 1995 (183 days). Measurements are recorded by station in columns, with four columns per station (for hours 8–12); there are nine stations, so there are 36 columns of measurements in total. The last six stations have no missing observations while stations 1, 2, 3 have 2616, 2016, and 72 missing hourly observations, respectively.

- month month of the measurement, numeric 4–9
- weekday day of the week, numeric 2–8
- sqO3.1–sqO3.4 square root of the O_3 measurement for station 1 for hours 8–12 (8am to noon).
- ...
- sqO3.33–sqO3.36 square root of the O_3 measurement for station 9 for hours 8–12 (8am to noon).

Source

pred.dist.ssimul
Simulate from the predictive distribution

Description

Simulate N- replicates from the predictive distribution for a given time point (tpt) from 1 to n (length of the data).

Usage

```r
pred.dist.ssimul(hyperest, tpt, include.obs = T, N = 1)
```

Arguments

- `hyperest`: Output from the `staircase.hyper.est` functions, containing estimates of all hyperparameters
- `tpt`: A specific time point - from 1 to n corresponding to the number of time points from the data set
- `include.obs`: If TRUE, the observed data for time tpt, are also returned
- `N`: Number of replicates

Value

A matrix with N rows; the number of columns depends on whether the observed data are returned

The columns are organized consistent with the observed data (ie. \(u \times p \) ungauged blocks, \(g_1 \times p \), \(g_2 \times p, \ldots \))

Note

This function could be slow if there are missing data at gauged sites correspondind to the selected time point. That is, it is fastest at time points corresponding to Block 1 and slower with higher blocks.

setplot
Set up device for locations

Description

Function to setup the graphical device to cover the range of locations.

Usage

```r
setplot(xdata, ydata, pretty.call = TRUE, maxdim, axes = FALSE)
```
Arguments

- **xdata**: vector x-axis coordinates of locations, or either an $n \times 2$ matrix or a list with named components x and y for x- and y-axis coordinates, respectively.
- **ydata**: vector y-axis coordinates of locations, not needed if $n \times 2$ matrix is given for xdata.
- **pretty.call**: if TRUE, coordinate locations are replaced with a grid calculated using `pretty`.
- **maxdim**: plot dimensions, (width, height), in inches; if not provided, current `par("pin")` is used.
- **axes**: logical value indicating whether both axes should be drawn on the plot.

Value

A list containing the following named components:

- **xlim, ylim**: plot limits for the x- and y-axis, respectively.
- **oldpin**: old plot dimensions, as returned by `par("pin")`.
- **newpin**: new plot dimensions.

seval
Value estimation using thin-plate spline

Description

Function to estimate value at a location using thin-plate spline.

Usage

```
seval(x, tpss)
```

Arguments

- **x**: $n \times 2$ matrix, containing xy coordinates of locations.
- **tpss**: thin-plate solution, typically returned by `sinterp`.

Value

List containing the following named components:

- **x**: location coordinates, copied from the x.
- **y**: estimated values at location x.
Fitting a thin-plate spline

Description

Function to compute coefficients for arbitrary dimension thin-plate spline smooths, that is, smooth mappings from \mathbb{R}^q to \mathbb{R}^p.

Usage

```r
sinterp(x, y, m = 2, lamb = 0, lsq = FALSE)
```

Arguments

- **x**
 - An $nq \times nk$ matrix of knots, where nq = dimension of the domain space, and nk = the number of knots. Each column represents one knot. That is, the row dimension should be the dimension of the domain space, and the column dimension should be the number of knot points.

- **y**
 - An $nq \times nk$ matrix of function values at each knot point, where np = dimension of the image space. Each data set is a column. (Note that the row dimension of y is the number of knots which corresponds to the column dimension of x). (As returned by `falternte3`.)

- **m**
 - An integer such that $2 \times m$ is the order of the spline. The default value is 2.

- **lamb**
 - A vector of real smoothing parameters. If lamb is missing or 0, `sinterp` performs interpolation.

- **lsq**
 - if TRUE, subtract least squares fit from y, returning the polynomial coefficients as element `b` of the result.

Value

Thin-plate spline solution; more details in Sampson-Guttorp (1992)

- **x**
 - A copy of the x matrix argument passed to the function.

- **y**
 - A copy of the y matrix argument.

- **m**
 - A copy of the m argument.

- **lamb**
 - A copy of the $lamb$ argument.

- **lsq**
 - A copy of the lsq argument.

- **b**
 - If requested, this contains the coefficients of the least squares portion. Each column represents one y dataset, with the coefficients in the same order as in `sol`.

- **sol**
 - A solution array. The first n components are the coefficients of $u(x - x(i))$. The next $d + m - 1$ choose $m - 1$ components are the coefficients of the interpolating polynomial. These coefficients are ordered by increasing order of the total degree of the monomial. Within a group of monomials whose total degree
if and only if \(x(k) \) appears to a higher power in monomial \(i \) than it does in monomial \(j \) for some \(k \) such that \(x(k - l) \) is not in either monomial for any \(l \).

