Package ‘D2C’

February 19, 2015

Type Package

Title Predicting Causal Direction from Dependency Features

Version 1.2.1

Date 2015-01-14

Author Gianluca Bontempi, Catharina Olsen, Maxime Flauder

Maintainer Catharina Olsen <colsen@ulb.ac.be>

Description The relationship between statistical dependency and causality lies at the heart of all statistical approaches to causal inference. The D2C package implements a supervised machine learning approach to infer the existence of a directed causal link between two variables in multivariate settings with n>2 variables. The approach relies on the asymmetry of some conditional (in)dependence relations between the members of the Markov blankets of two variables causally connected. The D2C algorithm predicts the existence of a direct causal link between two variables in a multivariate setting by (i) creating a set of features of the relationship based on asymmetric descriptors of the multivariate dependency and (ii) using a classifier to learn a mapping between the features and the presence of a causal link

License Artistic-2.0

Depends R(>= 2.10.0), randomForest

Imports gRbase, lazy, RBGL, MASS, corpcor, methods, Rgraphviz, foreach

LazyData true

Suggests knitr

VignetteBuilder knitr

NeedsCompilation no

Repository CRAN

Date/Publication 2015-01-21 00:23:55
Description

contains the adjacency matrix of the Alarm DAG (true.net) and the related measured dataset (dataset). See the vignette for an utilization of the dataset.

contains the adjacency matrix of the Alarm DAG (true.net) and the related measured dataset (dataset). See the vignette for an utilization of the dataset.

Details

Dataset alarm

Benchmark alarm

References

Aliferis C, Statnikov A, Tsamardinos I, Mani S, Koutsoukos X Local Causal and Markov Blanket Induction for Causal Discovery and Feature Selection for Classification Part II: Analysis and Extensions' by JMLR 2010’

Aliferis C, Statnikov A, Tsamardinos I, Mani S, Koutsoukos X Local Causal and Markov Blanket Induction for Causal Discovery and Feature Selection for Classification Part II: Analysis and Extensions' by JMLR 2010’
Description

The balanced error rate is the average of the errors on each class: \(BER = 0.5 \times \frac{FP}{TN+FP} + \frac{FN}{FN+TP} \).

Usage

\(BER(Ytrue, Yhat) \)

Arguments

- \(Ytrue \): binary numeric vector (made of 0 or 1) of real classes
- \(Yhat \): binary numeric vector (made of 0 or 1) of predicted classes

Value

Balanced Error Rate \(0 \leq BER \leq 1 \)

compute,DAG.network-method

\textit{compute N samples according to the network distribution}

Description

compute N samples according to the network distribution

Usage

\[
S4 method for signature 'DAG.network'
compute(object, N = 50)
\]

Arguments

- \(object \): a DAG.network object
- \(N \): numeric. the number of samples generated according to the network

Value

a N*Nodes matrix
D2C-class

An S4 class to store the RF model trained on the basis of the descriptors of NDAG DAGs

DAG.network-class

An S4 class to store DAG.network

Description

An S4 class to store DAG.network

Arguments

- **network**: object of class "graph"

dataset

Dataset of the Alarm benchmark

Description

Contains the measured dataset. See the vignette for an utilization of the dataset

Details

Dataset of the Alarm benchmark

References

Aliferis C, Statnikov A, Tsamardinos I, Mani S, Koutsoukos X Local Causal and Markov Blanket Induction for Causal Discovery and Feature Selection for Classification Part II: Analysis and Extensions’ by ; JMLR 2010’
descriptor

compute descriptor

Description

compute descriptor

Usage

\[
\text{descriptor}(D, \text{ca}, \text{ef}, n = \min(4, \text{NCOL}(D) - 2), \text{lin} = \text{FALSE}, \text{acc} = \text{TRUE}, \\
\text{struct} = \text{TRUE}, \text{pq} = c(0.1, 0.25, 0.5, 0.75, 0.9), \text{bivariate} = \text{FALSE})
\]

