Package ‘CEoptim’

February 26, 2015

Type Package
Title Cross-Entropy R Package for Optimization
Version 1.0
Date 2015-02-28
Author Tim Benham and Qibin Duan and Dirk P. Kroese and Benoit Liquet
Maintainer Benoit Liquet <b.liquet@uq.edu.au>
Depends MASS, msm, stats
Description Optimization solver based on the Cross-Entropy method.
License GPL (>= 2.0)
NeedsCompilation no
Repository CRAN
Date/Publication 2015-02-26 16:46:44

R topics documented:

CEoptim-package .. 2
CEoptim .. 2
dirichletrnd ... 5
FitzHugh ... 5
lesmis ... 6
print ... 7
yt ... 8

Index 9
The CEoptim package provides an optimization solver based on the Cross-Entropy method. The main function `ceoptim` can be used to solve multi-extremal optimization problems involving discrete, continuous, and mixed variables. In addition, CEoptim implements linear constraints for continuous optimization.

Details

```
Package: CEoptim
Type: Package
Version: 1.0
Date: 2015-02-28
License: GPL (>=2.0)
LazyLoad: yes
```

Author(s)

Tim Benham, Qibin Duan, Dirk P. Kroese, Benoit Liquet <b.liquet@uq.edu.au>

References

See Also

 CEoptim

Description

CEopt is an optimization function based on the Cross-Entropy method

Usage

`CEoptim(f, f.arg=NULL, maximize=FALSE, continuous=NULL, discrete=NULL, N=100L, rho=0.1, iterThr=1e4L, noImproveThr=5, verbose=FALSE)`
Arguments

\(f \) Function to be optimized. Can have continuous and discrete arguments
\(f_\text{arg} \) List of additional fixed arguments passed to function \(f \).
\(\text{maximize} \) Logical value determining whether to maximize or minimize the objective function
\(\text{continuous} \) List of arguments for the continuous optimization part consisting of:
 - mean Vector of initial means.
 - sd Vector of initial standard deviations.
 - smoothMean Smoothing parameter for the vector of means. Default value 1 (no smoothing).
 - smoothSd Smoothing parameter for the standard deviations. Default value 1 (no smoothing).
 - sdThr Positive numeric convergence threshold. Check whether the maximum standard deviation is smaller than \(\text{sdThr} \). Default value 0.001.
\(\text{discrete} \) List of arguments for the discrete optimization part, consisting of:
 - categories Integer vector which defines the allowed values of the categorical variables. The \(i \)th categorical variable takes values in the set \(\{0,1,\ldots,\text{categories}(i)-1\} \).
 - probs List of initial probabilities for the categorical variables. Defaults to equal (uniform) probabilities.
 - smoothProb Smoothing parameter for the probabilities of the categorical sampling distribution. Default value 1 (no smoothing).
 - probThr Positive numeric convergence threshold. Check whether all probabilities in the categorical sampling distributions deviate less than \(\text{probThr} \) from either 0 or 1. Default value 0.001.
\(N \) Integer representing the CE sample size.
\(\rho \) Value between 0 and 1 representing the elite proportion.
\(\text{iterThr} \) Termination threshold on the largest number of iterations.
\(\text{noImproveThr} \) Termination threshold on the largest number of iterations during which no improvement of the best function value is found.
\(\text{verbose} \) Logical value set for CE progress output.

Value

\textbf{CEoptim} returns an object of class "CEoptim" which is a list with the following components.

- **optimum** Optimal value of \(f \).
- **optimizer** List of the location of the optimal value, consisting of:
 - continuous Continuous part of the optimizer.
 - discrete Discrete part of the optimizer.
- **termination** List of termination information consisting of:
- **niter** Total number of iterations upon termination.
- **convergence** One of the following statements:
 * Not converged, if the number of iterations reaches `iterThr`;
 * The optimum did not change for `noImproveThr` iterations, if the best value has not improved for `noImproveThr` iterations;
 * Variances converged, otherwise.