Example: if \(m = 3 \) and \(d = 4 \), the order of the polynomial coefficients will be:

\[
1, x_1, x_2, x_3, x_4, x_1^2, x_1 x_2, x_1 x_3, x_1 x_4, x_2^2, x_2 x_3, x_2 x_4, x_3^2, x_3 x_4, x_4^2
\]

The above mess describes each column. The array is \(\text{len} \times ny \times \text{nlam} \), where \(\text{nlam} \) is the number of lambda values, \(ny \) is the number of y data vectors, and \(\text{len} \) is the length of the vector described above. In the case that \(\text{nlam} \) equals 1 (the default), "sol" is returned as 2-dimensional \(\text{len} \times ny \) array without the third dimension.

ainf
A vector of informational integers for the factored "a" matrix. Zero's indicate everything is O.K.. If the i-th entry is \(k \), then the \(k \)-th pivot block of the a matrix for the i-th lambda value is singular. In the last case, no solution will be computed.

linf
A vector of informational integers corresponding to the least squares solution(if requested). Zero's indicate no problems. If the i-th entry is \(k \), then the \(k \)-th diagonal entry of the R matrix of the QR decomposition of the polynomial matrix is zero.

f
A copy of the factorial values calculated for various internal length determinations.

a
A copy of the internally generated factored "a" matrix.

References
Each column represent data from a station; rows are for time
Blocks are decided based on the number of missing observations

\(p \)
number of pollutants measured at each stations. (first \(p \) columns of \(y \) are for \(p \) pollutants from station 1, block 1).

\(\text{block} \)
a vector indicating the number of stations in each block - from 1 to \(K \)

\(\text{covariate} \)
design matrix for covariates created with \text{model.matrix} with \text{as.factor}

\(\Theta \)
Provided if the hyperparameter \(\beta_0 \) (\(B_0 \)) is known and not estimated

\(\text{init} \)
Initial values for the hyperparameters; output of this function can be used for that

\(a \)
When \(p=1 \), the type-II MLE’s for delta’s are not available. Delta’s are assumed to follow a gamma distribution with parameters \((a,r)\)

\(r \)
When \(p=1 \), the type-II MLE’s for delta’s are not available. Delta’s are assumed to follow a gamma distribution with parameters \((a,r)\)

\(\text{verbose} \)
flag for writing out the results at each iteration

\(\text{maxit} \)
the default maximum number of iterations

\(\text{tol} \)
the convergence level.

Details
The estimated model is as follows:

\[
\begin{align*}
\text{data} & \sim MVN(z \times \beta, \text{kroncker}(I, \Sigma)) \\
\beta & \sim MVN(\beta_0, \text{kroncker}(F^{-1}, \Sigma)) \\
\Sigma & \sim GIW(\Theta, \delta)
\end{align*}
\]

\(\Theta \) is a collection of hyperparameters including \(\xi_0, \Omega, \Lambda, H^{-1} \).

Value
A list with following elements:

\(\text{Delta} \)
The estimated degrees freedom for each of the blocks (list)

\(\text{Omega} \)
The estimated covariance matrix between pollutants

\(\text{Lambda} \)
The estimated conditional covariance matrix between stations in each block given data at stations in higher blocks (less missing data) - (list)

\(\text{Xi}\theta \)
The estimated slopes of regression between stations in each blocks and those in higher blocks (list). Note that \(\tau_{0i} = \text{kroncker}(\xi_0, \text{diag}(p)) \) - same across stations for each pollutants.

\(\text{Beta}\theta \)
Coefficients - assumed to be the same across stations for each pollutant

\(\text{Finv} \)
Scale associated with \(\beta_0 \)

\(\text{Hinv} \)
The estimated hyperparameters (list) - inverse of \(H_j \)

\(\text{Psi} \)
The estimated (marginal) covariance matrix between stations

\(\text{block} \)
From input

\(\text{data} \)
From input

\(\text{covariate} \)
From input

\(\text{Lambda.1K} \)
The inverse Bartlett decomposition (eqn 23?)
See Also

staircase.hyper.est

Description

This function combines the results from the *staircase.EM* fit and the SG method to estimate the hyperparameters associated with the ungauged sites.

Usage

```
staircase.hyper.est(emfit, covfit, u, p, g, dP = NULL)
```

Arguments

- `emfit`: Output from the *staircase.EM* fit
- `covfit`: The covariance matrix between all locations (with new locations at the beginning). This is an output from the SG fitting
- `u`: number of new locations
- `p`: dimension of the multivariate response
- `g`: number of stations
- `dP`: (optional) The degrees of freedom for the new locations (ungauged block)

Value

List with the following elements:

- `Delta.0`: The degree of freedoms for the new locations. Equal to `dP`, if given (must be > `u*p+2`), else `mean(emfit$delta)` if > `u*p+2; u*p+ min(emfit$delta)` otherwise.
- `Lambda.0`: Conditional variance between new locations given the gauged stations
- `Xi0.0`: the regression slope (Note: $\tau_0 = \text{kronecker}(\xi_0, \text{diag}(p))$)
- `H.0`: The variance matrix for the rows of $\tau[u]$

Also all components of the output of the *staircase.EM* fit (for blocks 1-K).

See Also

staircase.EM
Index

*Topic **datasets**
 location.NY, 12
 ozone.NY, 13
*Topic **package**
 EnviroStat-package, 2

bgrid, 3, 6
comb.all, 4
corrfit, 4
Disp.link, 5
draw, 3, 4, 6

EnviroStat (EnviroStat-package), 2
EnviroStat-package, 2

Falternate3, 7, 10, 16
Fdist, 5, 8
Flamb2, 8
Fmgrid, 9, 10
Ftransdraw, 10
Fvariogfit3, 7, 11

ldet.eval, 12
location.NY, 12

ozone.NY, 13, 13

par, 15
pred.dist.simul, 14
pretty, 15

setplot, 5, 14
seval, 15
sinterp, 3, 4, 15, 16
staircase.EM, 17, 19
staircase.hyper.est, 14, 19, 19