Arguments

- **D**: the observed data matrix of size \([N,n]\), where \(N\) is the number of samples and \(n\) is the number of nodes
- **ca**: node index \((1 \leq \text{ca} \leq n)\) of the putative cause
- **ef**: node index \((1 \leq \text{ef} \leq n)\) of the putative effect
- **ns**: size of the Markov Blanket
- **lin**: TRUE OR FALSE. if TRUE it uses a linear model to assess a dependency, otherwise a local learning algorithm
- **acc**: TRUE OR FALSE. if TRUE it uses the accuracy of the regression as a descriptor
- **struct**: TRUE or FALSE to use the ranking in the markov blanket as a descriptor
- **pq**: a vector of quantiles used to compute de descriptor
- **bivariate**: TRUE OR FALSE. if TRUE it includes the descriptors of the bivariate dependency

Details

This function is the core of the D2C algorithm. Given two candidate nodes, \((\text{ca}, \text{putative cause})\) and \((\text{ef}, \text{putative effect})\) it first infers from the dataset \(D\) the Markov Blankets of the variables indexed by \(\text{ca}\) and \(\text{ef}\) (\(\text{MBca}\) and \(\text{MBef}\)) by using the mimr algorithm (Bontempi, Meyer, ICML10). Then it computes a set of (conditional) mutual information terms describing the dependency between the variables \(\text{ca}\) and \(\text{ef}\). These terms are used to create a vector of descriptors. If \(\text{acc} = \text{TRUE}\), the vector contains the descriptors related to the asymmetric information theoretic terms described in the paper. If \(\text{struct} = \text{TRUE}\), the vector contains descriptors related to the positions of the terms of the \(\text{MBef}\) in \(\text{MBca}\) and viceversa. The estimation of the information theoretic terms require the estimation of the dependency between nodes. If \(\text{lin} = \text{TRUE}\) a linear assumption is made. Otherwise the local learning estimator, implemented by the R package lazy, is used.
References

Gianluca Bontempi, Maxime Flauder (2014) From dependency to causality: a machine learning approach. Under submission

Example

stored D2C object

Description

small D2C object for testing D2C functionalities

Details

Dataset example

Examples

```r
require(RBGL)
require(gRbase)
data(example)
print(example@mod)
## Random Forest
print(dim(example@X))
## dimension of the training set
```

initialize,D2C-method

creation of a D2C object which preprocesses the list of DAGs and observations contained in sDAG and fits a Random Forest classifier

Description

creation of a D2C object which preprocesses the list of DAGs and observations contained in sDAG and fits a Random Forest classifier

Usage

```r
## S4 method for signature 'D2C'
initialize(.Object, sDAG, descr = new("D2C.descriptor"),
  verbose = TRUE, ratioMissingNode = 0, ratioEdges = 1,
  max.features = 20, goParallel = FALSE)
```
initialize,D2C.descriptor-method

Arguments

- `.Object` : the D2C object
- `sDAG` : simulateDAG object
- `descr` : D2C.descriptor object containing the parameters of the descriptor
- `verbose` : if TRUE it prints the state of progress
- `ratioMissingNode` : percentage of existing nodes which are not considered. This is used to emulate latent variables.
- `ratioEdges` : percentage of existing edges which are added to the training set
- `max.features` : maximum number of features used by the Random Forest classifier randomForest. The features are selected by the importance returned by the function `importance`.
- `goParallel` : if TRUE it uses parallelism

References

Gianluca Bontempi, Maxime Flauder (2014) From dependency to causality: a machine learning approach. Under submission

Examples

```r
require(RBGL)
require(gRbase)
require(for each)
sd <- new("D2C.descriptor")
sd.example <- new("D2C.descriptor", bivariate=FALSE, ns=3, acc=TRUE)
trainDAG <- new("simulatedDAG", DAG=2, N=50, noNodes=10,
               functionType = "linear", seed=0, sdn=0.5)
example <- new("D2C", sDAG=trainDAG, descr=sd.example)
```

Description

creation of a D2C.descriptor

Usage

```r
## S4 method for signature 'D2C.descriptor'
initialize(.Object, lin = TRUE, acc = TRUE,
           struct = TRUE, pq = c(0.1, 0.25, 0.5, 0.75, 0.9), bivariate = FALSE,
           ns = 4)
```
initialize.DAG.network-method