- **states** List of intermediate results computed at each iteration. It consists of the iteration number (`iter`), the best overall value (`optimum`) and the worst value of the elite samples, (`gammat`). The means (`mean`) and maximum standard deviations (`maxsd`) of the elite set are also included for continuous cases, and the maximum deviations (`maxprobs`) of the sampling probabilities to either 0 or 1 are included for discrete cases.

- **states.probs** List of categorical sampling probabilities computed at each iteration. Will only be returned for discrete and mixed cases.

Note

Although partial parameter passing is allowed outside lists, it is recommended that parameters names are specified in full. Parameters inside lists have to specified completely.

Because `CEoptim` is a random function it is useful to (1) set the seed for the random number generator (for testing purposes), and (2) investigate the quality of the results by repeating the optimization a number of times.

Author(s)

Tim Benham, Qibin Duan, Dirk P. Kroese, Benoit Liquet

References

Examples

```r
## Maximizing the Peaks Function

fun <- function(x){
  return(3*(1-x[1])^2*exp(-x[1]^2 - (x[2]+1)^2)
         -1/3*exp(-(x[1]+1)^2 - x[2]^2))
}

set.seed(1234)

mu0 <- c(-3,-3); sigma0 <- c(10,10)

res <- CEoptim(fun,continuous=list(mean=mu0, sd=sigma0), maximize=TRUE)

print(res$optimum); print(res$optimizer)
```
dirichletrnd

Dirichlet generator

Description

Random generation for the Dirichlet distribution

Usage

```r
dirichletrnd(a, n)
```

Arguments

- `a` numeric vector for the concentration parameters
- `n` number of observations

Value

dirichletrnd generates `n` random observations from a Dirichlet distribution

Author(s)

Tim Benham, Qibin Duan, Dirk P. Kroese, Benoit Liquet

References

FitzHugh

Simulated data from FitzHugh-Nagumo differential equations

Description

The data correspond to the values V(t) of the FitzHugh-Nagumo differential equations

\[
V'(t) = c^*(V(t) - (V(t)^3)/3 + R(t))
\]

\[
R'(t) = -(1/c)^*(V(t) - a + b*R(t))
\]

at times 0, 0.05,...,20.0, with parameters a = 0.2, b = 0.2, c = 3 and initial conditions V(0) = -1, R(0)=1, and adding gaussian noise with standard deviation 0.5.

Usage

```r
data(FitzHugh)
```
Format

A numeric vector of length 401

References

lesmis

Network data from Les Miserables

Description

An R implementation of Donald Knuth’s social network graph describing the interaction of characters in Victor Hugo’s novel Les Miserables. Each node represents a character, and edges connect any pair of characters that coappear. The weights of the edges are the number of such coappearances.

Usage

```r
data(lesmis)
```

Format

Matrix of weights (77x77)

References

print
Print method for the CEoptim object

Description

Produce print method for class "CEoptim"

Usage

```r
## S3 method for class 'CEoptim'
print(x,...)
```

Arguments

- `x`
 object of class inheriting from "CEoptim"

- `...`
 additional arguments: optimizer; optimum; termination; states; states.probs

Details

Print method for "CEoptim" class, returns by default the main description of the x object including: optimizer; optimum; termination. To get the states and states.probs outputs, one should specify the corresponding argument to "TRUE".

Author(s)

Tim Benham, Qibin Duan, Dirk P. Kroese, Benoit Liquet

References

See Also

CEoptim
Simulated cumulative data from an AR(1) model with regime switching

Description

y_t represents the added value of a stock at time t, at day $t=1,2,\ldots,300$; that is, the increase (which may be negative) in stock price relative to the price at time $t=0$.

Usage

`data(yt)`

Format

Numeric vector of length 300

References

Index

*Topic datasets
 FitzHugh, 5
 lesmis, 6
 yt, 8
*Topic package
 CEoptim-package, 2

CEoptim, 2, 2, 7
CEoptim-package, 2
dirichletrnd, 5
FitzHugh, 5
lesmis, 6
print, 7
yt, 8