Arguments

- **Object**: the D2C.descriptor object
- **lin**: TRUE OR FALSE: if TRUE it uses a linear model to assess a dependency, otherwise a local learning algorithm
- **acc**: TRUE OR FALSE: if TRUE it uses the accuracy of the regression as a descriptor
- **struct**: TRUE or FALSE to use the ranking in the Markov blanket as a descriptor
- **pq**: a vector of quantiles used to compute the descriptors
- **bivariate**: TRUE OR FALSE: if TRUE it includes also the descriptors of the bivariate dependence
- **ns**: size of the Markov Blanket returned by the mIMR algorithm

References

Gianluca Bontempi, Maxime Flauder (2014) From dependency to causality: a machine learning approach. Under submission

Examples

```r
require(RBGL)
require(gRbase)
require(foreach)
descr.example<-new("D2C.descriptor",bivariate=FALSE,ns=3,acc=TRUE)
trainDAG<-new("simulatedDAG",NDAG=2, N=50,noNodes=10,
  functionType = "linear", seed=0,sdn=0.5)
```

Description

creation of a DAG.network

Usage

```r
## S4 method for signature 'DAG.network'
initialize(.Object, network, sdn = 0.5,
  sigma = function(x) return(rnorm(n = 1, sd = sdn)), H = function(x)
  return(H_Rn(1)))
```
initialize,simulatedDAG-method

Arguments

- **Nobject**: DAG.network object
- **network**: object of class "graph"
- **sdn**: standard deviation of additive noise.
- **sigma**: function returning the additive noise
- **H**: function describing the type of the dependency.

Description

Creation of a "simulatedDAG" containing a list of DAGs and associated observations

Usage

```r
# S4 method for signature 'simulatedDAG'
initialize(.Object, NDAG = 1,
          noNodes = sample(10:20, size = 1), functionType = "linear",
          quantize = FALSE, verbose = TRUE, N = sample(100:500, size = 1),
          seed = 1234, sdn = 0.5, goParallel = FALSE)
```

Arguments

- **.Object**: simulatedDAG object
- **NDAG**: number of DAGs to be created and simulated
- **noNodes**: number of Nodes of the DAGs. If it is a two-valued vector, the value of Nodes is randomly sampled in the interval
- **functionType**: type of the dependency. It is of class "character" and is one of ("linear", "quadratic","sigmoid")
- **quantize**: if TRUE it discretize the observations into two bins. If it is a two-valued vector [a,b], the value of quantize is randomly sampled in the interval [a,b]
- **verbose**: if TRUE it prints out the state of progress
- **N**: number of sampled observations for each DAG. If it is a two-valued vector [a,b], the value of N is randomly sampled in the interval [a,b]
- **seed**: random seed
- **sdn**: standard deviation of additive noise. If it is a two-valued vector, the value of N is randomly sampled in the interval
- **goParallel**: if TRUE it uses parallelism
References

Gianluca Bontempi, Maxime Flauder (2014) From dependency to causality: a machine learning approach. Under submission

Examples

```r
require(RBGL)
require(gRbase)
require(foreach)
descr=new("D2C.descriptor")
descr.example<-new("D2C.descriptor",bivariate=FALSE,ns=3,acc=TRUE)
trainDAG<-new("simulatedDAG",NDAG=10, N=c(50,100),noNodes=c(15,40),
    functionType = "linear", seed=0, sdn=c(0.45,0.75))
```

mimr

mIMR (minimum Interaction max Relevance) filter

Description

Filter based on information theory which aims to prioritise direct causal relationships in feature selection problems where the ratio between the number of features and the number of samples is high. The approach is based on the notion of interaction which is informative about the relevance of an input subset as well as its causal relationship with the target.

Usage

```r
mimr(X, Y, nmax = 5, init = FALSE, lambda = 0.5, spouse.removal = TRUE, 
    caus = 1)
```

Arguments

- `X`: input matrix
- `Y`: output vector
- `nmax`: number of returned features
- `init`: if TRUE it makes a search in the space of pairs of features to initialize the ranking, otherwise the first ranked feature is the one with the highest mutual information with the output
- `lambda`: weight $0 \leq \lambda \leq 1$ of the interaction term
- `spouse.removal`: TRUE OR FALSE. if TRUE it removes the spouses before ranking
- `caus`: if caus = 1 it prioritizes causes otherwise (caus=-1) it prioritizes effects

Value

ranked vector of `nmax` indices of features
predict.D2C-method

Description

predict if there is a connection between node i and node j

Usage

```r
## S4 method for signature 'D2C'
predict(object, i, j, data)
```

Arguments

- **object**: a D2C object
- **i**: index of putative cause ($1 \leq i \leq n$)
- **j**: index of putative effect ($1 \leq j \leq n$)
- **data**: dataset of observations from the DAG

Value

list with response and prob of the prediction

References

Gianluca Bontempi, Maxime Flauder (2014) From dependency to causality: a machine learning approach. Under submission

References

Examples

```r
set.seed(0)
N<-500
n<-5
X<-array(rnorm(N*n),c(N,n))
Y<-X[,1]-3*X[,3]+4*X[,2]+rnorm(N, sd=0.5)
Z1<-Y+rnorm(N, sd=0.5)
## effect 1
Z2<-2*Y+rnorm(N, sd=0.5)
## effect 2
most.probable.causes<-mimr(cbind(X,Z1,Z2), Y, nmax=3, init=TRUE, spouse=FALSE, lambda=1)
## causes are in the first three columns of the feature dataset
most.probable.effects<-mimr(cbind(X,Z1,Z2), Y, nmax=3, init=TRUE, spouse=FALSE, lambda=1, caus=-1)
## effects are in the last two columns of the feature dataset
```
Examples

```r
require(RBGL)
require(gRbase)
require(foreach)
data(example)
## load the D2C object
testDAG<-new("simulatedDAG",NDAG=1, N=50,noNodes=5,
  functionType = "linear", seed=1, sdn=c(0.25,0.5))
## creates a simulatedDAG object for testing
plot(testDAG@list.DAGs[[1]])
## plot the topology of the simulatedDAG
predict(example,1,2, testDAG@list.observationsDAGs[[1]])
## predict if the edge 1->2 exists
predict(example,4,3, testDAG@list.observationsDAGs[[1]])
## predict if the edge 4->3 exists
predict(example,4,1, testDAG@list.observationsDAGs[[1]])
## predict if the edge 4->1 exists
```

simulatedDAG-class

An S4 class to store a list of DAGs and associated observations

Description

An S4 class to store a list of DAGs and associated observations

Arguments

- `list.DAGs` : list of stored DAGs
- `list.observationsDAGs` : list of observed datasets, each sampled from the corresponding member of `list.DAGs`
- `NDAG` : number of DAGs.
- `functionType` : type of the dependency. It is of class "character" and is one of ("linear", "quadratic","sigmoid")
- `seed` : random seed

true.net

Adjacency matrix of the Alarm dataset

Description

contains the adjacency matrix of the Alarm DAG. See the vignette for an utilization of the dataset

Details

Adjacency matrix of the Alarm benchmark
update.simulatedDAG-method

update of a "simulatedDAG" with a list of DAGs and associated observations

Description

update of a "simulatedDAG" with a list of DAGs and associated observations

Usage

```r
## S4 method for signature 'simulatedDAG'
update(object, list.DAGs, list.observationsDAGs)
```

Arguments

- `object`: simulatedDAG to be updated
- `list.DAGs`: list of stored DAGs
- `list.observationsDAGs`: list of observed datasets, each sampled from the corresponding member of list.DAGs

updateD2C,D2C-method

update of a "D2C" with a list of DAGs and associated observations

Description

update of a "D2C" with a list of DAGs and associated observations

Usage

```r
## S4 method for signature 'D2C'
updateD2C(object, sDAG, verbose = TRUE, goParallel = FALSE)
```

Arguments

- `object`: D2C to be updated
- `sDAG`: simulatedDAG object to update D2C
- `verbose`: TRUE or FALSE
- `goParallel`: if TRUE it uses parallelism
Index

*Topic data
 alarm, 2
 dataset, 4
 example, 6
 true.net, 12

alarm, 2
BER, 3
compute,DAG.network-method, 3
D2C-class, 4
DAG.network-class, 4
dataset, 4
descriptor, 5
example, 6
importance, 7
initialize,D2C-method, 6
initialize,D2C.descriptor-method, 7
initialize,DAG.network-method, 8
initialize,simulatedDAG-method, 9
lazy, 5
mimr, 5, 10
predict,D2C-method, 11
randomForest, 7
simulatedDAG-class, 12
true.net, 12
update,simulatedDAG-method, 13
updateD2C,D2C-method, 13